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ON THE CYCLIC HOMOGENEOUS POLYNOMIAL INEQUALITIES
OF DEGREE FOUR OF THREE NONNEGATIVE REAL VARIABLES

MARIYAN MILEV AND NEDELCHO MILEV

(Communicated by T. Buric)

Abstract. Let f(x,y,z) is a cyclic homogeneous polynomial of degree four of three nonnegative
real variables satisfying the condition f(1,1,1) =0. We find necessary and sufficient condition
to be true the inequality f(x,y,z) > 0, for this aim we introduce a characteristic polynomial
J¢(t) and by its root 7p > 0 we formulate the condition.

1. Introduction

Inequalities of cyclic or symmetric homogeneous polynomials of three variables
are explored in numerous articles [1]-[9]. Tetsuya Ando solves this problem by finding
necessary and sufficient conditions of degree three ([1], [2] and [3], Theorem 1.2). We
could reformulate the condition in [3], Theorem 1.2 as we introduce an auxiliary func-
tion h(t) =t>—2t~!, t € (0,+oc0). This function is continuous, monotone increasing
and takes values in the whole real line.

Theorem. Let a, b, ¢ are real constants and let 7y > 0 is a root of the characteristic
equation h(t) = 1> —2¢t~! = a. For arbitrary nonnegative numbers x, y and z it is true
the inequality

Sy 2 Faloy? 4y +23) + by + ¥ 2+ 22x) +exyz > 0,

if and only if when 3+3a+3b+c>0 and b > h(ty ') =1,% — 210.
Let a, b, ¢ are real constants and

fryz) =+ v+ A+ a(Py+ 22+ 2x) + by + v +2%)

—|—c(x2y2 —|—y212 +zzx2) —(l+a+b+c)xyz(x+y+z)

is a cyclic homogeneous polynomial of degree four, f(1,1,1) =0.

When x, y and z are real variables Vasile Cirtoaje proves that the necessary and
sufficient condition to be true f(x,y,z) =0 is 3(c+ 1) > a® + ab + b* ([4], Theorem
2.1). Vasile Cirtoaje finds also the necessary and sufficient condition when f is a
symmetric polynomial of nonnegative real variables ([4], Theorem 2.6).
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When f is a cyclic polynomial of nonnegative real variables Tetsuya Ando proves
that to be true the inequality f(x,y,z) > 0 is necessary and sufficient to be verified at
least one of six conditions ([3], Theorem 1.3).

We introduce the characteristic polynomial J(¢) = 2t* 4+ ar® — bt — 2 and by its
root 7y > 0 we formulate the necessary and sufficient condition to be true f(x,y,z) >0
(Theorem 1).

Necessary and sufficient conditions for cyclic homogeneous polynomial inequal-
ities of degree four for which f(1,1,1) > 0 are pointed by Cirtoaje and Zhou for real
variables [5] and for nonnegative real variables ([9], Theorem 2.1 and Theorem 2.2).
T. Ando explore symmetric cyclic homogeneous polynomial inequalities of degree five
([3], Theorem 1.4) while V. Cirtoaje of degree six [6], [7], [8].

2. Main results
For brevity we set
_ A, 4,4 — 43 3 3
wp=x"+y + 7 —xyz(x+y+z), wa=xy+yz+rx—xyz(x+y+2),

wy =2y +22 + 2% —xyz(x+y+2) and wy =xy® +y2> +20° —xyz(x +y+2).

REMARK. For arbitrary real numbers x, y, z the following inequalities hold w4 >
w3, wg = wy and wyg > wy > 0, and for arbitrary nonnegative numbers x, y, z the
following inequalities hold w; > 0, wsz > 0 and wiw; > (wz)2 ([4], inequality 5.2).
The last inequality follows from the identity

wiwp — (w2)? = xyz(x+y+2) (P +y* + 22 —xy —yz —2x)> > 0.
Let a, b and ¢ be real constants. For arbitrary nonnegative numbers x, y, z we
will explore the inequality f(x,y,z) = wa +awsz+bw; +cwp > 0.

The equation J(1) = 2t* +ar®> — bt —2 = 0 has at least one root 7y € (0, +o0),
because J(0) = —2 and tliEI_I J(t) = —-oo. Let us set

aop Zl(;l —2ty, bo Zlo—ztal and k= (a—ao)to. (1)
From J(tp) =0 we find b = by + kiy, i.e.
a=ay+kiy' = (k+ 1)1 =219, and b=bo+kto= (k+1)tg—215". (2)

REMARK. When k > —1 the equation J(7) = 0 has exactly one root 7y € (0, +-co),
because

J(@t) =2t 4 [ (k+ ity —ZZO}Z3 — [(k+ 1)t0—2t61}t—2 = (t—10)1(2),

where
Ji(t) =20 + (k+ Dty ' + (k+ 1)t +21, > 0.
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THEOREM 1. Let a, b and c be real constants and to > 0 is a root of the charac-
teristic equation J(t) =2t* +at> —bt —2 =0, k=ato+ 213 — 1 and co = (to— 1, ')*.
For arbitrary nonnegative numbers x, y and z the inequality

S(e,3,2) =wa+aws+bw; +cwp =0,
holds if and only if

co— 2k when k>
c> a*+ab + b?

L.
3

0
r when k <0, where r=

REMARK. Itis always true that r > co — 2k as 3(r —co+2k) = K> (12 +1,2+1) >
0.

When &k > 0 and ¢ = ¢y — 2k the equality holds if and only if x=y =z or {z=
0,x =tgy}, or any cyclic permutation thereof.

When &k > 0 and ¢ > ¢y — 2k the equality holds if and only if x =y = z.

When k£ < 0 and ¢ > r the equality holds if and only if x =y =z.

When k < 0 and ¢ = r the equality holds when x =y = z and at least for one triplet
(x0,¥0,1) such that xo > 0, xp # 1 and yp > 0, or any cyclic permutation thereof. The
only exception is the case a = b = —2 = ¢ = r = 3, the equality holds if and only if
x=y=z.

For completeness we will also add the following theorem.

THEOREM 2. Let x, y, z be arbitrary nonnegative numbers and a, b, ¢, d be
real constants. A necessary and sufficient condition the inequality

f(x,3,2) =aws+bwi+cwy +dxyz(x+y+2) =0
tobetrueis a>0,b>0,d >0 and c+2vVab > 0.
Proof Theorem 1. We will divide the proof into several lemmas.
1 1
Weset p= —§(2a+b), q= —5(51—1—219)7
u=x*—22—pxy+(p—qxz+qyz and v=y>—22—qxy+(q—p)yz+ pxz.
The following identity holds ([4], 3.2)
fZW4+aW3+bw1+cwz:uz—uv—f—vz—l—(c—r)wz. O 3)
LEMMA 1.1. ([4], 3.2) If ¢ > r then for arbitrary real numbers x, y, z the

Jollowing inequality holds
f(x7y7z) = w4 +aws +bW1 “+cwy 2 0.

Proof. According to identity (3) f = u®> —uv+v*+ (¢ — r)wp > 0, because

2 —uwv+v) = v+ (w—v)>>0 and wp >0. O
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LEMMA 1.2. Let x, y, z be arbitrary nonnegative numbers. If a >0 and b > 0
then the inequality aws + bwy > 2v/abw, holds.

The equality holds if and only if x=y=z or x=y=0, 0r x:y:z2=0:\/a: /b,
or any cyclic permutation thereof.

Proof. Asa>0,b>0,w; >0, w; >0 and wy >0, then from wyw; > (w;)?
it follows the inequality aws +bwy = 2\/abwiw| = 2v/abw, .

LEMMA 1.3. When p >0, ¢>0, pg>1 and (p,q) # (2,2) the system

{u:x2—z2—pxy+(p—q)xz+qyz=0 @
v=y" =2 —qu+(q—p)yz+pxz=0

has at least one solution (xo,yo, 1) such that xy >0, xo # 1 and yy > 0.

Proof. (Similarly to lemma 3.1 from [4]).

If p=q#2 thenfrom p=¢ >0 and pg > 1 it follows that p > 1,i.e. (xo,v0,20) =
(p—1,1,1)#£ (1,1,1) is a solution of the system (4).

Let p # g and z = 1. From the first equation u =0 we find

Yo=K+ (p—gx—1](px—q)"

and we substitute into the second equation (px — g)*v(x,yo,1) = (x — 1)I(x) where

I(x) = (pg—1)(1—x) = [(p—1)*+ (P> +2)g— (p+ 1)¢*+ ¢’]x
+g— D>+ (¢*+2)p—(g+1)p*+ p']?

We find /(1) = (p —q)[(p—2)*+ (¢ = 2)* = (P~ 2) (g~ 2)].
Case 1. Let p > g. From (1) > 0 and liI_P I(x) = —eo follows that it exists a
X— oo

root xg € (1;4o0).
From xo > 1= pxg—q>p—q>0and x3+(p—q)xo—1> 1+ (p—q)—1>0,
ie.yo =[x+ (p—q)xo—1(pxo—gq)~' > 0.

Case 2. Let p < g. From [(1) < 0 and [(0) = pg— 1 > 0 follows that it exists a
root xg € (0;1).

From xo < 1= pxo—q<p—¢q<0andfrom 0 <xo < 1=x}+(p—q)xo— 1=
(3 — 1)+ (p—q)x0 <0, i.e. again yo>0. O

Let us proceed to the proof of the theorem.

When k = 0 then we have 3¢y = a(z) + aogbo + b(% —3 and according to Lemma 1.1 it
follows that wy +agws +bowi +cowz 2 0. In this case p =19, g =1, ! and the solution
of system (4) are: {x=y =z}, {x=0,x=10z}, {y =0,z=1ox} and {z=0,x =1py},
i.e. the equality holds if only if x =y =z or {z=0,x=1gy}, or any cyclic permutation
thereof.

When ¢t > 0 according to Lemma 1.2. we have t~ w3 41wy > 2w,. The equality
holdsif andonly if x=y=z orx=y =0, or {z=0,x=ty}, or any cyclic permutation
thereof.
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Let k>0 and ¢ > ¢y — 2k. Then

f =wqg+aws+bwi+cwy

wa + (ao+ ktg "Yws + (bo + kto)w1 + (co + ¢ — co)wa

= wy + agws + bowy + cows +k(tJIW3 +1ow1) + (¢ — co)wa

0+ 2kwyr + (¢ — co)war = (¢ —co+2k)wy > 0 (5)

WV

When k > 0 and ¢ = ¢g — 2k the equality holds if only if x=y=z or {z=0,x=
foy}, or any cyclic permutation thereof.

When k > 0 and ¢ > ¢p — 2k the equality holds if only if x =y =z.

When k > 0 and ¢ < ¢g — 2k the inequality is not true. From the expression
S =wa+aws+bwy + (co — 2k)wr + (¢ — co + 2k)w, we obtain f(79,1,0) =0+ (¢ —
co+2k)13 < 0.

When k < 0 and ¢ > r the inequality holds according to Lemma 1.1.

1 k
Let k <0 and ¢ < r. From to>0=>p:—§(2a+b):t0—§(to+2t0‘1) >1)>0,

q:—%(a+2b):t61—§(t61+2t0) >15" >0 and pg >ty =1.

According to Lemma 1.3 when (p, q) # (2,2) it exists positive numbers (xo, yo, 1)
# (1,1,1) such that u(xg,yo,1) =0 and v(xgp,y,1) = 0. According to the identity (3)
we have f = u?> —uv+v?+ (c —r)wy and f(x0,y0,1) = 0+ (¢ — r)wa(xp,¥0,1) < 0
because ¢ —r < 0 and wy(xo,y0,1) > 0.

When p = ¢ =2 then u(x,1,1) = (x — 1)%, v(x,1,1) =0, wa(x,1,1) = (x — 1)?

and for x; =1+ +/0.5(r —¢) then
o, 1,1) = [0.5(r—¢)]?+ (¢ — 1)[0.5(r — ¢)] = —0.25(r — ¢)? < 0.

When k < 0 and ¢ > r the equality holds if only if x =y =z. When £ <0 and
¢ = r the equality holds if only when x =y = z and at least for one triple (xo,yo,1)
such that xo > 0, x9 # 1 and yo > 0, or any cyclic permutation thereof, with the only
exception of the case a = b= —2 = c=r=3. When a = b = —2 the equality holds
ifandonlyif x=y=z. [

Proof of Theorem 2. Necessity. From 0 < f(1,1,1) =3d = d > 0. Let n be
an arbitrary natural number. From 0 < f(n,n73,0) = a+bn~8 + cn= follows that
lim (a+bn 8 +cn*) =a>0. Analogously, from f(n3,n,0) > 0 follows that

n— oo

b>0. From f(v/b,\/a,0) = ab(c+2vab) >0.1f a>0, b>0= c+2vab>0.If
a=0, then from 0 < f(n,n"',0) =c+bn? and lim (c+bn~?) = c it follows that
n— oo

¢ > 0. Analogously, from b =0 = ¢ > 0, i.e. always c+2vab > 0.
Sufficiency. We apply Lemma 1.2 and we obtain

f=aw3+bwi+cwr+dxyz(x+y+z) = (2Vab+c)w,+0>0. O

REMARK. All identities are verified via the Maplesoft platform.
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