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INEQUALITIES RELATED TO THE ARITHMETIC,

GEOMETRIC AND HARMONIC MEANS

D. CHOI AND M. SABABHEH

(Communicated by M. Fujii)

Abstract. Recent refinements of mean inequalities can be thought of certain ratios. In this article,
we present this point of view and prove the relationships between the different ratios induced by
the different refinements.

1. Introduction

Throughout the paper, the following notations will be used to denote the μ -weig-
hted arithmetic mean (AM), geometric mean (GM) and harmonicmean (HM) for scalars
and operators

a∇μb = (1− μ)a+ μb, A∇μB = (1− μ)A+ μB,

a#μb = a1−μbμ , A#μB = A1/2(A−1/2BA−1/2)μA1/2,
a!μb = ((1− μ)a−1 + μb−1)−1, A!μB = ((1− μ)A−1 + μB−1)−1.

for μ ∈ [0,1] , a,b > 0, and A,B , invertible positive operators on a Hilbert space. When
μ = 1

2 , we omit μ in the above definitions. For example, a∇b means a∇ 1
2
b .

Applying the well known Young’s inequality aνb1−ν � νa+(1−ν)b , 0 � ν � 1,
one can easily obtain the following AM-GM-HM inequalities

a!μb � a#μb � a∇μb,

A!μB � A#μB � A∇μB,

where for two self-adjoint operators A and B , the notation A � B (A < B) means that
B−A is a positive (invertible positive) operator.

Investigating the relation between these different means has taken the attention of
several authors due to its applications in operator theory. In this article we discuss the
different relations among these quantities, in view of the inequalities appearing in the
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literature. The following inequalities, proved in [3] and its references, motivates our
study. For a,b > 0, 0 � μ � 1 we have

K(h,2)ra#μb � a∇μb � K(h,2)Ra#μb, (1.1)

a!μb+2r(a∇b−a!b) � a∇μb � a!μb+2R(a∇b−a!b), (1.2)

K(h,2)ra!μb � a#μb � K(h,2)Ra!μb (1.3)

K(h,2)2ra!μb � a∇μb � K(h,2)a!μb, (1.4)

where r = min{μ ,1− μ} , R = max{μ ,1− μ} , h = b
a and K(t,2) is the Kantorovich

constant defined by K(t,2) = (t+1)2
4t for t > 0. Earlier, it was proved in [1, 2] that

a#μb+2r(a∇b−a#b)� a∇μb � a#μb+2R(a∇b−a#b). (1.5)

We remark that the first inequalities in (1.3) and (1.4) are not shown in [3], but
they can be easily proved as follows:

• Since K(h,2)ra#1−μb � a∇1−μb by (1.1) and (a∇1−μb)(a!μb)= (a#μb)(a#1−μb) ,
we have

K(h,2)ra!μb = K(h,2)r a#1−μb

a∇1−μb
·a#μb � a#μb

proving the first inequality of (1.3).

• By the first inequalities of (1.1) and (1.3), we have a∇μb � K(h,2)ra#μb �
K(h,2)2ra!μb .

Inequalities (1.1), (1.2), (1.3), (1.4) and (1.5) can be written as

(1.6)

2r � lna∇μb− lna#μb

lna∇b− lna#b
� 2R,

2r � a∇μb−a!μb

a∇b−a!b
� 2R,

2r � lna#μb− lna!μb

lna#b− lna!b
� 2R,

2r � lna∇μb− lna!μb

lna∇b− lna!b
� 1,

2r � a∇μb−a#μb

a∇b−a#b
� 2R,

respectively. Our main goal in this paper is to present the different relations among the
above ratios. For this purpose, we define the following functions for given a,b > 0 and
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μ ∈ [0,1],

LAGμ(a,b) = (lna∇μb− lna#μb)/(lna∇b− lna#b),
AHμ(a,b) = (a∇μb−a!μb)/(a∇b−a!b),

LGHμ(a,b) = (lna#μb− lna!μb)/(lna#b− lna!b),
LAHμ(a,b) = (lna∇μb− lna!μb)/(lna∇b− lna!b),
AGμ(a,b) = (a∇μb−a#μb)/(a∇b−a#b),
GHμ(a,b) = (a#μb−a!μb)/(a#b−a!b)

with the convention that all functions are equal to 1 when a = b .
In the sequel, we use the notations r = min{μ ,1− μ} and R = max{μ ,1− μ}

for 0 � μ � 1. Moreover, the expression α �
[

β1

β2

]
� γ will be used to mean that both

inequalities α � β1 � γ and α � β2 � γ hold.

2. Main results

2.1. The discussion of LAGμ and AGμ

In this part of the paper, we present several relations between the geometric mean
and arithmetic mean, that lead to the main relation between LAGμ and AGμ , presented
in Theorem 2.3.

LEMMA 2.1. Let a � b > 0 . Then
{

a∇μb � a∇b, 0 � μ � 1
2

a∇μb � a∇b, 1
2 � μ � 1

(2.1)

and {
a#μb � a#b, 0 � μ � 1

2
a#μb � a#b, 1

2 � μ � 1
. (2.2)

The following is a refinement of the reverse Young’s inequality that will help to
prove our main result in this part.

PROPOSITION 2.2. Let a � b > 0 and 0 � μ � 1
2 . Then

a∇μb

a#μb
� a∇b

a#b
.

Proof. For 0 � μ � 1 and c � 1 define f (μ) = (1−μ)cμ +μcμ−1. Then f ′(μ) =
cμ−1g(μ) where g(μ) = (1− μ)c lnc− c + 1 + μ lnc. Now g′(μ) = (1− c) lnc � 0
because c � 1. This implies that g is decreasing on [0, 1

2 ] and

g(μ) � g

(
1
2

)
= 1− c+

(c+1) lnc
2

:= H(c), c � 1.
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Now

H ′(c) = −1+
c+1
2c

+
1
2

lnc and H ′′(c) =
c−1
2c2 � 0 because c � 1.

Since H ′′(c) � 0 it follows that H ′(c) � H ′(1) = 0 hence H(c) � H(1) = 0.
Consequently g(μ) � 0, when 0 � μ � 1

2 , implying that f (μ) � f ( 1
2 ) . That is,

when 0 � μ � 1
2 , we have (1− μ)cμ + μcμ−1 �

√
c+1/

√
c

2 , for c � 1 and 0 � μ � 1
2 .

Now since a � b, we may replace c by a
b to get a∇μb

a#μb � a∇b
a#b for 0 � μ � 1

2 . �

Inequality
a∇μb
a#μb � a∇b

a#b for 0 � μ � 1
2 is a refinement of

a∇μ b
a#μb � K( a

b ,2)R because

for these values of μ we have a∇b
a#b � K( a

b ,2)R, where R = max{μ ,1− μ}= 1− μ .

When 0 � μ � 1
2 , we have seen in Proposition 2.2 that

a∇μ b
a#μ b � a∇b

a#b . This or the

reverse inequality is not valid for 1
2 � μ � 1, in general. The following theorem is

the main result in this part of the paper. In the following proof, the definition of the
functions f and g at x = 1 is understood to be the limit as x → 1.

THEOREM 2.3. Let a,b > 0 and 0 � μ � 1. Then

min

{
a#b
a#μb

,
a∇b
a∇μb

}
AGμ(a,b) � LAGμ(a,b) � max

{
a#b
a#μb

,
a∇b
a∇μb

}
AGμ(a,b).

Proof. For 0 � μ � 1, we treat two cases. If a∇b
a#b � a∇μ b

a#μb , then the fact that g(x) =
lnx
x−1 is decreasing on (0,∞) implies g

(
a∇μb
a#μb

)
� g

(
a∇b
a#b

)
, which is equivalent to saying

LAGμ(a,b) � a#b
a#μ bAGμ(a,b). On the other hand, if a∇b

a#b � a∇μ b
a#μb then using the fact that

the function f (x) = x lnx
x−1 is increasing on (0,∞) implies LAGμ(a,b) � a∇b

a∇μ bAGμ(a,b).
This proves the second desired inequality.

Now for the first inequality, if a∇b
a#b � a∇μ b

a#μb use the fact that f (x) = x lnx
x−1 is increas-

ing and if a∇b
a#b � a∇μb

a#μb apply the fact that g(x) = lnx
x−1 is decreasing. �

In view of Proposition 2.2, when a > b we have a#b
a#μ b � a∇b

a∇μ b , for 0 � μ � 1
2

hence the inequality of theorem 2.3 maybe restated as

a#b
a#μb

AGμ(a,b) � LAGμ(a,b) � a∇b
a∇μb

AGμ(a,b), 0 � μ � 1
2
.

The following gives an upper bound of LAGμ(a,b) in terms of a and b , and indepen-
dent of μ .

PROPOSITION 2.4. Let a � b > 0 and 0 � μ � 1 then

LAGμ(a,b) � a∇b
a#b

.
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Proof. Without loss of generality, let b = 1 and a � 1 and define

f (μ) = ln(a∇μ1)− ln(a#μ1).

Then it can be easily seen that f attains its maximum on [0,1] at μ0 = 1−a+a lna
(a−1) lna . Thus

for μ ∈ [0,1] we have

f (μ) � f

(
1−a+a lna
(a−1) lna

)
=

lna
a−1

+ ln(a−1)− lnlna−1.

We assert that

lna
a−1

+ ln(a−1)− lnlna−1 � a∇1
a#1

(lna∇1− lna#1) . (2.3)

This is equivalent to proving that

g(a) =
lna
a−1

− ln

(
lna
a−1

)
−1− a+1

2
√

a
ln

(
a+1
2
√

a

)
� 0.

Observe that

g′(a) =
(

lna
(a−1)2 −

1
a(a−1)

)(
a−1
lna

−1

)
−

(
1+ ln

a+1
2
√

a

)
a−1
4a

√
a
.

Notice that

g′(a) � 0

⇐⇒
(

a lna
a−1

−1

)(
a−1
lna

−1

)
�

(
1+ ln

a+1
2
√

a

)
(a−1)2

4
√

a

⇐⇒ a+1−
(

a lna
a−1

+
a−1
lna

)
�

(
1+ ln

a+1
2
√

a

)
(a−1)2

4
√

a
.

Now one can easily show that when a � 1 we have

a lna
a−1

+
a−1
lna

� 2
√

a.

Therefore g′(a) � 0 if

a+1−2
√

a �
(

1+ ln
a+1
2
√

a

)
(a−1)2

4
√

a

which is equivalent to
4
√

a
(
√

a+1)2 � 1+ ln
a+1
2
√

a
,

which holds trivially because the left side is at most 1 and the right side is at least 1,
when a � 1. This proves that g′(a) � 0 when a � 1 and hence, g(a) � g(1) = 0.

This proves (2.3), implying f (μ) � a∇1
a#1 (lna∇1− lna#1) , or equivalently

LAGμ(a,b) � a∇b
a#b . �
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2.2. The general discussion

In this part of the paper, we present the main result of our work, where several
relations among the different ratios have been obtained in the following theorem.

THEOREM 2.5. Let a,b > 0 and μ ∈ [0,1] . Then

1. If (1−2μ)(a−b)� 0 , we have

2r�LAGμ(a,b)�
[
LAHμ(a,b)�LGHμ(a,b)

AGμ(a,b)

]
�AHμ(a,b)�

[
GHμ(a,b)

2R

]
. (2.4)

2. If (1−2μ)(a−b)� 0 , we have

2R�LAGμ(a,b)�
[
LAHμ(a,b)�LGHμ(a,b)

AGμ(a,b)

]
�AHμ(a,b)�

[
GHμ(a,b)

2r

]
. (2.5)

The above inequalities can be equivalently stated in terms of r and R as follows:

1. If a � b , then

2r � LAGr(a,b) �
[
LAHr(a,b) � LGHr(a,b)

AGr(a,b)

]
� AHr(a,b) �

[
GHr(a,b)

2R

]
,

2R � LAGR(a,b) �
[
LAHR(a,b) � LGHR(a,b)

AGR(a,b)

]
� AHR(a,b) �

[
GHR(a,b)

2r

]
.

2. If a � b , then

2r � LAGR(a,b) �
[
LAHR(a,b) � LGHR(a,b)

AGR(a,b)

]
� AHR(a,b) �

[
GHR(a,b)

2R

]
,

2R � LAGr(a,b) �
[
LAHr(a,b) � LGHr(a,b)

AGr(a,b)

]
� AHr(a,b) �

[
GHr(a,b)

2r

]
.

Considering symmetric properties, it is enough to show (2.4) for μ � 1
2 and (2.5)

for μ � 1
2 , assuming a � b . Moreover, since they are obvious for the case a = b ,

we assume a �= b to ensure that all quantities are well defined. We also note that the
inequalities 2r � LAGμ(a,b) and AHμ(a,b) � 2R in (2.4) and 2R � LAGμ(a,b) and
AHμ(a,b) � 2r in (2.5) have been already shown in (1.6). The following lemma will
be needed to prove our main result.

LEMMA 2.6. Let a,b > 0 and μ ∈ [0,1] .

1.
(a∇μb)(a!1−μb) = (a#μb)(a#1−μb). (2.6)

2. For δ = a∇b−a#b
a∇b−a!b , we have

(a∇μb)∇δ (a!μb) � (a!μb)!δ (a∇μb). (2.7)
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3. For any ν ∈ [0,1] ,

(a∇μb)∇ν(a!μb) � a#μb, ∀μ � 1
2
⇔ (a!μb)!ν(a∇μb) � a#μb, ∀μ � 1

2
. (2.8)

Proof. The first statement is clear. For c � d > 0 and μ ∈ [0,1] , it is easy to show
that

c∇μd � d!μc ⇐⇒ μ �
√

c√
c+

√
d

.

Thus (2.7) will follow by proving

δ �
√

a∇μb√
a∇μb+

√
a!μb

.

Since δ can be written as a∇b
a∇b+a#b , the above inequality is equivalent to

(
a∇b
a#b

)2

� a∇μb

a!μb
.

Since
(

a∇b
a#b

)2
= a∇b

a!b , the above follows directly by inequality LAHμ(a,b) � 1 in (1.6).

The following argument proves (2.8):

(a∇μb)∇ν(a!μb) � a#μb for μ � 1
2

⇐⇒
(

a∇μb

a#μb

)
∇ν

(
a!μb

a#μb

)
� 1 for μ � 1

2

⇐⇒
(

a#1−μb

a!1−μb

)
∇ν

(
a#1−μb

a∇1−μb

)
� 1 for μ � 1

2

⇐⇒
(

a#μb

a!μb

)
∇ν

(
a#μb

a∇μb

)
� 1 for μ � 1

2

⇐⇒ a#μb � (a!μb)!ν(a∇μb) � 1 for μ � 1
2
. �

Now we start proving the main theorem by proving the different inequalities the
theorem is implied.

PROPOSITION 2.7. Let a � b > 0 and μ ∈ [0,1] . Then, we have

LAGμ(a,b) � LAHμ(a,b) � LGHμ(a,b) for μ � 1
2
,

LAGμ(a,b) � LAHμ(a,b) � LGHμ(a,b) for μ � 1
2
.
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Proof. By (2.6) of Lemma 2.6, the two results above are equivalent. Moreover,
since

LAGμ(a,b) � LAHμ(a,b) ⇐⇒ LAHμ(a,b) � LGHμ(a,b),

it suffices to show LAGμ(a,b) � LAHμ(a,b) for μ � 1
2 . Since a∇b

a!b =
(

a∇b
a#b

)2
, we have

LAGμ(a,b) � LAHμ(a,b)

⇐⇒ (a∇μb)(a!μb) � (a#μb)2

⇐⇒ f (x) � 0 for x � 1,

where f (x) = x1−2μ(μx+1− μ)− [(1−μ)x+ μ ] . Letting g(x) = x2μ f ′(x) , we have

g(x) = (1−2μ)(μx+1− μ)+ μx− (1−μ)x2μ,

g′(x) = 2μ(1− μ)(1− x2μ−1).

Since μ � 1
2 and x � 1, g′(x) � 0. Moreover, since g(1) = f (1) = 0, f (x) � 0 for all

x � 1. �

PROPOSITION 2.8. Let a � b > 0 and μ ∈ [0,1] . Then

LGHμ(a,b) � AHμ(a,b) for μ � 1
2
,

LGHμ(a,b) � AHμ(a,b) for μ � 1
2
.

Proof. Assume b = 1. Denoting a by x , we define f (μ) by

f (μ) = (x∇μ1− x!μ1)(ln(x#1)− ln(x!1))− (
ln(x#μ1)− ln(x!μ1)

)
(x∇1− x!1)

=
(

(1−μ)x+μ− x
μx+1−μ

)
ln

x+1
2
√

x
−

(
(1−μ) lnx− ln

x
μx+1−μ

)
(x−1)2

2(x+1)
.

Then we have

f ′(μ) =
(

x
(μx+1− μ)2 −1

)
(x−1) ln

x+1
2
√

x
−

(
x−1

μx+1− μ
− lnx

)
(x−1)2

2(x+1)
,

f ′′(μ) =
(x−1)5

2(x+1)(μx+1− μ)3 [μ −u(x)] ,

where

u(x) =
4x(x+1)
(x−1)3 ln

x+1
2
√

x
− 1

x−1
.

Let v(x) = 3(x−1)2

x2+4x+1
−4ln x+1

2
√

x . Then we can show that

u′(x) =
x2 +4x+1
(x−1)4 v(x),
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v′(x) =
2(x−1)

x(x+1)(x2 +4x+1)2

[
9x(x+1)2− (x2 +4x+1)2]

=
−2(x−1)

x(x+1)(x2 +4x+1)2 (
√

x−1)2(x−√
x+1) � 0.

Since v(1) = 0, u(x) is a decreasing function for x � 1. Moreover, since

lim
x→1

u(x) = 8 lim
x→1

1
(x−1)3

[
ln

x+1
2
√

x
− (x−1)2

4x(x+1)

]

= 8 lim
x→1

2x+1
12x2(x+1)2 =

1
2
,

lim
x→∞

u(x) = 0,

we have 0 < u(x) � 1 for x � 1.
Thus there exists μx ∈ [0, 1

2 ] such that f ′ is decreasing on [0,μx] and increasing
on [μx,1] . Now we show that f ′(0) � 0, f ′( 1

2 ) � 0, and f ′(1) � 0. Since

f ′(0) = (x−1)2 ln
x+1
2
√

x
− (x−1− lnx)

(x−1)2

2(x+1)
,

f ′(
1
2
) =

−(x−1)3

(x+1)2 ln
x+1
2
√

x
+

(
lnx− 2(x−1)

x+1

)
(x−1)2

2(x+1)
,

f ′(1) =
−(x−1)2

x
ln

x+1
2
√

x
+

(
lnx− x−1

x

)
(x−1)2

2(x+1)
,

we have

f ′(0) � 0 ⇐⇒ α(x) � 0,

f ′
(1

2

)
� 0 ⇐⇒ β (x) � 0,

f ′(1) � 0 ⇐⇒ γ(x) � 0,

where

α(x) = 2(x+1) ln
x+1
2
√

x
− x+1+ lnx,

β (x) = 2(x−1) ln
x+1
2
√

x
− (x+1) lnx+2(x−1),

γ(x) = x lnx− x+1−2(x+1) ln
x+1
2
√

x
.

Since

α ′(x) = 2ln
x+1
2
√

x
� 0,

β ′(x) = 2ln
x+1
2
√

x
− lnx+

2(x−1)
x+1

,
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β ′′(x) =
2(x−1)
x(x+1)2 � 0,

γ ′(x) = lnx−2ln
x+1
2
√

x
+

1
x
−1

γ ′′(x) =
x−1

x2(x+1)
� 0

and α(1) = β (1) = β ′(1) = γ ′(1) = γ(1) = 0, α(x),β (x),γ(x) � 0 for all x � 1.
Finally, since f (0) = f ( 1

2 ) = f (1) = 0, we conclude that f (μ) � 0 for μ � 1
2 and

f (μ) � 0 for μ � 1
2 . �

For the next proposition, see Theorem 2.3.

PROPOSITION 2.9. Let a � b > 0 and μ ∈ [0,1] . Then

LAGμ(a,b) � AGμ(a,b) for μ � 1
2
,

LAGμ(a,b) � AGμ(a,b) for μ � 1
2
.

Observe that Theorem 2.3 gives a refinement and a reverse of the above proposi-
tion. This can be seen for 0 � μ � 1

2 because, for these μ ′ s, we have a∇b
a∇μ b � 1 and

a#b
a#μb � 1 by Lemma 2.1. A similar discussion holds for 1

2 � μ � 1.

PROPOSITION 2.10. Let a � b > 0 and μ ∈ [0,1] . Then, we have

AGμ(a,b) � AHμ(a,b) � GHμ(a,b) for μ � 1
2
,

AGμ(a,b) � AHμ(a,b) � GHμ(a,b) for μ � 1
2
.

Proof. Since both AGμ(a,b) � AHμ(a,b) and AHμ(a,b) � GHμ(a,b) are equiv-
alent to

(a#b−a!b)a∇μb+(a∇b−a#b)a!μb � (a∇b−a!b)a#μb,

it suffices to show

AGμ(a,b) � AHμ(a,b) for μ � 1
2
,

AGμ(a,b) � AHμ(a,b) for μ � 1
2
.

Let δ = a∇b−a#b
a∇b−a!b ∈ [0,1] . Then we have

AGμ(a,b) � AHμ(a,b) for μ � 1
2

⇐⇒ (a∇μb)∇δ (a!μb) � a#μb for μ � 1
2
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⇐⇒ a#μb � (a!μb)!δ (a∇μb) for μ � 1
2
,

where the last equivalence follows from (2.8) in Lemma 2.6. Similarly, we have

AGμ(a,b) � AHμ(a,b) for μ � 1
2

⇐⇒ (a∇μb)∇δ (a!μb) � a#μb for μ � 1
2
.

Suppose that AGμ(a,b)� AHμ(a,b) holds for μ � 1
2 , that is, a#μb � (a∇μb)∇δ (a!μb)

for μ � 1
2 . Then a#μb � (a!μb)!δ (a∇μb) for μ � 1

2 by (2.7) of Lemma 2.6, which im-
plies that AGμ(a,b) � AHμ(a,b) for μ � 1

2 . Therefore it suffices to prove AGμ(a,b) �
AHμ(a,b) for μ � 1

2 .
Letting a = x2 and b = 1, we have

AGμ(a,b) � AHμ(a,b)

⇐⇒ 2((1− μ)x2 + μ)+
x(x2 +1)

μx2 +1− μ
� (x+1)2x1−2μ

⇐⇒ f (x) � 0,

where

f (x) = (μx2 +1− μ)
[
2((1− μ)x2 + μ)− (x+1)2x1−2μ]

+ x(x2 +1).

We will show that f (x) � 0 for x � 1 and μ � 1
2 . Letting g(x) = f ′(x)/(x+ 1) and

h(x) = x2+2μg′′(x)/(2μ(1− μ)) , a straightforward computation shows the following:

g(x) = 8μ(1− μ)(x−1)x+3x+1

−x−2μ [
μ(5−2μ)x3 + μ(3−2μ)x2 +(1− μ)(3−2μ)x+(1−μ)(1−2μ)

]
,

g′(x) = 8μ(1− μ)(2x−1)+3+ x−1−2μ [
μ(5−2μ)(2μ −3)x3

−2μ(1− μ)(3−2μ)x2+(2μ −1)(1− μ)((3−2μ)x−2μ)
]
,

h(x) = 8x2+2μ +(5−2μ)(2μ−3)x3 +(2μ −1)
[
(3−2μ)x2− (3−2μ)x+1+2μ

]
,

h′(x) = 16(1+ μ)x1+2μ +(2μ −3)
[
3(5−2μ)x2−2(2μ −1)x+(2μ −1)

]
,

h′′(x) = 16(1+ μ)(1+2μ)x2μ +2(2μ −3) [3(5−2μ)x−2μ +1] ,
h′′′(x) = 32μ(1+ μ)(1+2μ)x2μ−1+6(2μ −3)(5−2μ).

Since

h′′′(x) � h′′′(1) = 2(32μ3 +36μ2 +64μ −45) � 2(32/8+36/4+64/2−45)= 0,

h′′(1) = 80(2μ −1) � 0,

h′(1) = 8(4− μ)(2μ−1) � 0,

h(1) = 8(2μ −1) � 0,

g′(1) = g(1) = f (1) = 0,

we conclude f (x) � 0. �
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COROLLARY 2.11. Let a,b > 0 and μ ∈ [0,1] . Then,

1.
(

a∇b
a!b

)2r
� a∇μb

a!μ b � a∇b
a!b .

2. If (1−2μ)(a−b)� 0 , we have
(

a#Rb
a!Rb

)2
� a∇μb

a!μ b �
(

a#rb
a!rb

)2
.

3. If (1−2μ)(a−b)� 0 , we have
(

a#rb
a!rb

)2
� a∇μb

a!μ b �
(

a#Rb
a!Rb

)2
.

Proof. The first statement is simply another expression of 2r � LAHμ(a,b) � 1.
Since LAGμ(a,b) = LGH1−μ(a,b) for μ ∈ [0,1] by (2.6) of Lemma 2.6, the rela-
tions among LAGμ(a,b) , LAHμ(a,b) and LGHμ(a,b) in Proposition 2.7 imply (2)
and (3). �

REMARK 2.12. By (2.6) of Lemma 2.6, this corollary can be written as follows:

1.
(

G
H

)4r � a∇μ b
a!μ b �

(
G
H

)2
for any a,b > 0 and μ ∈ [0,1] ;

2. if (1−2μ)(a−b)� 0, we have
(

a∇rb
a#rb

)2
� a∇μ b

a!μ b �
(

a∇Rb
a#Rb

)2
;

3. if (1−2μ)(a−b)� 0, we have
(

a∇Rb
a#Rb

)2
� a∇μ b

a!μ b �
(

a∇rb
a#rb

)2
.

Figure 1: a∇μ b
a!μ b (Solid greenline),

(
a∇b
a!b

)2r
(Dashed blue line), a∇b

a!b (Dashed yellow line),(
a#Rb
a!Rb

)2
(Dash-dot red line), and

(
a#rb
a!rb

)2
(Dash-dot purple line)

Figure 1 shows the graphs of
a∇μb
a!μ b ,

(
a∇b
a!b

)2r
, a∇b

a!b ,
(

a#Rb
a!Rb

)2
, and

(
a#rb
a!rb

)2
for

0 � μ � 1, where a = 8.9092 and b = 2.9771.
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2.3. Some related inequalities

In this section we present inequalities related to the general theme of this paper.
In the following corollary, we present a refinement and a reverse of the inequality

LGHμ(a,b) � GHμ(a,b) for 1
2 � μ � 1.

COROLLARY 2.13. Let a � b > 0 and 1
2 � μ � 1. Then

a!b
a!μb

GHμ(a,b) � LGHμ(a,b) � a#b
a#μb

GHμ(a,b).

Proof. This follows from Theorem 2.3 by observing that a∇μ b
a#μb = a#1−μb

a!1−μ b which

implies LAGμ(a,b) = LGH1−μ(a,b), a∇b
a∇μbAGμ(a,b) = a#b

a#1−μbGH1−μ(a,b) and
a#b
a#μbAGμ(a,b) = a!b

a!1−μ bGH1−μ(a,b). �

Recall that the logarithmic mean of two positive numbers a and b is L(a,b) =
a−b

lna−lnb . Observe that since a#b � a∇b,a#μb � a∇μb and L is a mean, we have
L(a#b,a#μb) � L(a∇b,a∇μb) , because L is increasing in both coordinates. The fol-
lowing inequality is a refinement and a reverse of this relation.

COROLLARY 2.14. Let a � b > 0 and 0 � μ � 1
2 . Then

a#b
a∇b

L(a∇b,a∇μb) � L(a#b,a#μb) � a#μb

a∇μb
L(a∇b,a∇μb).

Proof. For 0 � μ � 1
2 we have a#b

a#μb � a∇b
a∇μ b by Proposition 2.2. Since f (x) = x lnx

x−1

is increasing on (0,∞) we have f
(

a#b
a#μ b

)
� f

(
a∇b
a∇μ b

)
. Simplifying this expression

gives the first inequality. On the other hand, since g(x) = lnx
x−1 is decreasing on (0,∞) ,

we have g
(

a∇b
a∇μ b

)
� g

(
a#b
a#μb

)
. Simplifying this expression leads to the second inequal-

ity. �

Now noting that a∇μb
a!μ b � a∇b

a!b for 0 � μ � 1 and using the monotonicity of the
functions f and g of the above corollary, we deduce the following inequality.

COROLLARY 2.15. For a � b > 0 and 0 � μ � 1 we have

a!b
a!μb

AHμ(a,b) � LAHμ(a,b) � a∇b
a∇μ

AHμ(a,b),0 � μ � 1.

Note that when 0 � μ � 1
2 we have a∇b

a∇μ
� 1. Therefore the above inequality gives

a refinement of the inequality LAHμ(a,b) � AHμ(a,b) in Theorem 2.5 for 0 � μ � 1
2 .

For these μ ’s, the above inequality gives a reverse a!b
a!μ bAHμ(a,b) � LAHμ(a,b). On
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the other hand, when 1
2 � μ � 1, the above inequality gives a reverse of LAHμ(a,b) �

AHμ(a,b) by introducing the factor a∇b
a∇μ

� 1 and a refinement by introducing the factor
a!b
a!μ b � 1.

On the other hand, the fact that a!b
a!μ b � a∇b

a∇μ b for 0 � μ � 1 and monotonicity of
the above f and g implies the following.

COROLLARY 2.16. Let a � b > 0 and 0 � μ � 1 . Then

a!b
a∇b

L(a∇b,a∇μb) � L(a!b,a!μb) � a!μb

a∇μb
L(a∇b,a∇μb).

Notice that this is a refinement and a reverse of the inequality L(a!b,a!μb) �
L(a∇b,a∇μb) following from the monotonicity of the mean function L.

2.4. Application to operators

In this section, we present some operator versions of the inequalities we have
proved for numbers. The following is the operator versions of Corollary 2.11.

THEOREM 2.17. Let A,B be invertible positive operators and μ ∈ [0,1] . Then,

1. A∇μB � (A#B)(A!B)−1(A!μB)(A!B)−1(A#B) .

2. If (1−2μ)(A−B) � 0 , then

(A#RB)(A!RB)−1(A!μB)(A!RB)−1(A#RB) � A∇μB,

A∇μB � (A#rB)(A!rB)−1(A!μB)(A!rB)−1(A#rB).

3. If (1−2μ)(A−B) � 0 , then

(A#rB)(A!rB)−1(A!μB)(A!rB)−1(A#rB) � A∇μB,

A∇μB � (A#RB)(A!RB)−1(A!μB)(A!RB)−1(A#RB).

Proof. We prove

A∇μB � (A#rB)(A!rB)−1(A!μB)(A!rB)−1(A#rB)

for A � B and μ � 1
2 . The other inequalities also hold by the same argument. Letting

a = x and b = 1, the inequality a∇μ b
a!μ b �

(
a#rb
a!rb

)2
in (2) of Corollary 2.11 can be written

by

(1− μ)x+ μ � x1−r ((1− r)x−1 + r
)(

(1− μ)x−1 + μ
)−1 (

(1− r)x−1 + r
)
x1−r.

Thus for any X � I , we have

(1− μ)X + μ � X1−r ((1− r)X−1 + r
)(

(1− μ)X−1 + μ
)−1 (

(1− r)X−1 + r
)
X1−r
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by the operator monotonicity of continuous functions. Replacing X by B−1/2AB−1/2 ,
we have

A∇μB � (B#1−rA)(A!rB)−1(A!μB)(A!rB)−1(B#1−rA).

Since B#1−rA = A#rB , we have the desire inequality. �

From the relationship between AGμ and AHμ in Proposition 2.10, we have the
following result: if (1−2μ)(a−b) � 0, then

a#μb � a#b
a∇b+a#b

a∇μb+
a∇b

a∇b+a#b
a!μb (2.9)

and if (1−2μ)(a−b)� 0, then

a#μb � a#b
a∇b+a#b

a∇μb+
a∇b

a∇b+a#b
a!μb.

The following is their operator version.

THEOREM 2.18. Let A,B be invertible positive operators and μ ∈ [0,1] . Then,

1. if (1−2μ)(A−B)� 0 , then we have

A#μB � 2(A# 3
4
B)(A#B+B)−1(A∇μB)(A#B+B)−1(A# 3

4
B)

+((A+B)#B)(A#B+B)−1(A!μB)(A#B+B)−1((A+B)#B).

2. if (1−2μ)(A−B)� 0 , then

A#μB � 2(A# 3
4
B)(A#B+B)−1(A∇μB)(A#B+B)−1(A# 3

4
B)

+((A+B)#B)(A#B+B)−1(A!μB)(A#B+B)−1((A+B)#B).

Proof. We prove the first inequality for the case that μ � 1
2 and A � B . The other

cases follow by the same argument. Letting a = x and b = 1 in (2.9), we have

x1−μ � 2x1/4(
√

x+1)−1 ((1− μ)x+ μ)(
√

x+1)−1x1/4

+
√

x+1(
√

x+1)−1(
(1− μ)x−1 + μ

)−1
(
√

x+1)−1
√

x+1.

Thus replacing x by B−1/2AB−1/2 , we have

B#1−μA � 2(B# 1
4
A)(B#A+B)−1(A∇μB)(B#A+B)−1(B# 1

4
A)

+(B#(A+B))(B#A+B)−1(A!μB)(B#A+B)−1(B#(A+B)).

The desired inequality follows by the relationship A#μB = B#1−μA . �
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