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Abstract. In this paper, we refine some operator inequalities as follows: Let A , B be positive
operators on a Hilbert space with 0 < m � A � m′ < M′ � B � M . Then for every positive unital
linear map Φ and p � 1 ,

Φp(A�tB)Φp((A�tB)−1)+Φp((A�tB)−1)Φp(A�tB) � (M +m)2p

2MpmpKμ p(h′)
,

and p � 2 ,

Φ2p(A�B) �
(K2(h)(M2 +m2)2

4
2
p K2μ (h′)M2m2

)p
Φ2p(Ht(A,B))

for all t ∈ [0,1] , where μ = min{t,1− t} , K(h) = (h+1)2
4h , K(h′) = (h′+1)2

4h′ , h = M
m and h′ =

M′
m′ .

1. Introduction

Throughout this paper, let m , m′ , M , M′ be scalars and I be the identity operator.
Other capital letters are used to denote the general elements of the C∗ -algebra B(H )
of all bounded linear operators acting on a Hilbert space (H ,〈·, ·〉) . The quantity

K(h) = (h+1)2
4h with h = M

m is so called the Kantorovich constant. The operator norm is
defined by ‖ · ‖ . We write A � 0 to mean that the operator A is positive. If A−B � 0
(A−B � 0) , then we say that A � B (A � B) . A∗ stands for the adjoint of A . We

denote the absolute value operator of A by |A| , that is, |A| = (A∗A)
1
2 .

For each t ∈ [0,1] , the weighted arithmetic means �t and weighted geometric
mean for invertible positive operators A and B are defined as follows: A�tB = (1−
t)A + tB and A�tB = A

1
2 (A− 1

2 BA− 1
2 )tA

1
2 . When t = 1

2 we write A�B and A�B for
brevity respectively, see Kubo and Ando [2]. Heinz mean is defined as Ht(A,B) =
1
2(A�tB+B�tA) .

In [1], Ando, Li and Mathias proposed a definition for the geometric mean of three
or more positive semi-definite matrices and showed that it has many requared properties
on the geometric mean. In [9], Yamazaki pointed out that the definition of the geometric
mean by Ando, Li and Mathias can be extended to Hilbert space operators. For positive
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invertible operators A and B on a Hilbert space H , the geometric mean A�B of A and
B is defined by

A�B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

As an extension of A�B , the geometric mean G(A1, . . . ,An) of any n− tuple of
positive invertible operators A1, . . . ,An on a Hilbert space H is defined by induction as
follows:

(i) G(A1,A2) = A�B .
(ii) Assume that the geometric mean of any (n−1)− tuple of operators is defined.

Let G((Aj) j �=i) = G(A1, . . . ,Ai−1,Ai+1 . . . ,An) and let sequences {A(r)
i }∞

r=1 be A(1)
i =

Ai and A(r+1)
i = G((A(r)

j ) j �=i) . Then there exists lim
r→∞

A(r)
i uniformly and it does not

depend on i . Hence the geometric mean of n−operators is defined by lim
r→∞

A(r)
i =

G(A1, . . . ,An) for i = 1, . . . ,n . There is no explicit formula for G(A1, . . . ,An) in terms
of A1, . . . ,An when n � 3. However, the only basic property that we need is

G(A1, . . . ,An) � A1 + . . .+An

n
.

A linear map Φ is positive if Φ(A) � 0 whenever A � 0. It’s said to be unital if
Φ(I) = I .

It is well known that for two positive operator A , B ,

A � B � Ap � Bp

for p > 1.
Let 0 < m � A � M and Φ be positive unital linear map. Lin [7, Theorem 2.10]

proved the following operator inequalities:

|Φ(A−1)Φ(A)+ Φ(A)Φ(A−1)| � (M+m)2
2Mm (1.1)

and

Φ(A−1)Φ(A)+ Φ(A)Φ(A−1) � (M+m)2
2Mm . (1.2)

Fu [4, Theorem 4] generalized (1.1) and (1.2) when p � 1:

|Φp(A−1)Φp(A)+ Φp(A)Φp(A−1)| � (M+m)2p

2Mpmp (1.3)

and

Φp(A−1)Φp(A)+ Φp(A)Φp(A−1) � (M+m)2p

2Mpmp . (1.4)

Let 0 < m � A,B � M and Φ is positive unital linear map. Lin [6] also proved the
following operator inequalities:

Φ2(A∇B) � K2(h)Φ2(A�B) (1.5)

and
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Φ2(A∇B) � K2(h)(Φ(A)�Φ(B))2 . (1.6)

where K(h) = (h+1)2
4h with h = M

m is the Kantorovich constant.
Zhang [11, Theorem 2.6] generalized (1.5) and (1.6) when p � 2:

Φ2p(A�B) � (K(h)(M2+m2))2p

16M2pm2p Φ2p(A�B) (1.7)

and

Φ2p(A�B) � (K(h)(M2+m2))2p

16M2pm2p (Φ(A)�Φ(B))2p . (1.8)

Let A1,A2, . . . ,An be positive operators on a Hilbert space with 0 < m � Ai � M
(i = 1, . . . ,n) . Fujii et al. [5] showed a reverse arithmetic-geometric mean inequality of
several operators

A1+...+An
n � ( (M+m)2

4Mm )G(A1, . . . ,An) . (1.9)

Lin [6, Theorem3.2] showed that the reverse AM-GM inequality (1.9) can be
squared:

(A1+...+An
n )2 � ( (M+m)2

4Mm )2G2(A1, . . . ,An) . (1.10)

Fu[4, Theorem5] showed the generalization of (1.10), that is when p � 1

(A1+...+An
n )2p � ( (M+m)2p

4Mpmp )2G2p(A1, . . . ,An) . (1.11)

In this paper, we will focus on present some operator inequalities which are refine-
ments of the above.

2. Main results

We need some Lemmas to prove the main theorems of this paper:

LEMMA 2.1. [3] Let A,B > 0 . Then the following norm inequality holds:

‖AB‖ � 1
4‖A+B‖2 . (2.1)

LEMMA 2.2. [2] Let A and B be positive operators. Then for 1 � r < ∞ ,

‖Ar +Br‖ � ‖(A+B)r‖ . (2.2)

LEMMA 2.3. [7] For any bounded operator X ,

|X | � tI ⇔ ‖X‖ � t ⇔
[
tI X
X∗ tI

]
� 0 .
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LEMMA 2.4. [12] Suppose that two operators A, B and positive real numbers
m, m′ , M , M′ satisfy either of the following conditions:

(i) 0 < m � A � m′ < M′ � B � M;
(ii) 0 < m � B � m′ < M′ � A � M.
Then

A�tB � Kμ(h′)A�tB ,

for all t ∈ [0,1], where μ = min{t,1− t} and h′ = M′
m′ .

LEMMA 2.5. Let 0 < m � A � m′ < M′ � B � M. Then

A�tB+MmKμ(h′)(A�tB)−1 � M +m (2.3)

for all t ∈ [0,1] , where μ = min{t,1− t} , K(h′) = (h′+1)2
4h′ and h′ = M′

m′ .

Proof. It is easy to see that

(1− t)(M−A)(m−A)A−1 � 0

and
t(M−B)(m−B)B−1 � 0,

then
(1− t)MmA−1 +(1− t)A � (1− t)(M+m)

and
tMmB−1 + tB � t(M +m).

Summing up the two above inequalities, we get

A�tB+Mm(A−1�tB
−1) � M +m.

By (A�tB)−1 = A−1�tB−1 and Lemma 2.4, we have

A�tB+MmKμ(h′)(A�tB)−1

= A�tB+MmKμ(h′)(A−1�tB−1)

� A�tB+Mm(A−1�tB−1)

� M +m.

This completes the proof. �

THEOREM 2.6. Let 0 < m � A � m′ < M′ � B � M and p � 1 . Then for every
positive unital linear map Φ ,

|Φp(A�tB)Φp((A�tB)−1)+ Φp((A�tB)−1)Φp(A�tB)| � (M+m)2p

2MpmpKμ p(h′) (2.4)

and
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Φp(A�tB)Φp((A�tB)−1)+ Φp((A�tB)−1)Φp(A�tB) � (M+m)2p

2MpmpKμ p(h′) (2.5)

for all t ∈ [0,1] , where μ = min{t,1− t} , K(h) = (h+1)2
4h , K(h′) = (h′+1)2

4h′ , h = M
m and

h′ = M′
m′ .

Proof. By (2.1), (2.2) and (2.3), we can compute that

‖Φp(A�tB)MpmpKμ p(h′)Φp((A�tB)−1)‖

� 1
4‖Φp(A�tB)+MpmpKμ p(h′)Φp((A�tB)−1)‖2

� 1
4‖Φ(A�tB)+MmKμ(h′)Φ((A�tB)−1)‖2p

= 1
4‖Φ(A�tB+MmKμ(h′)(A�tB)−1)‖2p

� 1
4(M +m)2p.

So

‖Φp(A�tB)Φp((A�tB)−1)‖ � (M+m)2p

4MpmpKμ p(h′) . (2.6)

By Lemma 2.3 and (2.6) we obtain
⎡
⎣ (M+m)2p

4MpmpKμ p(h′) I Φp(A�tB)Φp((A�tB)−1)

Φp((A�tB)−1)Φp(A�tB) (M+m)2p

4MpmpKμ p(h′) I

⎤
⎦ � 0

and ⎡
⎣ (M+m)2p

4MpmpKμ p(h′) I Φp((A�tB)−1)Φp(A�tB)

Φp(A�tB)Φp((A�tB)−1) (M+m)2p

4MpmpKμ p(h′) I

⎤
⎦ � 0.

Summing up these two operator matrices, we have
⎡
⎣ (M+m)2p

2MpmpKμ p(h′) I Y

Y ∗ (M+m)2p

2MpmpKμ p(h′) I

⎤
⎦ � 0,

where denote that Y = Φp(A�tB)Φp((A�tB)−1)+ Φp((A�tB)−1)Φp(A�tB) . It is easy
to see that Y ∗ = Y . By Lemma 2.3, we can achieve (2.4) and (2.5). �

REMARK 2.7. Let t = 0 in Theorem 2.6, then μ = 0, we can get the inequalities
(1.3) and (1.4) by (2.4) and (2.5), respectively.

THEOREM 2.8. Let 0 < m � A � m′ < M′ � B � M. Then for every positive
unital linear map Φ and p � 2 ,

Φp(A�B) � 22p−4Kp(h)
Kμ p(h′) Φp(Ht(A,B)) (2.7)
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and

Φp(A�B) � 22p−4Kp(h)
Kμ p(h′) Hp

t (Φ(A),Φ(B)) (2.8)

for all t ∈ [0,1] , where μ = min{t,1− t} , K(h) = (h+1)2
4h , K(h′) = (h′+1)2

4h′ , h = M
m and

h′ = M′
m′ .

Proof. The inequality (2.7) is equivalent to

‖Φ
p
2 (A�B)K

μ p
2 (h′)Φ− p

2 (Ht(A,B))‖ � 2p−2K
p
2 (h) . (2.9)

By Lemma 2.1 and Lemma 2.2, (2.9) is true if

Φ(A�B)+MmKμ(h′)Φ−1(Ht(A,B)) � M +m . (2.10)

The well-known Choi inequality (see [4, p. 41]) says that

Φ−1(T ) � Φ(T−1) for any T > 0.

So (2.10) would follow by

Φ(A�B)+MmKμ(h′)Φ(H−1
t (A,B)) � M +m . (2.11)

By Lemma 2.5, we have

A�tB+MmKμ(h′)(A�tB)−1 � M +m

and
B�tA+MmKμ(h′)(B�tA)−1 � M +m.

Summing up these two inequalities, we get

A�B+MmKμ(h′)
(A�tB)−1 +(B�tA)−1

2
� M +m.

That is,
A�B+MmKμ(h′)Ht(A−1,B−1) � M +m.

So,
Φ(A�B)+MmKμ(h′)Φ(H−1

t (A,B))

= Φ(A�B)+MmKμ(h′)Φ((A�t B+B�tA
2 )−1)

= Φ(A�B)+MmKμ(h′)Φ((A�tB)−1!(B�tA)−1)

� Φ(A�B)+MmKμ(h′)Φ((A�tB)−1�(B�tA)−1)

= Φ[(A�B)+MmKμ(h′)Ht(A−1,B−1)]

� M +m.

This proves (2.11). The proof of (2.8) is similar, so we omit the details. �
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THEOREM 2.9. Let 0 < m � A � m′ < M′ � B � M. Then for every positive
unital linear map Φ and p � 2 ,

Φp(A�tB) � 22p−4Kp(h)
Kμ p(h′) Φp(A�tB) (2.12)

and

Φp(A�tB) � 22p−4Kp(h)
Kμ p(h′) (Φ(A)�tΦ(B))p (2.13)

for all t ∈ [0,1] , where μ = min{t,1− t} , K(h) = (h+1)2
4h , K(h′) = (h′+1)2

4h′ , h = M
m and

h′ = M′
m′ .

Proof. Use a similar argument as above, we can prove (2.12) and (2.13). �

REMARK 2.10. Letting t = 1
2 , μ = 1

2 and put p = 2, since K2(h)
K2μ (h′) < K2(h) , so

under a stronger condition as Theorem 2.9, we see (2.12) and (2.13) are refinements of
(1.5) and (1.6), respectively.

THEOREM 2.11. Let 0 < m � A � m′ < M′ � B � M. Then for every positive
unital linear map Φ and p � 2 ,

Φ2p(A�B) � 1
16

(
K2(h)(M2+m2)2

K2μ (h′)M2m2

)p
Φ2p(Ht(A,B)) (2.14)

and

Φ2p(A�B) � 1
16

(
K2(h)(M2+m2)2

K2μ (h′)M2m2

)p
H2p

t (Φ(A),Φ(B)) (2.15)

for all t ∈ [0,1] , where μ = min{t,1− t} , K(h) = (h+1)2
4h , K(h′) = (h′+1)2

4h′ , h = M
m and

h′ = M′
m′ .

Proof. By the operator reverse monotonicity of inequality (2.7) and put p = 2, we
have

Φ−2(Ht(A,B)) � K2(h)
K2μ (h′)Φ−2(A�B) = L2Φ−2(A�B) , (2.16)

where L = K(h)
Kμ (h′) .

By 0 < m � A � M , then for every positive unital linear map Φ , we have m2 �
Φ2(A) � M2 .

So

(M2 −Φ2(A))(m2 −Φ2(A))Φ−2(A) � 0

That is,

M2m2Φ−2(A)+ Φ2(A) � M2 +m2 , (2.17)
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By (2.1), (2.2), (2.16) and (2.17), we can compute that

‖Φp(A�B)MpmpΦ−p(Ht(A,B))‖

� 1
4‖L

p
2 Φp(A�B)+ (M2m2

L )
p
2 Φ−p(Ht(A,B))‖2

� 1
4‖LΦ2(A�B)+ M2m2

L Φ−2(Ht(A,B))‖p

� 1
4‖LΦ2(A�B)+LM2m2Φ−2(A�B)‖p

� 1
4 (L(M2 +m2))p.

That is

‖Φp(A�B)Φ−p(Ht(A,B))‖ � 1
4

(
L(M2 +m2)

Mm

)p

=
1
4

(
K2(h)(M2 +m2)2

K2μ(h′)M2m2

) p
2

.

Thus, (2.14) holds. By inequality (2.8), the proof of (2.15) is similar, we omit the
details.

This completes the proof. �

THEOREM 2.12. Let 0 < m � A � m′ < M′ � B � M. Then for every positive
unital linear map Φ and p � 2 ,

Φ2p(A�tB) � 1
16

(
K2(h)(M2+m2)2

K2μ (h′)M2m2

)p
Φ2p(A�tB) (2.18)

and

Φ2p(A�tB) � 1
16

(
K2(h)(M2+m2)2

K2μ (h′)M2m2

)p
(Φ(A)�tΦ(B))2p (2.19)

for all t ∈ [0,1] , where μ = min{t,1− t} , K(h) = (h+1)2
4h , K(h′) = (h′+1)2

4h′ , h = M
m and

h′ = M′
m′ .

Proof. The proof are similar as Theorem 2.11, we omit the details. �

REMARK 2.13. Put t = 1
2 , μ = 1

2 , the inequalities (2.18) and (2.19) are

Φ2p(A�B) � 1
16(K2(h)(M2+m2)2

K(h′)M2m2 )pΦ2p(A�B) (2.20)

and

Φ2p(A�B) � 1
16(K2(h)(M2+m2)2

K(h′)M2m2 )p(Φ(A)�Φ(B))2p , (2.21)

respectively.
Since K(h′) > 1, and hence if strengthen the condition as in Theorem 2.12, in-

equalities (2.20) and (2.21) are stronger than (1.7) and (1.8), respectively.
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THEOREM 2.14. Let 0 < m � Ai � M (i = 1, . . . ,n) and p � 2 . Then

(A1+...+An
n )2p � ( (K(h)(M2+m2))p

4Mpmp )2G2p(A1, . . . ,An) , (2.22)

Proof. By [10, p. 40], we know that the inequality (2.22) is equivalent to

‖(A1+...+An
n )pMpmpG−p(A1, . . . ,An)‖ � (K(h)(M2+m2))p

4 . (2.23)

By the operator reverse monotonicity of the inequality (1.10), we have

G−2(A1, . . . ,An) � ( (M+m)2
4Mm )2(A1+...+An

n )−2 = K2(h)(A1+...+An
n )−2 . (2.24)

By (2.1), (2.2) and (2.24), we can compute that

‖(A1+...+An
n )pMpmpG−p(A1, . . . ,An)‖

� 1
4‖K

p
2 (h)(A1+...+An

n )p +(M2m2

K(h) )
p
2 G−p(A1, . . . ,An)‖2

� 1
4‖K(h)(A1+...+An

n )2 + M2m2

K(h) G−2(A1, . . . ,An)‖p

� 1
4‖K(h)(A1+...+An

n )2 +M2m2K(h)(A1+...+An
n )−2‖p

� 1
4 (K(h)(M2 +m2))p.

Note that the last inequality follows from: For 0 < m � A � M , M2m2A−2 + A2 �
M2 +m2 .

That is

∥∥∥(A1 + . . .+An

n

)p
G−p(A1, . . . ,An)

∥∥∥ � (K(h)(M2 +m2))p

4Mpmp .

Thus, (2.22) holds. �

REMARK 2.15. If 0 < m � M � (2+
√

3)m , then

(K(h)(M2 +m2))p

4Mpmp

(M +m)2p

4Mpmp

=
(

M2 +m2

4Mm

)p

� 1.

Thus, when p � 2, (2.22) may be stronger than (1.11) for some M,m .
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