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Abstract. In this paper, we study the generalized commutators of Sjölin type operator Ta,m
α,A de-

fined by

Ta,m
α,A f (x) =

∫
Rn

Ka
α (x− y)

Rm(A;x,y)
|x− y|m−1 f (y)dy =

∫
Rn

ei|x−y|a

|x− y|α
Rm(A;x,y)
|x− y|m−1 f (y)dy,

where Rm(A;x,y) = A(x)− ∑
|α|<m

1
α! D

α A(y)(x− y)α with m ∈ Z
+ .

By using the scale changing method, we prove that if DγA ∈ Λ̇β (0 < β < 1) with |γ | =
m− 1 , m � 2 or A ∈ Λ̇β (0 < β < 1) when m = 1 , Ta,m

α,A is bounded on Lp(Rn) for certain
range of p .

1. Introduction

In 1976, Janson [4] studied the commutator Tb generated by the Lipschitz function
and the singular integrals as follows.

Tb f (x) = bT ( f )(x)−T (b f )(x), (1.1)

where T is the classical C-Z singular integral operator and Janson [4] proved that Tb

is bounded from Lp(Rn) to Lq(Rn) with 1/p−1/q = β/n if and only if b ∈ Λ̇β (0 <

β < 1) . Here Λ̇β is the homogeneous Lipschitz space with its definition defined by

‖ f‖Λ̇β
= sup

x,h∈Rn,h �=0

Δ[β ]+1
h f (x)
|h|β < ∞, (1.2)

where Δ1
h f (x) = f (x+ h)− f (x) and Δk+1

h f (x) = Δk
h f (x+ h)−Δk

h f (x)(k ∈ Z
+) . Ob-

viously, when 0 < β < 1 and f ∈ Λ̇β , we have | f (x)− f (y)| � |x− y|β‖ f‖Λ̇β
for

∀x,y ∈ R
n .
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In 2003, Lu, Wu and Zhang [9] studied the following generalized commutator Tm
A

defined as

Tm
A f (x) =

∫
Rn

Ω(x− y)
|x− y|n+m−1 Rm(A;x,y) f (y)dy, (1.3)

where Rm(A;x,y) = A(x)− ∑
|γ|<m

1
γ!D

γA(y)(x− y)γ , the m-th remainder of Taylor series

of the function A at y about x . Lu, Wu and Zhang [9] proved that if A has derivatives
of order m−1(m � 2) in Λ̇β (0 < β < 1) , then Tm

A is bounded from Lp(Rn) to Lq(Rn)
with 1/p−1/q = β/n and 1 < p < n

β .
Here we would like to point out that the operator Tm

A was first studied by Cohen
and Gossenlin [2]. In [2], Cohen and Gosselin proved that if A has derivatives of order
m−1 in BMO(Rn ) where BMO(Rn ) denotes the bounded mean oscillation space, then
the operator Tm

A is bounded on Lp(Rn) for 1 < p < ∞ . For the study of the Cohen-
Gosselin type operators, one may see [10, 15, 19] et. al. for more details. In 2012,
Wang and Zhang [16] gave a new and simpler proof of Wu’s theorem in [17] by using
some results about the generalized commutator of Cohen-Gosselin type proved by Yan
[18] (or see [10]).

In 1980, Sjölin [12] introduced the convolution operator Ta
α with oscillating ker-

nels defined by

Ta
α f (x) =

∫
Rn

Ka
α(x− y) f (y)dy =

∫
Rn

ei|x−y|a

|x− y|α f (y)dy, (1.4)

where a > 0,a �= 1 and α < n .
Sjölin [12] proved the following theorem.

THEOREM A. ([12]) If α � n(1− a/2) , then the Sjölin type operator Ta
α is

bounded on Lp(Rn) if and only if p0 � p � p′0 with p0 = na
na−n+α . If α < n(1− a

2 ) ,
then Ta

α is not bounded on any Lp(Rn)(1 � p � ∞) .

The operator Ta
α was also studied by many other authors, one may see [5] or [13]

for more details. Especially in [5], Li proved the boundedness of Ta
α by using the scale

changing method which was proposed by Carleson and Sjölin [1]. Moreover, Li [5] also
studied the following generalized commutator of the Sjölin type operator Ta,m

α ,A with its
definition defined by

Ta,m
α ,A f (x) =

∫
Rn

Ka
α(x− y)

Rm(A;x,y)
|x− y|m−1 f (y)dy =

∫
Rn

ei|x−y|a

|x− y|α
Rm(A;x,y)
|x− y|m−1 f (y)dy. (1.5)

Li [5] proved that if A has derivatives of order m− 1 in BMO(Rn) with m � 1, then
the operator Ta,m

α ,A is bounded on the Lp(Rn) for some p > 1.
Motivated by the above background, it is natural to ask whether we can prove the

Lp boundedness of Ta,m
α ,A if DγA ∈ Λ̇β (|γ| = m− 1) with m ∈ Z

+ ? In this paper, we
will give a positive answer to this question. Moreover, when m = 1, we simply denote
Ta,1
A,α by Ta

A,α , that is

Ta
A,α f (x) := Ta,1

A,α f (x) = A(x)Ta
α f (x)−Ta

α (A f )(x). (1.6)

Our results can be stated as follows.
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THEOREM 1.1. Suppose that a > 0 , a �= 1 and an < 2 . If β +n−an < α < n+
β − an

2 and A∈ Λ̇β with an
2 < β < 1 , then Ta

A,α is bounded on Lp(Rn) with p0 < p < p′0
where 1 < p0 = an

β+n−α < 2 .

THEOREM 1.2. Suppose that a > 0 , a �= 1 and an < 2 . If β + n− an < α <
n + β − an

2 and DγA ∈ Λ̇β (|γ| = m− 1) with an
2 < β < 1 and m � 2 , then Ta,m

A,α is
bounded on Lp(Rn) with p0 < p < p′0 where 1 < p0 = an

β+n−α < 2 .

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. The basic idea of proving
Theorem 1.1 is the scale changing method which was introduced by Carleson and Sjölin
in [1]. In [1], Carleson and Sjölin used this method to prove the Lp(R2) boundedness of
the Bochner-Riesz operators below the critical index. Later, the scale changing method
was used to study the boundedness of strongly singular integral and its commutators,
please see [6, 7, 8] for details.

Before giving the proof of Theorem 1, we introduce some lemmas and notations.
Let Ψ be a smooth function of compact support in x and ξ , and Φ be real valued and
smooth. We assume that the support of Ψ , the Hessian determinant of Φ is nonvanish-
ing, i.e.

det

(
∂ 2Φ(x,ξ )

∂xi∂ξ j

)
�= 0. (2.1)

Moreover, we have the following lemma.

LEMMA 2.1. ([7] or [14]) Denote Tλ f (ξ ) =
∫
Rn eiλ Φ(x,ξ )Ψ(x,ξ ) f (x)dx , where

Φ and Ψ satisfy (2.1). Then we have

‖Tλ f‖L2 � Cλ− n
2 ‖ f‖L2 .

Obviously, we also have ‖Tλ f‖L∞ �C‖ f‖L∞ and ‖Tλ f‖L1 �C‖ f‖L1 . Then using
interpolation, we obtain (see [7])

‖Tλ f‖Lp � Cλ− n
p ‖ f‖Lp , 2 � p < ∞. (2.2)

‖Tλ f‖Lp � Cλ− n
p′ ‖ f‖Lp , 1 � p < 2. (2.3)

Proof of Theorem 1.1. We only need to prove that for any fixed N ∈ Z
+ , there

exists a positive constant C independent of f and A , such that

∫
[0,N]n

∣∣∣∣∣
∫

[0,N]n

ei|x−y|a

|x− y|α (A(x)−A(y)) f (y)dy

∣∣∣∣∣
p

dx � C‖A‖p
Λ̇β

∫
[0,N]n

| f (x)|pdx. (2.4)

By the scale changing method, (2.4) is equivalent to

∫
I

∣∣∣∣∣Nn−α
∫

I
(A(Nx)−A(Ny))

eiNa|x−y|a

|x− y|α f (Ny)dy

∣∣∣∣∣
p

dx � CNβ p‖A‖p
Λ̇β

∫
I
| f (Nx)|pdx.

(2.5)
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where I = [0,1]n is the unit cube in R
n .

Now, we take some notations from [7].
Let Ωμ (μ = 0,1, · · ·) be the set of all dyadic cubes in (−2,2)n with side length

2−μ , and let Ω∗ be the set of all cubes which satisfy the union of 2n cubes in Ωμ .
For x ∈ I and x does not belong to the boundary of any dyadic cubes, we denote
that ω∗

μ(x) is the unique element of Ω∗
μ satisfying x ∈ 1

2 ω∗
μ(x) . Moreover, we set

ω∗
−1(x) = (−2,2)n . Then for a measurable set D ⊂ I , we denote

Ea,α
A (x,D) = Nn−α

∫
D
(A(Nx)−A(Ny))

eiNa|x−y|a

|x− y|α f (Ny)dy, x ∈ I,

and
Eμ(x) = Ea,α

A (x,ω∗
μ−1(x)\ω∗

μ(x)∩ I), μ � 0.

Furthermore, we may denote

Sa,α
N,A f (Nx) = Nn−α

∫
I

eiNa|x−y|a

|x− y|α (A(Nx)−A(Ny)) f (Ny)dy.

Thus, we conclude that Theorem 1.1 reduces to prove the following inequality,

‖Sa,α
N,A f (N·)‖Lp(I) � CNβ‖A‖Λ̇β

‖ f (N·)‖Lp(I). (2.6)

To prove (2.6), by the definition of Eμ , we can decompose Sa,α
N,A as

Sa,α
N,A f (Nx) �

μN

∑
μ=0

Eμ(x)+
∞

∑
μ=μN+1

Eμ(x),

where μN belong to Z
+ and satisfies 2−μN−1 < N−1 � 2−μN . By the fact that when μ

is big enough, there is ω∗
μ−1 \ω∗

μ ⊂ I .

Thus, we may assume that Eμ(x) = Ea,α
A (x,ω∗

μ−1(x) \ω∗
μ(x)) , μ � 0. By the

construction of ω∗
μ−1(x) \ ω∗

μ(x) , we have Eμ(x) = ∑
ω∈Ωμ

Ea,α
A (x,ω)χF(ω)(x) where

χF(ω)(x) is the characteristic function of F(ω) . As ∑
ω∈Ωμ

χF(ω)(x) � 6n − 2n and

F(ω) = 6ω \ 2ω is the union of cubes in Ωμ+1 , with the property that the distance
from each cube to ω is approximately 2−μ . Then by the Hölder inequality, we con-
clude that |Eμ(x)|p � ∑

ω∈Ωμ
|Ea,α

A (x,ω)|pχF(ω)(x) . Thus, we get

∫
I
|Eμ(x)|pdx � C ∑

ω∈Ωμ

∫
F(ω)

|Ea,α
A (x,ω)|pdx.

For any fixed ω ∈ Ωμ , we denote xω = (x1,x2, · · · ,xn) be a point in ω , such that
for any y = (y1,y2, · · · ,ym) ∈ ω , xi � yi , i = 1,2, · · · ,n . Recall the fact that the side
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length of ω is 2−μ . Then for any μ < μN , we have
∫

F(ω)
|Ea,α

A (x,ω)|pdx

=
∫

F(ω)

∣∣∣∣∣
∫

ω
Nn−α eiNa|x−y|a(A(Nx)−A(Ny)) f (Ny)

|x− y|α dy

∣∣∣∣∣
p

dx

=
∫

F(ω)−xω

∣∣∣∣∣
∫

[0,2−μ ]n
Nn−α eiNa|x−y|a

|x− y|α [A(Nx+ xω)−A(Ny+ xω)] f (Ny)dy

∣∣∣∣∣
p

dx

=
∫

F(I)
2−μn

∣∣∣∣∣
∫

I
Nn−α2μα2−μn ei(N2−μ )a|x−y|a

|x− y|α [A(2−μNx+ xω)

−A(2−μNy+ xω)] f (2−μNy+ xω)dy
∣∣p dx.

First, we consider the case μ � μN . As x ∈ F(I) , y ∈ I , we obtain

|x− y|� |x− y0|+ |y− y0| � C|y− x0| � C2−kn,

Thus, we get

Sa,α
N,A f (Nx) � C‖A‖Λ̇β

Nβ Nn−α
∫

I
|x− y|β−α | f (Ny)|dy

� C‖A‖Λ̇β
Nn+β−αM( f (N·)χI)(x).

where M denotes the Hardy-Littlewood maximal function. Then we have

‖Sa,α
N,A f (N·)‖Lp(F(I)) � C‖A‖Λ̇β

Nn+β−α‖M( f (N·)χI(·))‖Lp(F(I)),

which implies

‖Sa,α
N,A f (N·)‖Lp(F(I)) � C‖A‖Λ̇β

Nβ+n−α‖ f (N·)‖Lp(I).

From the above estimates and the definition of Ea,α
A , there is

∫
F(ω)

|Ea,α
A (x,ω)|pdx � C‖A‖p

Λ̇β
(N2−μ)(n+β−α)p

∫
ω
| f (Nx)|pdx.

By the above inequality and the definition of Eμ , we obtain

‖Eμ‖Lp(I) � C‖A‖Λ̇β
(N2−μ)n+β−α‖ f (N·)‖Lp(I).

Now, we conclude that for the case μ � μN , we have

μN

∑
μ=0

‖Eμ‖Lp(I) � CNβ‖A‖Λ̇β
‖ f (N·)‖Lp(I). (2.7)



1194 XIAO YU AND SHANZHEN LU

Next, we will consider the case μ � μN . In order to use Lemma 2.1, we would like
to mention that from [8, p. 45–p. 46], we know both Φ(x,y) = |x− y|a and Ψ(x,y) =

1
|x−y|α satisfy (2.1) on F(I)× I . Then, let Ψ(x,y) = 1

|x−y|α be a smooth function sup-
ported on F(I)× I , otherwise we may choose a class of smooth function defined on
F(I)× I and approximating to it.

When p � 2, using (2.2), we have

∫
F(ω)

∣∣∣∣∣
∫

ω
Nn−α eiNa|x−y|a

|x− y|α (A(Nx)−A(Ny)) f (Ny)dy

∣∣∣∣∣
p

dx

�
∫

F(I)
2−μn

∣∣A(2−μNx+ xω)−A(2−μNx0 + xω)
∣∣p

×
∣∣∣∣∣
∫

I
Nn−α2μα−μn ei(2−μN)a|x−y|a

|x− y|α f (2−μNy+ xω)dy

∣∣∣∣∣
p

dx

+
∫
F(I)

2−μn

∣∣∣∣∣
∫

I
Nn−α2μα−μn ei(2−μN)a|x−y|a

|x− y|α
×|A(2−μNx0 + xω)−A(2−μNy+ xω)| f (2−μNy+ xω)dy

∣∣p dx

� C‖A‖p
Λ̇β

Nβ pNnp−pα2−μn2(μα−μn)p2−μβ p(2−μN)−
an
p p
∫

I
| f (2−μNy+ xω)|pdy

+CN(n−α)p2−μn2(n−α)p2(μα−μn)p(2−μN)−
an
p p

×
∫
I

∣∣[A(2−μNx0 + xω)−A(2−μNy+ xω)] f (2−μNy+ xω)
∣∣p dx

� C‖A‖p
Λ̇β

N(n+β−α)p2(μα−μn)p2−μβ p(2−μN)−an2−μn
∫

I

∣∣ f (2−μNy+ xω)
∣∣p dy

� C‖A‖p
Λ̇β

N(n+β−α)p−an2pμα−μnp−μβ p+μan‖ f (N·)‖p
Lp(ω)

� C‖A‖p
Λ̇β

N(n+β−α)p−an2−pμ(n+β−α− an
p )‖ f (N·)‖p

Lp(ω).

For the case 1 < p � 2, by a similar argument as in the above case, we may get

∫
F(ω)

∣∣∣∣∣
∫

ω
Nn−α eNa|x−y|a

|x− y|α [A(Nx)−A(Ny)] f (Ny)dy

∣∣∣∣∣
p

dx

� C‖A‖p
Λ̇β

N
p(n+β−α)− αnp

p′ 2(μα−kn)p2−μβ p(2−μ)−
αn
p′ p‖ f (N·)‖p

Lp(ω)

� C‖A‖p
Λ̇β

N
p(n+β−α− αn

p′ )
2

μ p(α−n−β+ αn
p′ )‖ f (N·)‖p

Lp(ω).

By the above two estimates and the condition p0 < p < p′0 with 1 < p0 = an
β+n−α < 2,

we obtain

∑
μ�μn

{
∑

ω∈Ωμ

∫
F(ω)

|Ea,α
A (x,ω)|pdx

}1/p

� CNβ‖A‖Λ̇β
‖ f (N·)‖Lp(I). (2.8)
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Combining (2.7)–(2.8), we finish the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we give some lemmas that will be very
useful throughrout this section.

LEMMA 3.1. ([2]) Let b be a function on R
n with m(m � 2)-th order derivatives

in Lq
loc(R

n) for some q > n, then there exists a positive constant C independent of b ,
such that

|Rm(b;x,y)| � Cm,n|x− y|m ∑
|γ|=m

(
1

|Q̃(x,y)|
∫

Q̃(x,y)
|Dγb(z)|qdz

)1/q

,

where Q̃(x,y) is the cube centered at x and having diameter 5
√

n|x− y| .
LEMMA 3.2. ([11]) Let 0 < β < 1 and 1 � q < ∞ , then

‖ f‖Λ̇β
≈ sup

Q

1

|Q|1+β/n

∫
Q
| f (x)−mQ( f )|dx

≈ sup
Q

1

|Q|β/n

{
1
|Q|

∫
Q
| f (x)−mQ( f )|qdx

}1/q

.

LEMMA 3.3. ([3]) Letting Q∗ ⊂ Q and g ∈ Λ̇β (0 < β < 1) , we have

|mQ∗(g)−mQ(g)| � C|Q|β/n‖g‖Λ̇β
.

Proof of Theorem 1.2. By the same argument as in the above section, it suffices to
prove

∫
[0,N]n

∣∣∣∫[0,N]n
ei|x−y|a

|x−y|α+m−1 Rm(A;x,y) f (y)dy
∣∣∣p dx � C ∑

|γ|=m−1
‖DγA‖p

Λ̇β

∫
[0,N]n | f (x)|pdx,

(3.1)
which is equivalent to

∫
I

∣∣∣∣∣
∫

I
Nn−α−m+1 ei|N(x−y)|a

|x− y|α+m−1 Rm(A;Nx,Ny) f (Ny)dy

∣∣∣∣∣
p

dx

� CNβ p+(m−1)p ∑
|γ|=m−1

‖DγA‖p
Λ̇β

∫
I
| f (Ny)|pdy

(3.2)

for any fixed N � 1.
Now, we define

Ea,α
A (x,D) = Nn−α−m+1

∫
D

ei|N(x−y)|a

|x− y|α+m−1 Rm(A;Nx,Ny) f (Ny)dy
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and

Sa,α
N,A f (Nx) = Nn−α−m+1

∫
I

ei|N(x−y)|a

|x− y|α+m−1 Rm(A;Nx,Ny) f (Ny)dy.

Furthermore, we denote

Eμ(x) = Ea,α
A (x,ω∗

μ−1 \ω∗
μ ∩ I), μ � 0.

Then we have

Sa,α
N,A f (Nx) �

μN

∑
μ=0

Eμ(x)+
∞

∑
μ=μN+1

Eμ(x).

When μ � μN , denote Ã(Nz) = [A(Nz)− ∑
|γ|=m−1

zγ

γ!mJx(D
γA(N·))]φ(z) , where Jx is

a cube centered at x with its side length equals 4 and φ ∈ C∞
c (Rn) . Furthermore, we

assume that when |x| < 10, φ ≡ 1 and when |x| > 20, φ ≡ 0. Thus, we get

Sa,α
N,A f (x) � CNn−α−m+1

∫
I
|Rm−1(Ã(N·);x,y)|| f (Ny)|dy

+CNn−α−m+1 ∑
|γ|=m−1

∫
I
|DγA(Nx)−mJx(D

γA(N·))|| f (Ny)|dy.

From Lemmas 3.1–3.3, we know that for any x ∈ F(I) and y ∈ I , there is

|Rm−1(Ã(N·);x,y)|

� C|x− y|m−1 ∑
|γ|=m−1

{
1

|Q(x,y)|
∫

Q(x,y)
|DγA(Nz)−mQ(x,y)(D

γA(N·))|qdz

}1/q

+C|x− y|m−1 ∑
|γ|=m−1

|mQ(x,y)(D
γA(N·))−mJx(D

γA(N·))|

� C ∑
|γ|=m−1

‖DγA(N·)‖Λ̇β
= CNβ Nm−1 ∑

|γ|=m−1

‖DγA‖Λ̇β
.

As p > 1, we may choose a positive real number r satisfying 1 < r < p . Moreover,

we denote Mr( f )(x) = sup
Qx

(
1
|Q|
∫
Q | f (y)|rdy

)1/r
. Then by the Hölder inequality and

Lemmas 3.2–3.3, we have

∑
|γ|=m−1

∫
I
|DγA(Ny)−mJx(D

γA(N·))|| f (Ny)|dy

� C ∑
|γ|=m−1

(∫
I
|DγA(Ny)−mJx(D

γA(N·))|r′dy

)1/r′(∫
I
| f (Ny)|rdy

)1/r

� CNβ Nm−1 ∑
|γ|=m−1

‖DγA‖Λ̇β
Mr( f (N·)χI)(x),

for any x ∈ F(I) and y ∈ I .
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Combing the above two estimates, we may get

Sa,α
N,A f (Nx) � C ∑

|γ|=m−1

‖DγA‖Λ̇β
Nn−α+β (M( f (N·)χI)(x)+Mr( f (N·)χI)(x)) .

Then, by the boundedness of Mr( f )(x) on L
p
r (p > r) space, we obtain

‖Sa,α
N,A f (N·)‖Lp(F(I)) � C ∑

|γ|=m−1

‖DγA‖Λ̇β
Nn−α+β‖ f (N·)‖Lp(I).

By a similar argument as in Section 2, we conclude that for the case μ � μN , there is

μN

∑
μ=0

‖Eμ‖Lp(I) � C ∑
|γ|=m−1

Nn−α+β‖DγA‖Λ̇β
‖ f (N·)‖Lp(I). (3.3)

Next, we will consider the case when μ � μN . First, we have the following esti-
mates.∫

F(ω)

∣∣Ea,α
A (x,ω)

∣∣p dx

=
∫

F(ω)

∣∣∣∣∣
∫

ω
Nn−α−m+1 ei|x−y|aNa

|x− y|α+m−1 Rm(A(N·);x,y) f (Ny)dy

∣∣∣∣∣
p

dx

=
∫

F(ω)−ω

∣∣∣∣∣
∫

[0,2−μ ]n
Nn−α−m+1 ei|x−y|aNa

|x−y|α+m−1 Rm(A(N·);x+xω ,y+yω) f (Ny+yω)dy

∣∣∣∣∣
p

dx

= 2−μn
∫

F(I)

∣∣∣∣∣
∫

I
Nn−α−m+12μ(α+m−1)2−μn ei2−μa|x−y|aNa

|x− y|α+m−1

×Rm(A(N·);2−μx+ xω ,2−μy+ yω) f (2−μNy+ yω)dy
∣∣p dx.

For any ω ∈ Ωμ and any x0 ∈ 6I \ 5I , there is

∫
F(ω)

|Ea,α
A (x,ω)|pdx

� C2−μn
∫

F(I)

∣∣∣∣∣
∫

I
Nn−α−m+12μ(α+m−1)2−kn ei|2−μ N(x−y)|a

|x− y|α+m−1

×Rm−1(Ã(N·);2−μx+ xω ,2−ky+ xω) f (2−kNy+ xω)dy
∣∣∣p dx

+C ∑
|γ|=m−1

2−μn
∫

F(I)

∣∣∣∣∣
∫

I
Nn−α−m+12μα2−μn ei|2−μ N(x−y)|a

|x−y|α+m−1 Dγ Ã(Ny) f (2−μNy+xω)dy

∣∣∣∣∣
p

dx

� C2−μn

∣∣∣∣∣
∫

F(I)
Nn−α−m+12μ(α+m−1−n) e

i|2−μ N(x−y)|a

|x−y|α+m−1 [Rm−1(Ã(N·);2−μx+xω ,2−μy+xω)

−Rm−1(Ã(N·);2−μx+ xω ,2−μx0 + xω)] f (2−μNy+ xω)dy
∣∣p dx
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+C2−μn
∫

F(I)

∣∣Rm−1(Ã(N·);2−μx+ xω ,2−μx0 + xω)
∣∣p

×
∣∣∣∣∣
∫

I
Nn−α−m+12μ(α+m−1−n) e

i|2−μ N(x−y)|a

|x− y|α+m−1 f (2−μNy+ xω)dy

∣∣∣∣∣
p

dx

+C ∑
|γ|=m−1

2−μn
∫

F(I)

∣∣∣∣∣Nn−α−m+12μα−μn ei|2−μ N(x−y)|a

|x−y|α+m−1 Dγ Ã(Ny) f (2−μNy+xω )dy

∣∣∣∣∣
p

dx

= C(I + II + III).

Next, we will estimate I , II and III respectively. Note that (see [2])

Rm−1(g;x,y)−Rm−1(g; ,x,x0) = ∑
|δ |<m−1

(x− x0)δ

δ !
Rm−1−|δ |(Dδ g;x0,y),

where δ is any n -tuple index with |δ | < m−1.
Then we have

|Rm−1( ˜A(N·);2−μx+ xω ,2−μy+ xω)−Rm−1( ˜A(N·);2−μx+ xω ,2−μx0 + xω)|

= ∑
|δ |<m−1

(2−μx−2−mux0)δ

δ !
|Rm−1−|δ |(Dδ Ã(N·);2−μx0 + xω ,2−μy+ xω)|.

Moreover, we denote Q−μ
x0,y = Q(2−μx0 +xω ,2−μy+xω) . Thus, using Lemmas 3.1, 3.3

and the fact |x0 − y|� C , we get

|Rm−1−|δ |(Dδ Ã(N·);2−μx0 + xω ,2−μy+ xω)|

� 2−μ(m−1−|δ |)|x0− y|m−1−|δ | ∑
|γ|=m−1

(
1

|Q−μ
x0,y|

∫
Q−μ

x0,y

|DγA(Nz)−mω(DγA(N·))|qdz

)1/q

� C2−μ(m−1−|δ |) ∑
|γ|=m−1

{
‖DγA(N·)‖Λ̇β

(2−μ)β + |mQ−μ
x0,y

(DγA(N·))−mω(DγA(N·))|
}

� C2−μ(m−1−|δ |)(2−μN)β Nm−1 ∑
|γ|=m−1

‖DγA‖Λ̇β
.

Combing the above estimates, we obtain

|Rm−1( ˜A(N·);2−μx+ xω ,2−μy+ xω)−Rm−1( ˜A(N·);2−μx+ xω ,2−μx0 + xω)|
� C ∑

|δ |<m−1

2−μ|δ |2−μ(m−1−|δ |)(2−μN)β Nm−1 ∑
|γ|=m−1

‖DγA‖Λ̇β
.

Thus, for p � 2 and an n -tuple index δ with |δ | < m− 1, we may choose Ψ(x,y) a

smooth function approximating to (x−x0)δ

|x−y|α+m−1 on F(I)× I . Then using (2.2), we have

I � C2−μn(2−μN)−
na
p p2μ(α+m−1−n)pN(n−α−m+1)p

×∥∥[Rm−1(Ã(N·);2−μx0 + xω ,2−μy+ xω)

−Rm−1(Ã(N·);2−μx+ xω ,2−μx0 + xω)] f (2−μN ·+xω)
∥∥p

Lp(I)
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� C ∑
|γ|=m−1

‖DγA‖p
Λ̇β

N−na+p(n−α−m+1) ∑
|δ |<m−1

2−μ(m−1−2|δ |)

×2−μn2μ(α+m−1−n)p2μnaNβ p2−μβ p‖ f (2−μN ·+xω)‖p
Lp(I)

� C ∑
|γ|=m−1

‖DγA‖p
Λ̇β

N−na+p(n−α−m+1+β )N(m−1)p2μ p(α−n−β+ na
p )‖ f (N·)‖p

Lp(I).

For II , note the following fact

|Rm−1(Ã(N·);2−μx+ xω ,2−μx0 + xω)| � C2−μ(m−1)Nβ 2−μβ Nm−1 ∑
|γ|=m−1

‖DγA‖Λ̇β
.

Thus, we can choose Ψ(x,y) a smooth function approximating to 1
|x−y|α+m−1 on F(I)×

I . So, we have

II � C2−μn2−μ(m−1)pNβ p2−μβ p ∑
|γ|=m−1

‖DγA‖p
Λ̇β

Np(n−α−m+1)

×2μ p(α+m−1−n)(2−μN)−
na
p p‖ f (2−μN ·+xω)‖Lp(I)

� C ∑
|γ|=m−1

‖DγA‖p
Λ̇β

Npβ+(n−α−m+1)p−na2−μn‖ f (2−μN ·+xω )‖Lp(I)2
−μ(pn−na+β p−pα)

� C ∑
|γ|=m−1

‖DγA‖p
Λ̇β

Npβ+(n−α−m+1)p−naN(m−1)p‖ f (N·)‖p
Lp(I)2

−μ(pn−na+β p−pα).

For III , as ω ∈ Ωμ and by the definition of Ωμ , there is

|Dγ Ã(Ny)| = |DγA(Ny)−mω(DγA(N·))|
� C|ω |β/n‖DγA(N·)‖Λ̇β

� C2−kβ Nβ Nm−1‖DγA‖Λ̇β
.

Thus, we may choose Ψ(x,y) a smooth function approximating to 1
|x−y|α+m−1 on F(I)×

I and we obtain from (2.2) that

III�C2−μnNp(n−α−m+1)2p(μα−μn)2−μβ pNβ p‖DγA‖p
Λ̇β

(2−μN)−
an
p p‖ f (2−μN ·+xω)‖Lp(I)

�C ∑
|γ|=m−1

‖DγA‖p
Λ̇β

Np(n−α−m+1)+β p−naN(m−1)p2μ p(α−n−β+ an
p )‖ f (N·)‖p

Lp(I).

Similarly, for the case 1 < p � 2, there is

I + II + III � C ∑
|γ|=m−1

‖DγA‖p
Λ̇β

N
p(n+β−α−m+1− an

p′ )N(m−1)p

×2
μ p(α−n−β+ an

p′ )‖ f (N·)‖p
Lp(I).

By the above estimates and the condition p0 < p < p′0 with 1 < p0 = an
β+n−α < 2, we

obtain

∑
μ�μn

{
∑

ω∈Ωμ

∫
F(ω) |Ea,α

A (x,ω)|pdx

}1/p

� CNβ Nm−1 ∑
|γ|=m−1

‖DγA‖Λ̇β
‖ f (N·)‖Lp(I).

(3.4)
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Combining (3.3)–(3.4), we finish the proof of Theorem 1.2. �

Acknowledgements. The authors would like to express their gratitudes to the ref-
eree for his/her valuable suggestions.
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