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NOTE ON A LI–STEVIĆ INTEGRAL–TYPE OPERATOR FROM

MIXED–NORM SPACES TO nTH WEIGHTED SPACES

HAIYING LI AND ZHITAO GUO

(Communicated by S. Stević)

Abstract. The boundedness and compactness of a Li-Stević integral-type operator from mixed-
norm spaces to n th weighted spaces are characterized in this paper.

1. Introduction

Let D denote the unit disk in the complex plane C , H (D) the class of all analytic
functions on D and N the set of natural numbers. A positive continuous function φ on
[0,1) is called normal if there exist two positive numbers a and b with 0 < a < b , and
δ ∈ [0,1) such that (see [9])

φ(r)
(1− r)a is decreasing on [δ ,1), lim

r→1

φ(r)
(1− r)a = 0;

φ(r)
(1− r)b is increasing on [δ ,1), lim

r→1

φ(r)
(1− r)b = ∞.

For p,q∈ (0,∞) and φ normal, the mixed-norm space H(p,q,φ)(D) = H(p,q,φ)
is the space of all functions f ∈ H (D) such that

‖ f‖H(p,q,φ) =
(∫ 1

0
Mp

q ( f ,r)
φ p(r)
1− r

dr

) 1
p

< ∞,

where

Mq( f ,r) =
(

1
2π

∫ 2π

0
| f (reiθ )|qdθ

) 1
q

.

For 1 � p,q < ∞ , H(p,q,φ) is a Banach space equipped with the norm ‖ f‖H(p,q,φ) ,
while for the other vales of p and q , ‖·‖H(p,q,φ) is a quasinorm on H(p,q,φ) , H(p,q,φ)

is a Fréchet space but not a Banach space. Note that if φ(r) = (1− r)
α+1

p , then
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H(p,q,φ) is equivalent to the weighted Bergman space Ap
α(D) = Ap

α defined for 0 <
p < ∞ and α > −1, as the spaces of all f ∈ H (D) such that

‖ f‖p
Ap

α
= (α +1)

∫
D

| f (z)|p(1−|z|2)αdm(z) < ∞,

where dm(z) = 1
π rdrdθ is the normalized Lebesgue area measure on D . We would like

to say that studying various concrete operators from or to mixed-norm spaces attracted
a considerable attention recently (see, e.g., [2, 4, 7, 10, 12, 13, 14, 17, 18, 20, 21].

Let μ(z) = μ(|z|) be a normal function on D . The n th weighted space on D ,

denoted by W
(n)

μ = W
(n)

μ (D) which was introduced by Stević in [16], consists of all
f ∈ H (D) such that

b
W

(n)
μ

( f ) = sup
z∈D

μ(z)| f (n)(z)| < ∞.

For n = 0 the space becomes the weighted-type space H∞
μ (D) in [7, 11, 19, 21], for

n = 1 the Bloch-type space Bμ(D) and for n = 2 the Zygmund-type space Zμ(D) in
[1, 3, 5]. From now on, we will assume that n ∈ N . Set

‖ f‖
W

(n)
μ

=
n−1

∑
j=0

| f ( j)(0)|+b
W

(n)
μ

( f ).

With this norm the n th weighted space becomes a Banach space.
Assume that g : D → C is a holomorphic map, ϕ is an analytic self-map of D .

For f ∈ H (D) , we define a linear operator as follows:
(
Cg

ϕ f
)
(z) =

∫ z

0
f ′(ϕ(ξ ))g(ξ )dξ , z ∈ D.

The operator Cg
ϕ is now usually called the Li-Stević integral-type operator and was in-

troduced in [5, 10] (they called it the generalized composition operator, but it should be
noted that another operator has practically the same name, see, e.g., [6] and references
therein). When g = ϕ ′ , we see that

(
Cg

ϕ f
)
(z) =

∫ z

0
f ′(ϕ(ξ ))ϕ ′(ξ )dξ = f (ϕ(z))− f (ϕ(0)),

since f (ϕ(0)) is a point-evaluation functional, this operator is closely related to com-
position operator. Its n -dimensional extension was introduced in [15]. These one and
n -dimensional operators have been considerably studied so far (see, e.g., [5, 10, 12, 14,
15]). A natural counterpart of the operator was introduced in [11], and later studied,
for example, in [13, 20, 22]. In all above mentioned papers can be found a plenty of
information on integral-type operators and their products with composition operators
between spaces of analytic functions on the unit disk or the unit ball. Motivated by
Stević’s papers [11, 12, 16, 17, 21], here we study the boundedness and compactness of
the Li-Stević integral-type operator from mixed-norm spaces to Stević’s n th weighted
spaces. We have to point out that the results are closely related to the ones in Stević’s
paper [17], but we consider here more generalized mixed norm spaces which can be
found, for example in [2].

Throughout this paper, we use the letter C to denote a positive constant whose
value may vary at each occurrence.
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2. Auxiliary results

In this section we formulate some auxiliary results which will be used in the proofs
of the main results. Lemma 1 can be found in ([11]).

LEMMA 1. Assume 0 < p,q < ∞ , φ is normal and f ∈H(p,q,φ) . Then for every
n ∈ N , there is a positive constant C independent of f such that

| f (n)(z)| � C‖ f‖H(p,q,φ)

φ(|z|)(1−|z|2) 1
q +n

, z ∈ D.

From Lemma 2.4 in [17], we get the following result.

LEMMA 2. Assume a > 0 and a �= 1 ,

Dn =

∣∣∣∣∣∣∣∣∣

a−1 a · · · a+n−2
(a−1)a a(a+1) · · · (a+n−2)(a+n−1)

...
...

...
∏n−1

j=0(a−1+ j) ∏n−1
j=0(a+ j) · · · ∏n−1

j=0(a+n−2+ j)

∣∣∣∣∣∣∣∣∣
.

Then, Dn = ∏n−1
j=0(a−1+ j)∏n−1

j=0 j! .

From Lemma 4 in [19], we can get the following result.

LEMMA 3. Assume n ∈ N , u, f ∈ H (D) and φ is an analytic self-map of D .
Then,

(
Cg

ϕ f
)(n)(z) =

n−1

∑
k=0

f (k+1)(ϕ(z))
n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)
,

where

Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)
= ∑

k1,···,kl

l!
k1!, · · · ,kl!

l

∏
j=1

(
ϕ( j)(z)

j!

)k j

,

and the sum is over all non-negative integers k1, · · · ,kl satisfying k1 + k2 + · · ·+ kl = k
and k1 +2k2 + · · ·+ lkl = l .

The following lemma can be proved by using standard Schwartz’s arguments in
[8].

LEMMA 4. Suppose that g ∈ H (D) , n ∈ N , ϕ is an analytic self-map of D .

Then, Cg
ϕ : H(p,q,φ) → W

(n)
μ is compact if and only if Cg

ϕ : H(p,q,φ) → W
(n)

μ is
bounded and for any bounded sequence ( fi)i∈N in H(p,q,φ) which converges to zero
uniformly on compact subsets of D as i → ∞ , we have ‖Cg

ϕ fi‖W
(n)

μ
→ 0 as i → ∞ .
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3. The boundedness and compactness of Cg
ϕ : H(p,q,φ) → W

(n)
μ

THEOREM 5. Let g ∈ H (D) , n ∈ N , 0 < p,q < ∞ , ϕ is an analytic self-map of

D . Then Cg
ϕ : H(p,q,φ)→W

(n)
μ is bounded if and only if for each k ∈ {0,1, · · · ,n−1} ,

Ik := sup
z∈D

μ(z)
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣
φ(|ϕ(z)|)(1−|ϕ(z)|2) 1

q +k+1
< ∞. (1)

Proof. Assume that (1) holds, then for each f ∈ H(p,q,φ) , by Lemmas 1 and 3,
we have

μ(z)
∣∣(Cg

ϕ f )(n)(z)
∣∣

= μ(z)
∣∣∣∣
n−1

∑
k=0

f (k+1)(ϕ(z))
n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣∣∣
� μ(z)

n−1

∑
k=0

∣∣ f (k+1)(ϕ(z))
∣∣∣∣∣∣

n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣∣∣
� C‖ f‖H(p,q,φ)

n−1

∑
k=0

μ(z)
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣
φ(|ϕ(z)|)(1−|ϕ(z)|2) 1

q+k+1
. (2)

We also have that for each s ∈ {1, · · · ,n−1}∣∣(Cg
ϕ f )(s)(0)

∣∣
=

∣∣∣∣
s−1

∑
k=0

f (k+1)(ϕ(z))
s−1

∑
l=k

Cl
s−1g

(s−1−l)(0)Bl,k
(
ϕ ′(0), · · · ,ϕ(l−k+1)(0)

)∣∣∣∣
� C‖ f‖H(p,q,φ)

s−1

∑
k=0

∣∣∑s−1
l=k Cl

s−1g
(s−1−l)(0)Bl,k

(
ϕ ′(0), · · · ,ϕ(l−k+1)(0)

)∣∣
φ(|ϕ(0)|)(1−|ϕ(0)|2) 1

q+k+1
, (3)

and

∣∣(Cg
ϕ f )(0)

∣∣ =
∫ 0

0
f ′(ϕ(ξ ))g(ξ )dξ = 0. (4)

From (1), (2), (3) and (4), we see that Cg
ϕ : H(p,q,φ) → W

(n)
μ is bounded.

Conversely, suppose that Cg
ϕ : H(p,q,φ) → W

(n)
μ is bounded, i.e., there exists

C > 0 such that ‖Cg
ϕ f‖

W
(n)

μ
� C‖ f‖H(p,q,φ) for all f ∈ H(p,q,φ) . For a fixed ω ∈ D ,

set

hω(z) =
(1−|ω |2)b

φ(|ω |)
n

∑
j=1

c j(1−|ω |2) j

(1−ωz)
1
q +b+ j

, (5)

where the constant b is from the definition of the normality of the function φ and
c j( j = 1,2, · · · ,n) are fixed. Then we know that hω(z) ∈ H(p,q,φ) , and moreover,
supω∈D ‖hω‖H(p,q,φ) � C (see [2]).
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Now we show that for each s∈ {1,2, · · · ,n} , there are constants c1,c2, · · · ,cn such
that

h(s)
ω (ω) =

ωs

φ(|ω |)(1−|ω |2) 1
q +s

, h(t)
ω (ω) = 0, t ∈ {1,2, · · · ,n}\{s}. (6)

In fact, by differentiating function hω , for each s ∈ {1,2, · · · ,n} , (6) is equivalent to
the following system of liner equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
q +b+1)c1 +( 1

q +b+2)c2 + · · ·+( 1
q +b+n)cn = 0,

( 1
q +b+1)( 1

q +b+2)c1 +( 1
q +b+2)( 1

q +b+3)c2 + · · ·
+( 1

q +b+n)( 1
q +b+n+1)cn = 0,

· · · · · ·
∏s

j=1(
1
q +b+ j)c1 + ∏s+1

j=2(
1
q +b+ j)c2 + · · ·+ ∏n+s−1

j=n ( 1
q +b+ j)cn = 1,

· · · · · ·
∏n

j=1(
1
q +b+ j)c1 + ∏n+1

j=2(
1
q +b+ j)c2 + · · ·+ ∏2n−1

j=n ( 1
q +b+ j)cn = 0.

(7)

Applying Lemma 2 with a = 1
q + b + 2, we see that the determinant of system

(7) is different from zero, as claimed. For each k ∈ {0,1, · · · ,n− 1} , we choose the
corresponding family of function that satisfy (6) with s = k+1 and denote it by hω,k .

Then, from Lemma 3 and the boundedness of Cg
ϕ : H(p,q,φ)→ W

(n)
μ , for ω ∈ D such

that |ϕ(ω)| > 1
2 ,

μ(ω)|ϕ(ω)|k+1
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(ω)Bl,k
(
ϕ ′(ω), · · · ,ϕ(l−k+1)(ω)

)∣∣
φ(|ϕ(ω)|)(1−|ϕ(ω)|2) 1

q +k+1

� C sup
ω∈D

∥∥Cg
ϕ(hϕ(ω),k)

∥∥
W

(n)
μ

� C
∥∥Cg

ϕ
∥∥

H(p,q,φ)→W
(n)

μ
. (8)

From (8), it follows that for each k ∈ {0,1, · · · ,n−1} ,

sup
|ϕ(z)|> 1

2

μ(z)
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣
φ(|ϕ(z)|)(1−|ϕ(z)|2) 1

q +k+1
�C

∥∥Cg
ϕ
∥∥

H(p,q,φ)→W
(n)

μ
.

(9)
Let

pk(z) = zk+1, k = 0,1, · · · ,n−1. (10)

Then clearly ‖pk‖H(p,q,φ) < ∞ . By applying Lemma 3 to p0(z) = z , we get

(
Cg

ϕ p0
)(n)(z) = p′0(ϕ(z))

n−1

∑
l=0

Cl
n−1g

(n−1−l)(z)Bl,0
(
ϕ ′(z), · · · ,ϕ(l+1)(z)

)

=
n−1

∑
l=0

Cl
n−1g

(n−1−l)(z)Bl,0
(
ϕ ′(z), · · · ,ϕ(l+1)(z)

)
,
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which along with the boundedness of Cg
ϕ : H(p,q,φ) → W

(n)
μ implies that

sup
z∈D

μ(z)
∣∣∣∣
n−1

∑
l=0

Cl
n−1g

(n−1−l)(z)Bl,0
(
ϕ ′(z), · · · ,ϕ(l+1)(z)

)∣∣∣∣ � C
∥∥Cg

ϕ
∥∥

H(p,q,φ)→W
(n)

μ
. (11)

Assume now that we have proved the following inequalities

sup
z∈D

μ(z)
∣∣∣∣
n−1

∑
l= j

Cl
n−1g

(n−1−l)(z)Bl, j
(
ϕ ′(z), · · · ,ϕ(l− j+1)(z)

)∣∣∣∣ � C
∥∥Cg

ϕ
∥∥

H(p,q,φ)→W
(n)

μ
.

(12)
for j ∈ {0,1, · · · ,k−1},k � n−1.

Apply Lemma 3 to pk(z) = zk+1,k ∈ {0,1, · · · ,n−1} , we get

(
Cg

ϕ pk
)(n)(z)

=
k−1

∑
j=0

(k+1) · · ·(k− j +1)(ϕ(z))k− j
n−1

∑
l= j

Cl
n−1g

(n−1−l)(z)Bl, j
(
ϕ ′(z), · · · ,ϕ(l− j+1)(z)

)

+(k+1)!
n−1

∑
l= j

Cl
n−1g

(n−1−l)(z)Bl, j
(
ϕ ′(z), · · · ,ϕ(l− j+1)(z)

)
,

from which, along with the boundedness of Cg
ϕ : H(p,q,φ) → W

(n)
μ , the fact that

‖ϕ‖∞ � 1, the triangle inequality, and using hypothesis (12) we get

sup
z∈D

μ(z)
∣∣∣∣
n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣∣∣ � C
∥∥Cg

ϕ
∥∥

H(p,q,φ)→W
(n)

μ
.

(13)
for each k ∈ {0,1, · · · ,n−1} . Then for each k ∈ {0,1, · · · ,n−1}

sup
|ϕ(z)|� 1

2

μ(z)
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣
φ(|ϕ(z)|)(1−|ϕ(z)|2) 1

q +k+1

� C sup
z∈D

μ(z)
∣∣∣∣
n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣∣∣
� C

∥∥Cg
ϕ
∥∥

H(p,q,φ)→W
(n)

μ
. (14)

From (9) and (14), we get (1). �

THEOREM 6. Let g ∈ H (D) , n ∈ N , 0 < p,q < ∞ , and ϕ be an analytic self-

map of D . Then Cg
ϕ : H(p,q,φ) → W

(n)
μ is compact if and only if Cg

ϕ : H(p,q,φ) →
W

(n)
μ is bounded and for each k ∈ {0,1, · · · ,n−1} ,

lim
|ϕ(z)|→1

μ(z)
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣
φ(|ϕ(z)|)(1−|ϕ(z)|2) 1

q +k+1
= 0. (15)
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Proof. Suppose that Cg
ϕ : H(p,q,φ)→W

(n)
μ is compact, then clearly Cg

ϕ : H(p,q,φ)

→ W
(n)

μ is bounded. Let (zi)i∈N be a sequence in D such that |ϕ(zi)| → 1 as i → ∞ .
If such a sequence does not exist, then the conditions in (15) automatically hold.

Let hϕ(zi),k,k∈{0,1, · · · ,n−1} be as in Theorem5. Then the sequence (hϕ(zi),k)i∈N

is bounded and hϕ(zi),k → 0 uniformly on compact subsets of D as i → ∞ . Since Cg
ϕ :

H(p,q,φ)→ W
(n)

μ is compact, from Lemma 4, we have that for each k ∈ {0,1, · · · ,n−
1} ,

lim
i→∞

‖Cg
ϕhϕ(zi),k‖W

(n)
μ

= 0. (16)

From (8) we obtain

‖Cg
ϕhϕ(zi),k‖W

(n)
μ

�
Cμ(zi)|ϕ(zi)|k+1

∣∣∑n−1
l=k Cl

n−1g
(n−1−l)(zi)Bl,k

(
ϕ ′(zi), · · · ,ϕ(l−k+1)(zi)

)∣∣
φ(|ϕ(zi)|)(1−|ϕ(zi)|2)

1
q +k+1

,

which along with |ϕ(zi)| → 1 as i → ∞ and (16) implies that

lim
i→∞

μ(zi)
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(zi)Bl,k
(
ϕ ′(zi), · · · ,ϕ(l−k+1)(zi)

)∣∣
φ(|ϕ(zi)|)(1−|ϕ(zi)|2)

1
q+k+1

= 0,

for each k ∈ {0,1, · · · ,n−1} , from which (15) holds in this case.

On the other hand, we assume that Cg
ϕ : H(p,q,φ) → W

(n)
μ is bounded and (15)

holds. Let ( fi)i∈N be a sequence in H(p,q,φ) such that supi∈N ‖ fi‖H(p,q,φ) � L and fi
converges to 0 uniformly on compact subsets of D as i→∞ . By the assumption, for any
ε > 0, there is a δ ∈ (0,1) such that for each k ∈ {0,1, · · · ,n−1} and δ < |ϕ(z)| < 1,

μ(z)
∣∣∑n−1

l=k Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣
φ(|ϕ(z)|)(1−|ϕ(z)|2) 1

q +k+1
< ε. (17)

We have

‖Cg
ϕ fi‖W

(n)
μ

=
n−1

∑
j=0

|(Cg
ϕ fi)( j)(0)|+ sup

z∈D

μ(z)|(Cg
ϕ fi)(n)(z)|

�
n−1

∑
j=0

∣∣∣∣
j−1

∑
k=0

f (k+1)
i (ϕ(0))

j−1

∑
l=k

Cl
j−1g

( j−1−l)(0)Bl,k
(
ϕ ′(0), · · · ,ϕ(l−k+1)(0)

)∣∣∣∣

+ sup
|ϕ(z)|�δ

μ(z)
∣∣∣∣
n−1

∑
k=0

f (k+1)
i (ϕ(z))

n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(0)

)∣∣∣∣
+ sup

|ϕ(z)|>δ
μ(z)

∣∣∣∣
n−1

∑
k=0

f (k+1)
i (ϕ(z))

n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(0)

)∣∣∣∣
= J1 + J2 + J3.
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Now we estimate J1 , J2 and J3 , by Cauchy’s estimate we see that

f (k+1)
i (ϕ(0)) → 0 and sup

|ω|�δ
| f (k+1)

i (ω)| → 0. (18)

From (18) and (13) in Theorem 5, we can easily get that

J1 =
n−1

∑
j=0

∣∣∣∣
j−1

∑
k=0

f (k+1)
i (ϕ(0))

j−1

∑
l=k

Cl
j−1g

( j−1−l)(0)Bl,k
(
ϕ ′(0), · · · ,ϕ(l−k+1)(0)

)∣∣∣∣ → 0,

(19)
and

J2 = sup
|ϕ(z)|�δ

μ(z)

×
∣∣∣∣
n−1

∑
k=0

f (k+1)
i (ϕ(z))

n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(0)

)∣∣∣∣ → 0. (20)

By Lemma 1 and (17), we have that

J3 = sup
|ϕ(z)|>δ

μ(z)

×
∣∣∣∣
n−1

∑
k=0

f (k+1)
i (ϕ(z))

n−1

∑
l=k

Cl
n−1g

(n−1−l)(z)Bl,k
(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)∣∣∣∣
� C‖ fi‖H(p,q,φ)

×
n−1

∑
k=0

sup
|ϕ(z)|>δ

μ(z)|∑n−1
l=k Cl

n−1g
(n−1−l)(z)Bl,k

(
ϕ ′(z), · · · ,ϕ(l−k+1)(z)

)|
φ(|ϕ(z)|)(1−|ϕ(z)|2) 1

q +k+1

< CnLε. (21)

From (19), (20) and (21) we obtain limi→∞ ‖Cg
ϕ fi‖W

(n)
μ

= 0. From this and applying

Lemma 4 the implication follows. �
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[19] S. STEVIĆ, Weighted differentiation composition operators from H∞ and Bloch spaces to n th

weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (12) (2010), 3634–3641.
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