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Abstract. Using the fixed point method, we prove the Hyers-Ulam stability of the following
additive functional inequality and quadratic functional inequality

‖ f (x+ y)− f (x)− f (y)‖ �
∥∥ f

( x+ y
2

)− 1
2

f (x)− 1
2

f (y)
∥∥,

‖ f (x+ y)+ f (x− y)−2 f (x)−2 f (y)‖

�
∥∥ f

( x+ y
2

)
+ f

( x− y
2

)− 1
2

f (x)− 1
2

f (y)
∥∥

in matrix Banach spaces, respectively.

1. Introduction and preliminaries

In 1940, Ulam [20] posed the first stability problem concerning group homomor-
phisms. In the next year, Hyers [7] gave the first affirmative partial answer to the ques-
tion of Ulam for Banach spaces. Hyers’ result was generalized by Aoki [1] for additive
mappings and by Rassias [18] for linear mappings. Găvruta [6] obtained generalized
Rassias’ result which allows the Cauchy difference to be controlled by a general un-
bounded function in the spirit of Rassias’ approach.

Gilányi [4] and Rätz [19] proved that if, for a function f : G → E mapping from
Abelian group G divisible by 2 into an inner product space E , the functional inequality

‖2 f (x)+2 f (y)− f (xy−1)‖ � ‖ f (xy)‖, ∀x,y ∈ G (1.1)

holds, then f satisfies the Jordan-Von Neumann functional equation

2 f (x)+2 f (y) = f (xy)+ f (xy−1), ∀x,y ∈ G.

Fechner [3] and Gilányi [5] have proved the generalized Hyers-Ulam stability of the
functional inequality (1.1). Park et. al. [14] have investigated the generalized Hyers-
Ulam stability of the following inequalities associated with Jordon-Von Neumann type
additive functional equations:

‖ f (x)+ f (y)+ f (z)‖ �
∥∥∥2 f

(x+ y+ z
2

)∥∥∥,

‖ f (x)+ f (y)+ f (z)‖ � ‖ f (x+ y+ z)‖,
‖ f (x)+ f (y)+2 f (z)‖ �

∥∥∥2 f
(x+ y

2
+ z

)∥∥∥.
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In 2013, Kim, Jun and Son [10] considered the following quadratic functional inequality

‖ f (x− y)+ f (y− z)+ f (x− z)−3 f (x)−3 f (y)−3 f (z)‖
� ‖ f (x+ y+ z)‖. (1.2)

They established the general solution of the quadratic functional inequality (1.2), and
then investigated the generalized Hyers-Ulam stability of this inequality in Banach
spaces and in non-ArchimedeanBanach spaces. Recently, the stability results of several
functional equations and inequalities were investigated [11, 12, 15, 16, 17] in matrix
normed spaces, matrix paranormed spaces and matrix fuzzy normed spaces.

In 2015, Park [13] considered the following functional inequalities:

‖ f (x+ y)− f (x)− f (y)‖ �
∥∥∥ f

( x+ y
2

)
− 1

2
f (x)− 1

2
f (y)

∥∥∥, (1.3)

‖ f (x+ y)+ f (x− y)−2 f (x)−2 f (y)‖
�

∥∥∥ f
(x+ y

2

)
+ f

(x− y
2

)
− 1

2
f (x)− 1

2
f (y)

∥∥∥. (1.4)

Using the direct method, he proved Hyers-Ulam stability of the functional inequalities
(1.3) and (1.4) in Banach spaces. The main purpose of this paper is to apply the fixed
point method to investigate the Hyers-Ulam stability of functional inequalities (1.3) and
(1.4) in matrix Banach spaces, respectively.

Next, we will also use the following notations:
The set of all m× n -matrices in X will be denoted by Mm,n(X) . When m =

n , the matrix Mm,n(X) will be written as Mn(X) . The symbols e j ∈ M1,n(C) will
denote the row vector whose j th component is 1 and the other components are 0.
Similarly, Ei j ∈ Mn(C) will denote the n×n matrix whose (i, j)-component is 1 and
the other components are 0. The n× n matrix whose (i, j)-component is x and the
other components are 0 will be denoted by Ei j ⊗ x ∈ Mn(X) .

For x ∈ Mn(X) , y ∈ Mk(X) ,

x⊕ y =
(

x 0
0 y

)
.

Let (X ,‖·‖) be a normed space. Note that (X ,{‖·‖n}) is a matrix normed space if
and only if (Mn(X),‖ ·‖n) is a normed space for each positive integer n and ‖AxB‖k �
‖A‖‖B‖‖x‖n holds for A∈Mk,n , x = [xi j]∈Mn(X) and B∈Mn,k . And that (X ,{‖·‖n})
is a matrix Banach space if and only if X is a Banach space and (X ,{‖·‖n}) is a matrix
normed space.

A matrix normed space (X ,‖ · ‖n) is called an L∞ -matrix normed space if ‖x⊕
y‖n+k = max{‖x‖n,‖y‖k} holds for all x ∈ Mn(X) and all y ∈ Mk(X) .

Let E,F be vector spaces. For a given mapping h : E → F and a given positive
integer n , define hn : Mn(E) → Mn(F) by

hn([xi j]) = [h(xi j)]

for all [xi j] ∈ Mn(E) .
Let S be a set. A function d : S×S → [0,∞] is called a generalized metric on S if

d satisfies
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(1) d(x,y) = 0 if and only if x = y ;
(2) d(x,y) = d(y,x), ∀x,y ∈ S ;
(3) d(x,z) � d(x,y)+d(y,z), ∀x,y,z ∈ S .

LEMMA 1.1. (cf. [2]) Let (S,d) be a complete generalized metric space and
J : S → S be a strictly contractive mapping with Lipschitz constant L < 1 . Then for
each fixed element x ∈ S , either

d(Jnx,Jn+1x) = ∞ ∀n � 0,

or
d(Jnx,Jn+1x) < ∞ ∀n � n0,

for some natural number n0 . Moreover, if the second alternative holds then:
(i) The sequence {Jnx} is convergent to a fixed point y∗ of J ;
(ii) y∗ is the unique fixed point of J in the set S∗ := {y ∈ S | d(Jn0x,y) < +∞}

and d(y,y∗) � 1
1−Ld(y,Jy), ∀x,y ∈ S∗ .

Throughout this paper, let (X ,{‖ ·‖n}) be a matrix normed space and (Y,{‖ ·‖n})
a matrix Banach space.

2. Hyers-Ulam stability of the functional inequality (1.3) in matrix Banach spaces

In this section, we prove the Hyers-Ulam stability of the additive functional in-
equality (1.3) in matrix Banach spaces by using the fixed point method. We need the
following Lemmas:

LEMMA 2.1. (cf. [11, 12, 15, 16]) Let (X ,{‖ · ‖n}) be a matrix normed space.
Then

(1) ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X ;

(2) ‖xkl‖ � ‖[xi j]‖n �
n
∑

i, j=1
‖xi j‖ for [xi j] ∈ Mn(X);

(3) lim
n→∞

xn = x if and only if lim
n→∞

xi jn = xi j for xn = [xi jn] , x = [xi j] ∈ Mk(X) .

LEMMA 2.2. (cf. [13]) A mapping f : X → Y satisfies

‖ f (a+b)− f (a)− f (b)‖�
∥∥∥ f

(a+b
2

)
− 1

2
f (a)− 1

2
f (b)

∥∥∥
for all a,b ∈ X if and only if f : X → Y is additive.

THEOREM 2.1. Let ϕ : X2 → [0,∞) be a function such that there exists an α < 1
with

ϕ(a,b) � 2αϕ
(a

2
,
b
2

)
(2.1)
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for all a,b ∈ X . Suppose that f : X → Y is a mapping satisfying

‖ fn([xi j]+[yi j])− fn([xi j])− fn([yi j])‖n

�
∥∥∥ fn

( [xi j]+ [yi j]
2

)
− 1

2
fn([xi j])− 1

2
fn([yi j])

∥∥∥
n
+

n

∑
i, j=1

ϕ(xi j,yi j) (2.2)

for all x = [xi j] , y = [yi j] ∈ Mn(X) . Then there exists a unique additive mapping A :
X → Y such that

‖ fn([xi j])−An([xi j])‖n �
n

∑
i, j=1

1
2(1−α)

ϕ(xi j,xi j) (2.3)

for all x = [xi j] ∈ Mn(X) .

Proof. When n = 1, (2.2) is equivalent to

‖ f (a+b)− f (a)− f (b)‖�
∥∥∥ f

(a+b
2

)
− 1

2
f (a)− 1

2
f (b)

∥∥∥+ ϕ(a,b) (2.4)

for all a,b ∈ X . Letting b = a in (2.4), we get

‖ f (2a)−2 f (a)‖� ϕ(a,a) (2.5)

for all a ∈ X . So

‖ f (a)− 1
2

f (2a)‖ � 1
2

ϕ(a,a) (2.6)

for all a ∈ X .
Let S1 := {g1 : X → Y} , and introduce a generalized metric d1 on S1 as follows:

d1(g1,h1) := inf

{
λ ∈ R+

∣∣∣∣‖g1(a)−h1(a)‖ � λ ϕ(a,a),∀a ∈ X

}
.

It is easy to prove that (S1,d1) is a complete generalized metric space [8, 9].
Now we consider the mapping J1 : S1 → S1 defined by

J1g1(a) :=
1
2
g1(2a), for all g1 ∈ S1 and a ∈ X . (2.7)

Let g1,h1 ∈ S1 and let λ ∈R+ be an arbitrary constant with d1(g1,h1) � λ . From
the definition of d1 , we get

‖g1(a)−h1(a)‖ � λ ϕ(a,a)

for all a ∈ X . Therefore, using (2.1), we get

‖J1g1(a)−J1h1(a)‖ =
∥∥∥1

2
g1(2a)− 1

2
h1(2a)

∥∥∥ � λ
2

ϕ(2a,2a) � αλ ϕ(a,a) (2.8)

for some α < 1 and for all a ∈ X . Hence, it holds that d1(J1g1,J1h1) � αλ , that is,
d1(J1g1,J1h1) � αd1(g1,h1) for all g1,h1 ∈ S1 .

It follows from (2.6) that d1( f ,J1 f ) � 1
2 . Therefore according to Lemma 1.1,

the sequence J n
1 f converges to a fixed point A of J1 , that is,

A : X → Y, lim
n→∞

1
2n f (2na) = A(a)
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for all a ∈ X , and

A(2a) = 2A(a) (2.9)

for all a ∈ X . Also A is the unique fixed point of J1 in the set S∗1 = {g1 ∈ S1 :
d1( f ,g1) < ∞} . This implies that A is a unique mapping satisfying (2.9) such that
there exists a λ ∈ R+ such that

‖ f (a)−A(a)‖� λ ϕ(a,a)

for all a ∈ X . Also,

d1( f ,A) � 1
1−α

d1( f ,J1 f ) � 1
2(1−α)

.

So

‖ f (a)−A(a)‖ � 1
2(1−α)

ϕ(a,a) (2.10)

for all a ∈ X .
It follows from (2.1) and (2.4) that

lim
l→∞

1
2l ‖ f (2l(a+b))− f (2la)− f (2lb)‖

� lim
l→∞

(
1
2l ‖ f

(2l(a+b)
2

)
− 1

2
f (2la)− 1

2
f (2lb)‖+

1
2l ϕ(2la,2lb)

)
(2.11)

for all a,b ∈ X . By (2.11), we get

‖A(a+b)−A(a)−A(b)‖�
∥∥∥A

(a+b
2

)
− 1

2
A(a)− 1

2
A(b)

∥∥∥
for all a,b ∈ X . By Lemma 2.2, the mapping A : X → Y is additive.

By Lemma 2.1 and (2.10),

‖ fn([xi j])−An([xi j])‖n �
n

∑
i, j=1

‖ f (xi j)−A(xi j)‖ �
n

∑
i, j=1

1
2(1−α)

ϕ(xi j,xi j)

for all x = [xi j]∈Mn(X) . Thus A : X →Y is a unique additive mapping satisfying (2.3),
as desired. This completes the proof of the theorem. �

COROLLARY 2.1. Let r,θ be positive real numbers with r < 1 . Suppose that
f : X → Y is a mapping satisfying

‖ fn([xi j]+ [yi j])− fn([xi j])− fn([yi j])‖n

�
∥∥∥ fn

( [xi j]+ [yi j]
2

)
− 1

2
fn([xi j])− 1

2
fn([yi j])

∥∥∥
n
+

n

∑
i, j=1

θ (‖xi j‖r +‖yi j‖r) (2.12)

for all x = [xi j] , y = [yi j] ∈ Mn(X) . Then there exists a unique additive mapping A :
X → Y such that

‖ fn([xi j])−An([xi j])‖n �
n

∑
i, j=1

2
2−2r θ‖xi j‖r (2.13)

for all x = [xi j] ∈ Mn(X) .
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Proof. The proof follows immediately by taking ϕ(a,b) = θ (‖a‖r +‖b‖r) for all
a,b ∈ X and choosing α = 2r−1 in Theorem 2.1. �

THEOREM 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an α < 1
with

ϕ(a,b) � α
2

ϕ(2a,2b) (2.14)

for all a,b ∈ X . Suppose that f : X → Y is a mapping satisfying (2.2) for all x = [xi j] ,
y = [yi j] ∈ Mn(X) . Then there exists a unique additive mapping A : X → Y such that

‖ fn([xi j])−An([xi j])‖n �
n

∑
i, j=1

α
2(1−α)

ϕ(xi j,xi j) (2.15)

for all x = [xi j] ∈ Mn(X) .

Proof. Let (S1,d1) be the generalized metric space defined in the proof of Theo-
rem 2.1.

Now we consider the mapping J1 : S1 → S1 defined by

J1g1(a) := 2g1

(a
2

)
, for all g1 ∈ S1 and a ∈ X . (2.16)

It follows from (2.5) that∥∥∥ f (a)−2 f
(a

2

)∥∥∥ � α
2

ϕ(a,a) (2.17)

for all a ∈ X . Thus d1( f ,J1 f ) � α
2 . So

d1( f ,A) � 1
1−α

d1( f ,J1 f ) � α
2(1−α)

.

The rest of the proof is similar to the proof of Theorem 2.1. �

COROLLARY 2.2. Let r,θ be positive real numbers with r > 1 . Suppose that
f : X → Y is a mapping satisfying (2.12) for all x = [xi j] , y = [yi j] ∈ Mn(X) . Then
there exists a unique additive mapping A : X → Y such that

‖ fn([xi j])−An([xi j])‖n �
n

∑
i, j=1

2
2r −2

θ‖xi j‖r (2.18)

for all x = [xi j] ∈ Mn(X) .

Proof. By choosing ϕ(a,b) = θ (‖a‖r + ‖b‖r) for all a,b ∈ X and α = 21−r in
Theorem 2.2, we obtain the inequality (2.18). �
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3. Hyers-Ulam stability of the functional inequality (1.4) in matrix Banach spaces

In this section, we prove the Hyers-Ulam stability of the quadratic functional in-
equality (1.4) in matrix Banach spaces by using the fixed point method.

We need the following result.

LEMMA 3.1. (cf. [13]) A mapping f : X → Y satisfies

‖ f (a+b)+ f (a−b)−2 f (a)−2 f (b)‖�
∥∥∥ f

(a+b
2

)
+ f

(a−b
2

)
− 1

2
f (a)− 1

2
f (b)

∥∥∥
for all a,b ∈ X if and only if f : X → Y is quadratic.

THEOREM 3.1. Let φ : X2 → [0,∞) be a function with φ(0,0) = 0 such that there
exists an α < 1 with

φ(a,b) � 4αφ
(a

2
,
b
2

)
(3.1)

for all a,b ∈ X . Suppose that f : X → Y is a mapping satisfying

‖ fn([xi j]+[yi j])+ fn([xi j]− [yi j])−2 fn([xi j])−2 fn([yi j])‖n

�
∥∥∥ fn

( [xi j]+ [yi j]
2

)
+ fn

( [xi j]− [yi j]
2

)
− 1

2
fn([xi j])− 1

2
fn([yi j])

∥∥∥
n

+
n

∑
i, j=1

φ(xi j,yi j) (3.2)

for all x = [xi j] , y = [yi j] ∈ Mn(X) . Then there exists a unique quadratic mapping
Q : X → Y such that

‖ fn([xi j])−Qn([xi j])‖n �
n

∑
i, j=1

1
4(1−α)

φ(xi j,xi j) (3.3)

for all x = [xi j] ∈ Mn(X) .

Proof. When n = 1, (3.2) is equivalent to

‖ f (a+b)+ f (a−b)−2 f (a)−2 f (b)‖
�

∥∥∥ f
(a+b

2

)
+ f

(a−b
2

)
− 1

2
f (a)− 1

2
f (b)

∥∥∥+ φ(a,b) (3.4)

for all a,b ∈ X . Letting a = b = 0 in (3.4), we get ‖2 f (0)‖ � ‖ f (0)‖ . So f (0) = 0.
Letting b = a in (3.4), we get

‖ f (2a)−4 f (a)‖� φ(a,a) (3.5)

for all a ∈ X . So ∥∥∥ f (a)− 1
4

f (2a)
∥∥∥ � 1

4
φ(a,a) (3.6)

for all a ∈ X .
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Let S2 := {g2 : X → Y} , and introduce a generalized metric d2 on S2 as follows:

d2(g2,h2) := inf

{
μ ∈ R+

∣∣∣∣‖g2(a)−h2(a)‖ � μφ(a,a), ∀a ∈ X

}
.

It is easy to prove that (S2,d2) is a complete generalized metric space [8, 9].
Now we consider the mapping J2 : S2 → S2 defined by

J2g2(a) :=
1
4
g2(2a), for all g2 ∈ S2 and a ∈ X . (3.7)

Let g2,h2 ∈ S2 and let μ ∈R+ be an arbitrary constant with d2(g2,h2) � μ . From
the definition of d2 , we get

‖g2(a)−h2(a)‖ � μφ(a,a)

for all a ∈ X . Therefore, using (3.1), we get

‖J2g2(a)−J2h2(a)‖ =
∥∥∥1

4
g2(2a)− 1

4
h2(2a)

∥∥∥ � μ
4

φ(2a,2a) � αμφ(a,a) (3.8)

for some α < 1 and for all a∈ X . Hence, it holds that d2(J2g2,J2h2) � αμ , that is,
d2(J2g2,J2h2) � αd2(g2,h2) for all g2,h2 ∈ S2 .

It follows from (3.6) that d2( f ,J2 f ) � 1
4 . Therefore according to Lemma 1.1,

the sequence J n
2 f converges to a fixed point Q of J2 , that is,

Q : X → Y, lim
n→∞

1
4n f (2na) = Q(a)

for all a ∈ X , and

Q(2a) = 4Q(a) (3.9)

for all a ∈ X . Also Q is the unique fixed point of J2 in the set S∗2 = {g2 ∈ S2 :
d2( f ,g2) < ∞} . This implies that Q is a unique mapping satisfying (3.9) such that
there exists a μ ∈ R+ such that

‖ f (a)−Q(a)‖� μφ(a,a)

for all a ∈ X . Also,

d2( f ,Q) � 1
1−α

d2( f ,J2 f ) � 1
4(1−α)

.

So

‖ f (a)−Q(a)‖ � 1
4(1−α)

φ(a,a) (3.10)

for all a ∈ X .
It follows from (3.1) and (3.4) that

lim
l→∞

1
4l ‖ f (2l(a+b))+ f (2l(a−b))−2 f (2la)−2 f (2lb)‖

� lim
l→∞

( 1
4l

∥∥∥ f
(2l(a+b)

2

)
+ f

(2l(a−b)
2

)
− 1

2
f
(
2la)− 1

2
f (2lb

)∥∥∥+
1
4l φ(2la,2lb)

)
(3.11)
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for all a,b ∈ X . By (3.11), we get

‖Q(a+b)+Q(a−b)−2Q(a)−2Q(b)‖
�

∥∥∥Q
(a+b

2

)
+Q

(a−b
2

)
− 1

2
Q(a)− 1

2
Q(b)

∥∥∥
for all a,b ∈ X . By Lemma 3.1, the mapping Q : X → Y is quadratic.

By Lemma 2.1 and (3.10),

‖ fn([xi j])−Qn([xi j])‖n �
n

∑
i, j=1

‖ f (xi j)−Q(xi j)‖ �
n

∑
i, j=1

1
4(1−α)

φ(xi j,xi j)

for all x = [xi j] ∈ Mn(X) . Thus Q : X → Y is a unique quadratic mapping satisfying
(3.3), as desired. This completes the proof of the theorem. �

COROLLARY 3.1. Let r,θ be positive real numbers with r < 2 . Suppose that
f : X → Y is a mapping satisfying

‖ fn([xi j]+[yi j])+ fn([xi j]− [yi j])−2 fn([xi j])−2 fn([yi j])‖n

�
∥∥∥ fn

( [xi j]+ [yi j]
2

)
+ fn

( [xi j]− [yi j]
2

)
− 1

2
fn([xi j])− 1

2
fn([yi j])

∥∥∥
n

+
n

∑
i, j=1

θ (‖xi j‖r +‖yi j‖r) (3.12)

for all x = [xi j] , y = [yi j] ∈ Mn(X) . Then there exists a unique quadratic mapping
Q : X → Y such that

‖ fn([xi j])−Qn([xi j])‖n �
n

∑
i, j=1

2
4−2r θ‖xi j‖r (3.13)

for all x = [xi j] ∈ Mn(X) .

Proof. The proof follows immediately by taking φ(a,b) = θ (‖a‖r +‖b‖r) for all
a,b ∈ X and choosing α = 2r−2 in Theorem 3.1. �

THEOREM 3.2. Let φ : X2 → [0,∞) be a function with φ(0,0) = 0 such that there
exists an α < 1 with

φ(a,b) � α
4

φ(2a,2b) (3.14)

for all a,b ∈ X . Suppose that f : X → Y is a mapping satisfying (3.2) for all x = [xi j] ,
y = [yi j] ∈ Mn(X) . Then there exists a unique quadratic mapping Q : X → Y such that

‖ fn([xi j])−Qn([xi j])‖n �
n

∑
i, j=1

α
4(1−α)

φ(xi j,xi j) (3.15)

for all x = [xi j] ∈ Mn(X) .
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Proof. Let (S2,d2) be the generalized metric space defined in the proof of Theo-
rem 3.1.

Now we consider the mapping J2 : S2 → S2 defined by

J2g2(a) := 4g2

(a
2

)
, for all g2 ∈ S2 and a ∈ X . (3.16)

It follows from (3.5) that∥∥∥ f (a)−4 f
(a

2

)∥∥∥ � α
4

φ(a,a) (3.17)

for all a ∈ X . Thus d2( f ,J2 f ) � α
4 . So

d2( f ,Q) � 1
1−α

d2( f ,J2 f ) � α
4(1−α)

.

The rest of the proof is similar to the proof of Theorem 3.1. �

COROLLARY 3.2. Let r,θ be positive real numbers with r > 2 . Suppose that
f : X → Y is a mapping satisfying (3.12) for all x = [xi j] , y = [yi j] ∈ Mn(X) . Then
there exists a unique quadratic mapping Q : X → Y such that

‖ fn([xi j])−Qn([xi j])‖n �
n

∑
i, j=1

2
2r −4

θ‖xi j‖r (3.18)

for all x = [xi j] ∈ Mn(X) .

Proof. By choosing φ(a,b) = θ (‖a‖r + ‖b‖r) for all a,b ∈ X and α = 22−r in
Theorem 3.2, we obtain the inequality (3.18). �
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[19] J. RÄTZ, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes
Math. 66 (2003), 191–200.

[20] S. M. ULAM, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York,
1964.

(Received October 7, 2015) Zhihua Wang
School of Science, Hubei University of Technology

Wuhan, Hubei 430068, P. R. China
e-mail: matwzh2000@126.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


