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Abstract. As a continuation of recent study on a Wielandt type norm inequality due to Lin [13,
Conjecture 3.4], we prove the following result: Let A ∈ Mn(C) satisfying 0 < m � A � M ,
and let X and Y be n× k matrices such that X∗X = Y ∗Y = Ik and X∗Y = 0 . Then for every
2-positive unital linear map Φ, we have
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1. Introduction

Let M,m be scalars. Mn(C) denotes the set of all n×n complex matrices. A∗ ∈
Mn(C) stands for the adjoint of A . For a Hermitian matrix A ∈ Mn(C) , we use the
notation A � 0 to mean that A is positive semidefinite, and A > 0 to mean it is positive
definite. A linear map Φ : Mn(C) → Mk(C) is called (strictly) positive if Φ(A) �
0 (Φ(A) > 0) whenever A � 0 (A > 0) . It is said to be unital if Φ(In) = Ik. We

say that Φ is 2-positive if whenever the 2× 2 matrix

[
A B
B∗ C

]
is positive, then so

is

[
Φ(A) Φ(B)
Φ(B∗) Φ(C)

]
. We use ‖ · ‖ for operator norm.

The Wielandt inequality [10, p. 443] is as follows: if 0 < mI � A � MI , and
x,y ∈ H with x⊥y , then

|〈x,Ay〉| �
(

M−m
M +m

)2

〈x,Ay〉〈y,Ay〉. (1.1)

Wielandt’s inequality plays an important role in different contexts. For example,
it has a variety of applications in numerical methods, especially eigenvalue estimation
[6]. It is also applied in multivariate analysis [2, 5, 7, 10]. For the latest study on the
Wielandt and generalized Wielandt inequality, readers are referred to [12].

The operator version of (1.1) was proved by Bhatia and Davis [3] (independently
by Wang and Ip [16]) as follows: Let 0 < m � A � M , and let X , Y be two partial
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isometries on a Hilbert space H whose final spaces are orthogonal to each other. Then
for every 2-positive linear map Φ ,

Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX) �
(

M−m
M +m

)2

Φ(X∗AX). (1.2)

Under the same condition, Lin [13, Conjecture 3.4] conjectured the following assertion
could be true:

‖Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)Φ(X∗AX)−1‖ �
(

M−m
M +m

)2

. (1.3)

Recently, the authors [6] obtained the following result in the finite-dimensional case:
Let A ∈ Mn(C) satisfying 0 < m � A � M , and let X and Y be n× k matrices such
that X∗X =Y ∗Y = Ik and X∗Y = 0. Then for every 2-positive unital linear map Φ, we
have ∥∥Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX)Φ(X∗AX)−1
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,
(1.4)

which was a step closer to the conjecture (1.3).
In this note, we obtain the following result in the finite-dimensional case: Let

A ∈ Mn with 0 < mIn � A � MIn , and let X and Y be n× k matrices such that X∗X =
Y ∗Y = Ik (i.e. isometries) and X∗Y = 0. Then for every 2-positive unital linear map Φ,
we have
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which is tighter than (1.4).

2. Main result

We need two lemmas which play a very important role in the proof of the main
theorem of this paper. The first Lemma is Ando-Zhan’s celebrated result.

LEMMA 1. [1] Let A and B be positive operators. Then for 1 � r < ∞

‖Ar +Br‖ � ‖(A+B)r‖. (2.1)

The next lemma holds for positive definite matrices but a careful observation
shows that it is true for positive definite operators on a Hilbert space.
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LEMMA 2. [4] Let A,B > 0 . Then the following norm inequality holds:

‖AB‖ � 1
4
‖A+B‖2. (2.2)

Now we are devoted to presenting the main result which is a refinement of (1.4) in
the finite-dimensional case.

THEOREM 3. Let A ∈ Mn with 0 < mIn � A,B � MIn and let X and Y be n× k
matrices such that X∗X = Y ∗Y = Ik and X∗Y = 0 . Then for every 2-positive unital
linear map Φ,
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(2.3)

Proof. Firstly, consider the case of p � 2. Compute∥∥∥∥∥∥(Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX))
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� 1
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The last inequality above is obtained: Since 0 < mIn � A � MIn, mIk � Φ(X∗AX) �
MIk and 1

M � Φ(X∗AX)−1 � 1
m , we have

(M−Φ(X∗AX))(m−Φ(X∗AX))Φ(X∗AX)−1 � 0,

which implies
MmΦ(X∗AX)−1 + Φ(X∗AX) � M +m.
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So
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Next consider the case of 1 < p < 2. Compute∥∥∥∥∥∥(Φ(X∗AY )Φ(Y ∗AY )−1Φ(Y ∗AX))
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The last inequality above holds as follows: By using 0 < mIn � A � MIn, m
p
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That is,
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REMARK 4. If p = 2, the right side of the inequality (2.3) is (M−m)2
4Mm . Obviously,

the below inequality holds
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)2

,

which shows that the bound of (2.3) is smaller than that of (1.4). Thus, (2.3) is a
refinement of (1.4) for p = 2.



A NOTE ON A WIELANDT TYPE NORM INEQUALITY 133

REMARK 5. When p = 2, the author [9, (2.7)] obtained a stronger result than the
inequality (2.3). However, if we present p (p > 2) power of (2.7) in [9] through the
similar method of the proof of Theorem 3, we will find that the result for p > 2 is very
complicated and not continuous at p = 2.
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