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INEQUALITIES FOR GAUSSIAN HYPERGEOMETRIC FUNCTIONS

WEN WANG, JUANJUAN PAN1 AND SHIGUO YANG

(Communicated by S. Koumandos)

Abstract. In this paper, we first shall present some inequalities for Gaussian hypergeometric
functions, which generalize an identity involving the inverse hyperbolic tangent function. Fur-
ther, the monotonicity of general hypergeometric function is proved. The obtained results of this
paper improve some known results.

1. Introduction

For real numbers a,b and c such that c �= 0,−1,−2, · · · , the Gaussian hypergeo-
metric functions F(a,b;c;x) : (−1,1)→ R are defined by

F(a,b;c;x) =2 F1(a,b;c;x) = ∑
n�0

(a,n)(b,n)
(c,n)

· xn

n!
, (1.1)

where (a,0) = 1 for a �= 0, and (a,n) = a(a + 1)(a + 2) · · ·(a + n− 1) = Γ(a+n)
Γ(a) for

each n ∈ {1,2, · · ·} denotes the Pochammer (or Appell) symbol. The Gaussian hy-
pergeometric functions F(a,b;c;x) admit the Euler integral representation [1, 11], as
follows:

F(a,b;c;x) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
tc−1(1− t)c−b−1(1− xt)−adt,

where Γ(z) is Gamma function.
The Gaussian hypergeometric function has attracted the interest of authors and

perhaps been widely used in [12–20]. Such as, some well-known class of mathematical
physics are particular or limiting cases of it [8–10].

It is clear that for many rational values (a,b,c) of the Gaussian hypergeometric
function F(a,b;c;x) reduces to many well-known special elementary functions. The
readers can see reference [1], such as,

F

(
1
2
,1;

3
2
;r

)
=

1
2r

arctanh r. (1.2)
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It is not difficult to find that for r ∈ (0,1) , the inverse hyperbolic tangent function
arctanh x satisfies the following identity

2arctanh
√

r = arctanh

(
2
√

r
1+ r

)
. (1.3)

Combing (1.2) and (1.3), we get

F

(
1
2
,1;

3
2
;

4r
(1+ r)2

)
= (1+ r)F

(
1
2
,1;

3
2
;r

)
, (1.4)

F

(
1
2
,1;

3
2
;
1− r
1+ r

)
=

1+ r
2

F

(
1
2
,1;

3
2
;1− r2

)
. (1.5)

For the zero-balance hypergeometric function F(a,b;a+b;x) , Qiu and Vuorinen
in [3, Thm 1.2] and Simić and Vuorinen in [4, Thm 2.1] obtained some meaningful
results, respectively.

Afterwards, Baricz [5] extended some important results of the zero-balance hyper-
geometric function F(a,b;a+b;x) to the general hypergeometric function F(a,b;c;x) .

Recently, Wang, Song and Chu [6] studied (1.10) and (1.11), and presented several
inequalities for the zero-balance hypergeometric function F(a,b;a+b;x) , as follows.

THEOREM A. ([6]) Let a,b,c ∈ R such that c �= 0,−1,−2, · · · , and for all r ∈
(0,1) .

If (a,b) ∈ {(a,b)|a,b > 0,ab � 1
2 ,3ab− (a+b)� 0} , then

F

(
a,b;a+b;

4r
(1+ r)2

)
� (1+ r)F(a,b;a+b;r), (1.6)

1+ r
2

F(a,b;a+b;1− r2) � F

(
a,b;a+b;

1− r
1+ r

)
. (1.7)

If (a,b) ∈ {(a,b)|a,b > 0,ab � 1
2 ,3ab− (a+b)� 0} , then

F

(
a,b;a+b;

4r
(1+ r)2

)
� (1+ r)F(a,b;a+b;r), (1.8)

F

(
a,b;a+b;

1− r
1+ r

)
� 1+ r

2
F(a,b;a+b;1− r2). (1.9)

In this paper, motivated by [3, 4, 5, 6], we make a contribution to this subject. The
results can be extended the zero-balance hypergeometric functions F(a,b;a+ b;x) to
the general Gaussian hypergeometric functions F(a,b;c;x) . In a word, we first shall
present some inequalities for Gaussian hypergeometric functions, which generalize an
identity involving the inverse hyperbolic tangent function. Further, the monotonicity of
general hypergeometric function is proved. The obtained results of this paper improve
some known results.
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2. Main results

Throughout this paper, for a,b,c ∈ R and c �= 0,−1,−2, · · · we set

D1 =
{

(a,b,c)|a+b � c,ab � min
{1

2
− (a+b),

c+1
5

}}
;

D2 =
{

(a,b,c)|a+b � c,ab � max
{1

2
,
c+1

5

}}
;

D3 =
{

(a,b,c)|a+b � c,ab � min
{1

2
,
c
3

}}
;

D4 =
{

(a,b,c)|a+b � c,ab � max
{1

2
,
c
3

}}
;

D5 =
{

(a,b,c)|a,b,c > 0,c � min{a,b},ab � max
{1

2
,
c
3
,
c+1

5

}}
;

D6 =
{

(a,b,c)|a,b,c > 0,c � a+b,ab � min
{1

2
− (a+b),

c
3
,
c+1

5

}}
,

where

D5 = (a,b,c) ∈ D2∩D4∩{(a,b,c)|a,b,c > 0,c � min{a,b}};
D6 = D1∩D3∩{(a,b,c)|a,b,c > 0,c = a+b}.

Our first main result is stated as follows.

THEOREM 2.1. Let a,b,c∈ R such that c �= 0,−1,−2, · · · , and for all r ∈ (0,1) .
The following assertions are valid.

(1). If a,b,c ∈ D4 , then

F

(
a,b;c;

4r
(1+ r)2

)
� (1+ r)F(a,b;c;r), (2.1)

F

(
a,b;c;

1− r
1+ r

)
� 1+ r

2
F(a,b;c;1− r). (2.2)

(2). If a,b,c ∈ D3 , then

F

(
a,b;c;

4r
(1+ r)2

)
� (1+ r)F(a,b;c;r), (2.3)

F

(
a,b;c;

1− r
1+ r

)
� 1+ r

2
F(a,b;c;1− r). (2.4)

Now, we consider the following Gaussian hypergeometric transformation [1]

F

(
1
2
a,

1
2
a+

1
2
;a−b+1;

4r
(1+ r)2

)
= (1+ r)aF (a,ab;a−b+1;r), (2.5)

which may be regarded as the generalization of the identity (1.3). By applying this
transformation we can get the following result.
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THEOREM 2.2. Let a,b > 0 , c ∈ R with c �= 0,−1,−2, · · · . The following asser-
tions are valid.

(1). If 1
2a+ 1

2 � b � min{a+1,a+1− c} , then

F

(
a,b;c;

4r
(1+ r)2

)
� (1+ r)aF(a,b;c;r). (2.6)

(2). If a− c+1 � b � min{ a
2 ,a+1} and a � 1 , then

F

(
a,b;c;

4r
(1+ r)2

)
� (1+ r)aF(a,b;c;r). (2.7)

Noting that by changing r to 1−r
1+r in inequalities (2.6) and (2.7), we obtain the

following inequalities.

COROLLARY 2.3. Let a,b > 0 , c ∈ R with c �= 0,−1,−2, · · · . The following
assertions are valid.

(1). If 1
2a+ 1

2 � b � min{a+1,a+1− c} , then

F

(
a,b;c;

1− r
1+ r

)
�
(

1+ r
2

)a

F(a,b;c;r). (2.8)

(2). If a− c+1 � b � min{ a
2 ,a+1} and a � 1 , then

F

(
a,b;c;

1− r
1+ r

)
�
(

1+ r
2

)a

F(a,b;c;r). (2.9)

THEOREM 2.4. For all r ∈ (0,1) , the function

J(r) = (1+ r)F(a,b;c;r)−F

(
a,b;c;

4r
(1+ r)2

)
is monotone decreasing on D5 and monotone increasing on D6 .

3. Some lemmas

We first introduce some lemmas, which play an important role in the proof of main
results.

Let us recall the following assertion of Biernacki and Krzyż [7], which we shall
use in the sequel.
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LEMMA 3.1. Let an ∈ R and bn > 0 , and for all n ∈ {0,1, · · ·} , the power series
f (x) = ∑n�0 anxn and g(x) = ∑n�0 bnxn , and both converge on (−r,r) , r > 0 . Suppose
that

h(x) =
f (x)
g(x)

=
∑n�0 anxn

∑n�0 bnxn .

If the sequence {an/bn}n�0 is increasing (decreasing), then the function h(x) is in-
creasing (decreasing) too on (0,r) .

For different proofs and various applications of Lemma 2.1, the readers are re-
ferred to the references [4, 5, 13].

LEMMA 3.2. ([11]) For the Gaussian hypergeometric function F(a,b;c;x) , we
have

F(a,b;c;x) = F(b,a;c;x), (3.1)

d
dx

F(a,b;c;x) =
ab
c

F(a+1,b+1;c+1;x), (3.2)

(1− x)
d
dx

F(a,b;c;x) =
(c−a)(c−b)

c
F(a,b;c+1;x)− (c−a)(c−b)F(a,b;c;x).

(3.3)

We denote

F(r) = F(a,b;c;r), G(r) = F(a,b;c+1;r), (3.4)

and

F̃(r) = F

(
1
2
,1;

3
2
;r

)
G̃(r) = F

(
1
2
,1;

5
2
;r

)
, (3.5)

where a,b > 0, (a,b) �= ( 1
2 ,1) and (a,b) �= (1, 1

2) .

LEMMA 3.3. Let r ∈ (0,1) .
(1). The function g(r) = G(r)

G̃(r)
is decreasing on D1 and increasing on D2 .

(2). The function f (r) = F(r)
F̃(r)

is decreasing on D3 and increasing on D4 .

Proof. (1). Since

g(r) =
G(r)

G̃(r)
=

F(a,b;c+1;r)
F
(

1
2 ,1; 5

2 ;r
) =

∑n�0
(a,n)(b,n)
(c+1,n) · rn

n!

∑n�0
( 1

2 ,n)(1,n)
( 5

2 ,n)
· rn

n!

.

Therefore, by Lemma 3.1, in order to prove the monotonicity of g(r) , we only need to
obtain the monotonicity of the sequence

un =
(a,n)(b,n)
(c+1,n)

· ( 5
2 ,n)

( 1
2 ,n)(1,n)

.



32 W. WANG, J. PAN AND S. YANG

By a simple calculation, one has

un+1

un
=

(a+n)(b+n)
(c+n+1)

( 5
2 +n)

( 1
2 +n)(1+n)

� 1(� 1)

if and only if

Δ1
n = (a+b− c)n2 +

[
(a+b)+

3
2
(a+b− c)+ab− 1

2

]
n+

5
2
ab− 1

2
c− 1

2
� 0(� 0).

Hence, if (a,b,c) ∈ D1 , then Δ1
n � 0 for all n ∈ {0,1, · · ·} , that is {un}n�0 is de-

creasing. So, by Lemma 3.1 the function g(r) is decreasing. On the other hand, if
(a,b,c) ∈ D2 , then Δ1

n � 0 for all n ∈ {0,1, · · ·} , that is {un}n�0 is increasing. So, by
Lemma 3.1 the function g(r) is increasing.

(2). Since

f (r) =
F(r)
F̃(r)

=
F(a,b;c;r)
F
( 1

2 ,1; 3
2 ;r
) =

∑n�0
(a,n)(b,n)

(c,n) · rn
n!

∑n�0
( 1

2 ,n)(1,n)
( 3

2 ,n)
· rn

n!

.

Therefore, by Lemma 3.1, the monotonicity of f (r) depends on the monotonicity of
the sequence

{αn}n�0 =

{
(a,n)(b,n)

(c,n)
· ( 3

2 ,n)
( 1

2 ,n)(1,n)

}
n�0

.

A simple calculation yields that

αn+1

αn
=

(a+n)(b+n)( 3
2 +n)

(c+n)( 1
2 +n)(1+n)

� 1(� 1),

if and only if

Δ′
n = (a+b− c)n2+

[
3
2
(a+b− c)+ab− 1

2

]
n+

3
2
ab− 1

2
c � 0(� 0).

Thus, if a + b � c and ab � max{ 1
2 , c

3} , then Δ′
n � 0 for all n ∈ {0,1, · · ·} , that is

{αn}n�0 is increasing. So, by Lemma 3.1 the function f (r) is increasing. On the other
hand, if a + b � c and ab � min{ 1

2 , c
3} , then Δ′

n � 0 for all n ∈ {0,1, · · ·} , that is
{αn}n�0 is decreasing. So, by Lemma 3.1 the function f (r) is decreasing. �

4. Proofs of theorems

Proof of Theorem 2.1. By Lemma 3.3 (2), for (a,b,c) ∈ D4 and r ∈ (0,1) , the
function f (r) is increasing. Hence, for each 0 < x < y < 1, we have f (x) < f (y) .
Now choosing x = x(r) = r and y = y(r) = 4r

(1+r)2 , we get that

F(a,b;c;r)
F( 1

2 ,1; 3
2 ;r)

�
F(a,b;c; 4r

(1+r)2 )

F( 1
2 ,1; 3

2 ; 4r
(1+r)2 )

,
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i.e.

F(a,b;c;r) � F
(
a,b;c;

4r
(1+ r)2

) F( 1
2 ,1; 3

2 ;r)
F( 1

2 ,1; 3
2 ; 4r

(1+r)2 )
. (4.1)

From (1.3) and (4.1), a simple substitution yields (2.1).
Similarly, if (a,b,c) ∈ D3 and r ∈ (0,1) , the function f (r) is decreasing. Hence

F(a,b;c;r)
F( 1

2 ,1; 3
2 ;r)

�
F(a,b;c; 4r

(1+r)2 )

F( 1
2 ,1; 3

2 ; 4r
(1+r)2 )

,

i.e.

F(a,b;c;r) � F
(
a,b;c;

4r
(1+ r)2

) F( 1
2 ,1; 3

2 ;r)
F( 1

2 ,1; 3
2 ; 4r

(1+r)2 )
. (4.2)

From (1.3) and (4.2), a simple substitution yields (2.3).
The proof for (2.2) and (2.4)is similar. We need only choose x = x(r) = 1−r

1+r and
y = y(r) = 1− r2 , and thus we omit the details. So the proof is complete. �

Proof of Theorem 2.2. The proof is similar as in the proof of Theorem 2.1. Firstly,
we consider the function V : (0,1) → (0,+∞) , defined by

V (x) =
F(a,b;c;x)

F(a,b;a−b+1;x)
=

∑n�0
(a,n)(b,n)

(c,n) · xn

n!

∑n�0
(a,n)(b,n)
(a−b+1,n) · xn

n!

.

In according to Lemma 3.1, to discuss the monotonicity of V (x) we need to study the

monotonicity of the sequence {βn}n�0 , defined by βn = (a−b+1,n)
(c,n) . Since

βn+1

βn
=

a−b+1+n
c+n

.

Obviously, for a−b+1 � c the sequence {βn}n�0 is increasing; for a−b+1 � c the
sequence {βn}n�0 is decreasing.

(1). We now consider the case a−b+1� c and a−b+1> 0, then the sequence
{βn}n�0 is increasing, and using Lemma 3.1 the function V (x) is increasing. That
is, for each 0 < x < y < 1, we have V (x) < V (y) . Now choosing x = x(r) = r and
y = y(r) = 4r

(1+r)2 , we get that

F(a,b;c;r)
F(a,b;a−b+1;r)

�
F(a,b;c; 4r

(1+r)2 )

F(a,b;a−b+1; 4r
(1+r)2 )

. (4.3)
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By (2.5) and (4.3), we have

F(a,b;c;r) � F
(
a,b;c;

4r
(1+ r)2

) F(a,b;a−b+1;r)
F(a,b;a−b+1; 4r

(1+r)2 )

= F
(
a,b;c;

4r
(1+ r)2

) 1
(1+ r)a

F
(

1
2a, 1

2a+ 1
2 ;a−b+1; 4r

(1+r)2

)
F(a,b;a−b+1; 4r

(1+r)2 )
. (4.4)

Observing that if b � a+1
2 , then ( 1

2a+ 1
2 ,n) � (b,n) for all n ∈ {0,1,2, · · ·} . Thus, we

have
( 1

2a,n)( 1
2a+ 1

2 ,n)
(a−b+1,n) ·n!

� (a,n)(b,n)
(a−b+1,n) ·n!

,

and hence for all r ∈ (0,1) one has

F

(
1
2
a,

1
2
a+

1
2
;a−b+1;

4r
(1+ r)2

)
� F(a,b;a−b+1;

4r
(1+ r)2 ). (4.5)

From (4.4) and (4.5), a simple substitution yields (2.6).
(2). Secondly, we prove (2.7) is valid. If a− b + 1 � c , then the sequence

{βn}n�0 is decreasing, and applying Lemma 3.1 the function V (x) is decreasing. That
is, for each 0 < x < y < 1, we have V (x) > V (y) . Now choosing x = x(r) = r and
y = y(r) = 4r

(1+r)2 , we get that

F(a,b;c;r)
F(a,b;a−b+1;r)

�
F(a,b;c; 4r

(1+r)2 )

F(a,b;a−b+1; 4r
(1+r)2 )

. (4.6)

By (2.5) and (4.6), and further using (3.1), we have

F(a,b;c;r) � F
(
a,b;c;

4r
(1+ r)2

) F(a,b;a−b+1;r)
F(a,b;a−b+1; 4r

(1+r)2 )

= F
(
a,b;c;

4r
(1+ r)2

) 1
(1+ r)a

F
(

1
2a, 1

2a+ 1
2 ;a−b+1; 4r

(1+r)2

)
F(a,b;a−b+1; 4r

(1+r)2 )

= F
(
a,b;c;

4r
(1+ r)2

) 1
(1+ r)a

F
(

1
2a+ 1

2 , 1
2a;a−b+1; 4r

(1+r)2

)
F(a,b;a−b+1; 4r

(1+r)2 )
. (4.7)

Observing that if 2b � a < 1, then ( 1
2a + 1

2 ,n) � (a,n) and ( 1
2a,n) � (b,n) for all

n ∈ {0,1,2, · · ·} . Thus, we have

( 1
2a,n)( 1

2a+ 1
2 ,n)

(a−b+1,n) ·n!
� (a,n)(b,n)

(a−b+1,n) ·n!
,
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and hence for all r ∈ (0,1) one has

F

(
1
2
a,

1
2
a+

1
2
;a−b+1;

4r
(1+ r)2

)
� F

(
a,b;a−b+1;

4r
(1+ r)2

)
. (4.8)

From (4.7) and (4.8), it yields (2.7). So the proof is complete. �

Proof of Theorem 2.4. Suppose z = 4r
(1+r)2 . Then

1− z =
(

1− r
1+ r

)
;

dz
dr

=
4(1− r)
(1+ r)3 .

Hence

(1− r)J′(r) = (1− r)F(a,b;c;r)+ (1− r2)
dF(a,b;c;r)

dr
− 4(1− r)2

(1+ r)3

dF(a,b;c;z)
dz

= (1− r)F(a,b;c;r)+ (1− r2)
dF(a,b;c;r)

dr
− 4(1− z)

1+ r
dF(a,b;c;z)

dz
= (1− r)F(a,b;c;r)

+ (1+ r)
[
(c−a)(c−b)

c
F(a,b;c+1;r)− (c−a−b)F(a,b;c;r)

]
− 4

1+ r

[
(c−a)(c−b)

c
F(a,b;c+1;z)− (c−a−b)F(a,b;c;z)

]
= (1− r)F(r)+ (1+ r)

[
(c−a)(c−b)

c
G(r)− (c−a−b)F(r)

]
− 4

1+ r

[
(c−a)(c−b)

c
G(z)− (c−a−b)F(z)

]
. (4.9)

On the other hand, differentiating for (1.3) with respect to r , we get

4
3
· G̃(z)
1+ r

= (1− r)F̃(r)+
1+ r

3
G̃(r). (4.10)

Firstly, we prove J(r) is monotone decreasing on D .

By Lemma 3.3 (1), for (a,b,c) ∈ D2 and 0 < r < z < 1, then g(r) < g(z) , and

G(z) � G(r)

G̃(r)
G̃(z).
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This, together with (4.9) for c � min{a,b} and using (4.10), it yields that

(1− r)J′(r) < (1− r)F(r)+ (1+ r)
[
(c−a)(c−b)

c
G(r)− (c−a−b)F(r)

]
− 4

1+ r

[
(c−a)(c−b)

c
G(r)

G̃(r)
G̃(z)− (c−a−b)F(z)

]

= (1− r)F(r)+ (1+ r)
[
(c−a)(c−b)

c
G(r)− (c−a−b)F(r)

]
−3(c−a)(c−b)

c

[
(1−r)

F̃(r)

G̃(r)
G(r)+

1+r
3

G(r)

]
+

4
1+r

(c−a−b)F(z)

= (1− r)

[
F(r)− 3(c−a)(c−b)

c
F̃(r)

G̃(r)
G(r)

]

+
[

4
1+ r

F(z)− (1− r)F(r)
]
(c−a−b). (4.11)

Since

F ′(r)
F̃ ′(r)

=
(c−a)(c−b)

c G(r)− (c−a−b)F(r)
1
3 G̃(r)

=
3(c−a)(c−b)

c
G(r)

G̃(r)
−3(c−a−b)

F(r)

G̃(r)
.

Then

3(c−a)(c−b)
c

G(r)

G̃(r)
=

F ′(r)
F̃ ′(r)

+3(c−a−b)
F(r)

G̃(r)
. (4.12)

By (4.11) and (4.12), it yields that

J′(r) <

[
F(r)−F ′(r)

F̃ ′(r)
F̃(r)

]
−3(c−a−b)

F(r)

G̃(r)
+
[

4
1+r

F(z)−(1+r)F(r)
]

(c−a−b)
1−r

=
[
F(r)−F ′(r)

F̃ ′(r)
F̃(r)

]
+

(c−a−b)
1−r

[
4

1+r
F(z)−(1+r)F(r)−3(1−r)

F(r)

G̃(r)

]
.

(4.13)

Since

G̃(r) > lim
r→0+

G̃(r) = 1, (4.14)

and c � a+b , then

J′(r) <

[
F(r)− F ′(r)

F̃ ′(r)
F̃(r)

]
+

(c−a−b)
1− r

[
4

1+ r
F(z)− (1+ r)F(r)−3(1− r)F(r)

]
=
[
F(r)− F ′(r)

F̃ ′(r)
F̃(r)

]
+

(c−a−b)
1− r

[
4

1+ r
F(z)− (4−2r)F(r)

]

=
(F(r))2

F̃ ′(r)

(
F̃(r)
F(r)

)′
+

(c−a−b)
1− r

[
4

1+ r
F(z)− (4−2r)F(r)

]
. (4.15)
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On the other hand, by (a,b,c) ∈ D4 ∩{(a,b,c)|a,b,c > 0} , and using Lemma 3.3 (2)

and (3.1), then
(

F̃(r)
F(r)

)′
� 0, and

(c−a−b)
1− r

[
4

1+ r
F(z)− (4−2r)F(r)

]
� (c−a−b)

1− r
2rF(r) � 0.

Therefore, we have J′(r) < 0.

In summary, for (a,b,c) ∈ D2∩D4∩{(a,b,c)|a,b,c > 0} and c � min{a,b} , we
have J′(r) < 0.

Secondly, we show that J(r) is monotone increasing on D .

By Lemma 3.3 (1), for (a,b,c) ∈ D1 and 0 < r < z < 1, then g(r) > g(z) , and

G(z) � G(r)

G̃(r)
G̃(z).

This, together with (4.9) and using (4.10), it yields that

(1− r)J′(r) > (1− r)F(r)+ (1+ r)
[
(c−a)(c−b)

c
G(r)− (c−a−b)F(r)

]
− 4

1+ r

[
(c−a)(c−b)

c
G(r)

G̃(r)
G̃(z)− (c−a−b)F(z)

]

= (1− r)F(r)+ (1+ r)
[
(c−a)(c−b)

c
G(r)− (c−a−b)F(r)

]
−3(c−a)(c−b)

c

[
(1−r)

F̃(r)

G̃(r)
G(r)+

1+r
3

G(r)

]
+

4
1+r

(c−a−b)F(z)

= (1− r)

[
F(r)− 3(c−a)(c−b)

c
F̃(r)

G̃(r)
G(r)

]

+
[

4
1+ r

F(z)− (1− r)F(r)
]
(c−a−b). (4.16)

By (4.12), (4.16) and (4.14), and c � a+b , it yields that

J′(r) >

[
F(r)−F ′(r)

F̃ ′(r)
F̃(r)

]
−3(c−a−b)

F(r)

G̃(r)
+
[

4
1+r

F(z)−(1+r)F(r)
]

(c−a−b)
1−r

=
[
F(r)− F ′(r)

F̃ ′(r)
F̃(r)

]
+

(c−a−b)
1− r

[
4

1+ r
F(z)− (1+ r)F(r)−3(1− r)

F(r)

G̃(r)

]
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>

[
F(r)− F ′(r)

F̃ ′(r)
F̃(r)

]
+

(c−a−b)
1− r

[
4

1+ r
F(z)− (1+ r)F(r)−3(1− r)F(r)

]
(4.17)

=
(F(r))2

F̃ ′(r)

(
F̃(r)
F(r)

)′
+

(c−a−b)
1− r

[
4

1+ r
F(z)− (4−2r)F(r)

]
. (4.18)

Hence, for (a,b,c) ∈ D1 ∩D3 ∩ {(a,b,c)|a,b,c > 0} and and c = a + b , and using
Lemma 3.3 (2), we have J′(r) > 0.

In conclusion, for (a,b,c) ∈ D1 ∩D3 ∩ {(a,b,c)|a,b,c > 0} and c = a+ b , we
have J′(r) > 0. �
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[20] Á. BARICZ, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics 2010, pp.
71–186.

(Received October 22, 2015) Wen Wang
School of Mathematics and Statistics

Hefei Normal University
Hefei 230601, P. R. China

and
School of mathematical Science

University of Science and Technology of China
Hefei 230026, China

e-mail: wenwang1985@163.com,

wwen2014@mail.ustc.edu.cn

Juanjuan Pan
School of Mathematics and Physics

Anhui Xinhua University
Hefei 230088, P. R. China

e-mail: panjuanjuan 720@126.com

Shiguo Yang
School of Mathematics and Statistics

Hefei Normal University
Hefei 230601, P. R. China

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


