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Abstract. In [S. Kumar and R. Lal, Generalizations of some polynomial inequalities, Int. Elec-
tron. J. Pure Appl. Math., 3, 2 (2011), 111–117.], Kumar and Lal provided an upper bound of a
derivative for polynomial degree n having some of zeros at the origin and rest of zeros lying on or
outside the boundary of a prescribed disk. In this paper, we present an upper bound of a derivative

for polynomials p(z) = (z−zm)tm(z−zm−1)tm−1 · · · (z−z0)t0
(

a0 +
n−(tm+···+t0)

∑
ν=μ

aν zν

)
of degree

n having zeros z0, . . . ,zm with |z j |< 1 for 0 � j � m and the remaining n−(tm + · · ·+t0) zeros
are outside {z : |z| < k} where k � 1.

1. Introduction

Let p(z) be a polynomial of degree n. Then we have the Bernstein’s inequality
(see [2])

max
|z|=1

|p′(z)| � nmax
|z|=1

|p(z)|. (1)

Equality holds in (1) if and only if p(z) has all of its zeros at the origin.
For a positive real number k , we let D(0,k) and C(0,k) denote the sets {z : |z| <

k} and {z : |z| = k} , respectively.
If we restrict ourselves to the class of polynomials having no zero in D(0,1), the

inequality (1) can be sharpened. In fact, it was conjectured by Erdös and later proved
by Lax [8] that if p(z) has no zero in D(0,1), then

max
|z|=1

|p′(z)| � n
2

max
|z|=1

|p(z)|. (2)

The equality holds if all zeros of p(z) lie on C(0,1) , for example, p(z) = α + β zn ,
|α| = |β |.

Aziz and Dawood [1] improved the inequality (2) under the same hypothesis and
obtained that

max
|z|=1

|p′(z)| � n
2

[
max
|z|=1

|p(z)|−min
|z|=1

|p(z)|
]
. (3)
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Equality in (3) holds for p(z) = β + αzn , |β | � |α|.
For the class of polynomials p(z) of degree n having no zero in D(0,k) , k � 1,

Malik [9] proved that

max
|z|=1

|p′(z)| � n
1+ k

max
|z|=1

|p(z)|. (4)

Inequality (4) was further improved by Govil [6] under the same hypothesis as

max
|z|=1

|p′(z)| � n
1+ k

[
max
|z|=1

|p(z)|−min
|z|=1

|p(z)|
]
. (5)

Inequalities (4) and (5) are sharp and extremal polynomial is p(z) = (z+ k)n.
Chan and Malik [3] considered the class of polynomials as in [9] and obtained the

following generalization of (4).

THEOREM 1. [3] If p(z) = a0 +∑n
ν=μ aνzν , 1 � μ � n, is a polynomial of degree

n having no zero in D(0,k) , k � 1, then

max
|z|=1

|p′(z)| � n
1+ kμ max

|z|=1
|p(z)|. (6)

The result is best possible and extremal polynomial is p(z) = (zμ + kμ)
n
μ , where n is a

multiple of μ .

The following theorem was proved by Pukhta [10], which is an improvement of
Theorem 1 and a generalization of the inequality (5).

THEOREM 2. [10] If p(z) = a0 + ∑n
ν=μ aνzν , 1 � μ � n, is a polynomial of

degree n having no zero in D(0,k) , k � 1, then

max
|z|=1

|p′(z)| � n
1+ kμ

[
max
|z|=1

|p(z)|−min
|z|=k

|p(z)|
]
.

The result is best possible and extremal polynomial is p(z) = (zμ + kμ)
n
μ , where n is a

multiple of μ .

For polynomials having all its zeros on C(0,k) , k � 1, Govil [5] proved that

max
|z|=1

|p′(z)| � n
kn + kn−1 max

|z|=1
|p(z)|. (7)

Dewan and Hans [4] generalized the inequality (7) for the polynomials of the type
p(z) = cnzn + ∑n

ν=μ cn−νzn−ν , 1 � μ � n and proved the following theorem.

THEOREM 3. [4] If p(z) = a0 +∑n
ν=μ aνzν , 1 � μ � n, is a polynomial of degree

n having all its zeros on C(0,k) , k � 1, then

max
|z|=1

|p′(z)| � n
kn−2μ+1 + kn−μ+1 max

|z|=1
|p(z)|. (8)
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Kumar and Lal [7] investigated the polynomials of degree n having some zeros at
the origin and the rest of zeros lying on or outside the boundary of a prescribed disk.
They obtained a generalized results of some well-known results.

THEOREM 4. [7] If p(z) = zs
(
a0 + ∑n−s

ν=μ aνzν) , 1 � μ � n−s, 0 � s � n−1, is
a polynomial of degree n having zeros of order s at the origin and the remaining n− s
zeros are outside D(0,k) , k � 1, then

max
|z|=1

|p′(z)| � n+ skμ

1+ kμ max
|z|=1

|p(z)|− (n− s)
ks(1+ kμ)

min
|z|=k

|p(z)|. (9)

2. Main results

THEOREM 5. (Main) If p(z) = (z− z0)s
(
a0 + ∑n−s

ν=μ aνzν) , 1 � μ � n− s, 0 �
s � n−1, is a polynomial of degree n having zero of order s at z0 with |z0| < 1 and
the remaining n− s zeros are outside D(0,k) , k � 1, then

max
|z|=1

|p′(z)| �
[

s
(1−|z0|) +

A
(1−|z0|)s

]
max
|z|=1

|p(z)|− A
(k+ |z0|)s min

|z|=k
|p(z)|,

where A =
(1+ |z0|)s+1(n− s)
(1+ kμ)(1−|z0|) .

Proof. Let p(z) = (z−z0)sφ(z) where φ(z) = a0 +∑n−s
ν=μ aνzν be a polynomial of

degree n− s having no zero in D(0,k) , k � 1.
Then p′(z) = (z− z0)sφ ′(z) + s(z− z0)s−1φ(z) and (z− z0)p′(z) = sp(z) + (z−

z0)s+1φ ′(z).
Therefore, max|z|=1 |z− z0||p′(z)| � smax|z|=1 |p(z)|+max|z|=1 |z− z0|s+1|φ ′(z)|.
Since |z− z0| � |z|− |z0| = 1−|z0| and |z− z0| � |z|+ |z0| = 1+ |z0| for |z| = 1,

we obtain (1−|z0|)max|z|=1 |p′(z)| � smax|z|=1 |p(z)|+(1+ |z0|)s+1 max|z|=1 |φ ′(z)|.
Now let m = min|z|=k |φ(z)|. Then m � |φ(z)| for |z| = k.
If φ(z) has a zero on C(0,k), then m = 0. From now on, we assume that all

n− s zeros of φ(z) lie outside D(0,k) , k � 1. Therefore, for every complex number α
such that |α| < 1, it follows from Rouche’s Theorem that all zeros of the polynomial
φ(z)−αm of degree n− s lie outside D(0,k) , k � 1.

Applying the relation (6) to the polynomial φ(z)−αm, we get

max
|z|=1

|φ ′(z)| � n− s
1+ kμ max

|z|=1
|φ(z)−αm|. (10)

Now choosing α such that

|φ(z)−αm| = |φ(z)|− |α|m (11)

and letting |α| → 1, we get from (10) in view of (11) that

max
|z|=1

|φ ′(z)| � n− s
1+ kμ max

|z|=1
(|φ(z)|−m). (12)
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Combining the relation (11) and the relation (12), we obtain that

(1−|z0|)max
|z|=1

|p′(z)| � smax
|z|=1

|p(z)|+
[
(1+ |z0|)s+1 n− s

1+ kμ

]
max
|z|=1

|φ(z)|

−
[
(1+ |z0|)s+1 n− s

1+ kμ

]
m. (13)

The relation between φ(z) and p(z) implies that

max
|z|=1

|φ(z)| = max
|z|=1

[
1

|z− z0|s |p(z)|
]

� 1
(1−|z0|)s max

|z|=1
|p(z)|.

Applying this relation in the relation (13), we have

(1−|z0|)max
|z|=1

|p′(z)| �
[
s+

(1+ |z0|)s+1(n− s)
(1+ kμ)(1−|z0|)s

]
max
|z|=1

|p(z)|

−
[
(n− s)(1+ |z0|)s+1

1+ kμ

]
m. (14)

Again, the relation between φ(z) and p(z) yields

m = min
|z|=k

|φ(z)| = min
|z|=k

[
1

|z− z0|s |p(z)|
]

� 1
(k+ |z0|)s min

|z|=k
|p(z)|.

Applying this relation in the relation (14), we have

(1−|z0|)max
|z|=1

|p′(z)| �
[
s+

(1+ |z0|)s+1(n− s)
(1+ kμ)(1−|z0|)s

]
max
|z|=1

|p(z)|

−
[
(1+ |z0|)s+1(n− s)
(1+ kμ)(k+ |z0|)s

]
min
|z|=k

|p(z)|.

Consequently,

max
|z|=1

|p′(z)| �
[

s
(1−|z0|) +

A
(1−|z0|)s

]
max
|z|=1

|p(z)|− A
(k+ |z0|)s min

|z|=k
|p(z)|,

where A =
(1+ |z0|)s+1(n− s)
(1+ kμ)(1−|z0|) . �

REMARK 1. By letting z0 = 0 in Theorem 5, we get A =
n− s
1+ kμ and

max
|z|=1

|p′(z)| � (s+A) max
|z|=1

|p(z)|− A
ks min

|z|=k
|p(z)|

=
n+ skμ

(1+ kμ)
max
|z|=1

|p(z)|− (n− s)
ks(1+ kμ)

min
|z|=k

|p(z)|

which is the relation (9).
In particular, Theorem 5 is an extension of Theorem 4.
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REMARK 2. It is not shown in [7] that the upper bound (9) in Theorem 4 is best
possible. Next, we give an example to show that the bound is best possible.

Consider the polynomial p(z) = zs(z+k)n−s where k is a real number with k � 1.
Since p′(z) = zs(n− s)(z+ k)n−s−1 +(z+ k)n−sszs−1, we have

max
|z|=1

|p′(z)| � (n− s)max
|z|=1

|z|s|z+ k|n−s−1 + smax
|z|=1

|z+ k|n−s|z|s−1

= (n+ sk)(1+ k)n−s−1 (15)

and max
|z|=1

|p(z)| = max
|z|=1

|z|s|z+ k|n−s = max
|z|=1

|z+ k|n−s = (1+ k)n−s.

The right-hand side of the relation (9) is

n+ skμ

1+ kμ max
|z|=1

|p(z)|− (n− s)
ks(1+ kμ)

min
|z|=k

|p(z)| = n+ sk
1+ k

(1+ k)n−s = (n+ sk)(1+ k)n−s−1

which is equal to max|z|=1 |p′(z)| in (15).
Thus, the bound in Theorem 4 is best possible.

COROLLARY 1. If p(z) = (z− z1)t1(z− z0)t0
(

a0 +
n−(t1+t0)

∑
ν=μ

aνzν

)
, 1 � μ � n−

(t1 + t0) , 0 � t1 + t0 � n− 1, is a polynomial of degree n having zeros z0,z1 with
|z0|< 1 , |z1|< 1 and the remaining n− (t1 + t0) zeros are outside D(0,k) , k � 1, then

max
|z|=1

|p′(z)| �
[

t1(1+ |z1|)t1−1

(1−|z1|)t1 +
(1+ |z1|)t1 t0

(1−|z0|)(1−|z1|)t1

+
(1+ |z1|)t1A

(1−|z0|)t0(1−|z1|)t1

]
max
|z|=1

|p(z)|

−
[

(1+ |z1|)t1A
(k+ |z0|)t0(k+ |z1|)t1

]
min
|z|=k

|p(z)|,

where A =
(1+ |z0|)t0+1(n− (t0 + t1))

(1+ kμ)(1−|z0|) .

Proof. Let p0(z) = (z− z0)t0
(

a0 +
n−(t0+t1)

∑
ν=μ

aνzν

)
.

Then p(z) = (z− z1)t1 p0(z) and p′(z) = (z− z1)t1 p′0(z)+ t1(z− z1)t1−1p0(z).
Theorem 5 implies that

max
|z|=1

|p′(z)| �
[
t1(1+ |z1|)t1−1 +

(1+ |z1|)t1 t0
(1−|z0|) +

(1+ |z1|)t1A
(1−|z0|)t0

]
max
|z|=1

|p0(z)|

− (1+ |z1|)t1A
(k+ |z0|)t0 min

|z|=k
|p0(z)|,
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where A =
(1+ |z0|)t0+1(n− (t0 + t1))

(1+ kμ)(1−|z0|) .

Since

max
|z|=1

|p0(z)| = max
|z|=1

(
1

|z− z1|t1 |p(z)|
)

� 1
(1−|z1|)t1 max

|z|=1
|p(z)|

and

min
|z|=k

|p0(z)| = min
|z|=k

(
1

|z− z1|t1 |p(z)|
)

� 1
(k+ |z1|)t1 min

|z|=k
|p(z)|,

we obtain that

max
|z|=1

|p′(z)| �
[

t1(1+ |z1|)t1−1

(1−|z1|)t1 +
(1+ |z1|)t1 t0

(1−|z0|)(1−|z1|)t1

+
(1+ |z1|)t1A

(1−|z0|)t0(1−|z1|)t1

]
max
|z|=1

|p(z)|

−
[

(1+ |z1|)t1A
(k+ |z0|)t0(k+ |z1|)t1

]
min
|z|=k

|p(z)|. �

REMARK 3. By using Theorem 5, we can obtain an upper bound of max
|z|=1

|p′(z)|
for a polynomial

p(z) = (z− zm)tm(z− zm−1)tm−1 · · · (z− z0)t0
(

a0 +
n−(tm+···+t0)

∑
v=μ

avz
v

)

of degree n having zeros z0, . . . ,zm with |z j| < 1 for 0 � j � m and the remaining
n− (tm + · · ·+ t0) zeros are outside D(0,k),k � 1.

Let p0(z) = (z− z0)t0
(

a0 +
n−(tm+···+t0)

∑
v=μ

avz
v

)
and p j(z) = (z− z j)t j p j−1(z) for

1 � j � m. We obtain an upper bound of max|z|=1 |p′0(z)| by Theorem 5.
By substitution this upper bound with the facts that

max
|z|=1

|p0(z)| � 1
(1−|z1|)t1 max

|z|=1
|p1(z)| and min

|z|=k
|p0(z)| � 1

(k+ |z1|)t1 min
|z|=k

|p1(z)|,

we obtain an upper bound of max|z|=1 |p′1(z)| as in Corollary 1.
Next, we can find an upper bound of max|z|=1 |p′j(z)| for 1 � j � m by simi-

lar process with using an upper bound of max|z|=1 |p′j−1(z)| from the previous pro-

cess and the facts that max
|z|=1

|p j−1(z)| � 1
(1−|z j|)t j max

|z|=1
|p j(z)| and min

|z|=k
|p j−1(z)| �

1
(k+ |z j|)t j min

|z|=k
|p j(z)| for 1 � j � m.
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THEOREM 6. If p(z) = (z−z0)s
(
a0 + ∑n−s

ν=μ aνzν) , 1 � μ � n−s, 0 � s � n−1,
is a polynomial of degree n having zero z0 with |z0|< 1 and the remaining n− s zeros
are on C(0,k) , k � 1 , then

max
|z|=1

|p′(z)| �
[

s
(1−|z0|) +

(1+ |z0|)s+1(n− s)
(kn−s−2μ+1 + kn−s−μ+1)(1−|z0|)s+1

]
max
|z|=1

|p(z)|.

Proof. Let p(z) = (z− z0)sφ(z) where φ(z) = a0 +∑n−s
ν=μ aνzν is a polynomial of

degree n− s having all its zeros on C(0,k) , k � 1.
Applying the relation (8) to φ(z) , we obtain that

max
|z|=1

|φ ′(z)| � n− s
(kn−s−2μ+1 + kn−s−μ+1)

max
|z|=1

|φ(z)|. (16)

As in the proof of Theorem 5, one can show that

(1−|z0|)max
|z|=1

|p′(z)| � smax
|z|=1

|p(z)|+(1+ |z0|)s+1 max
|z|=1

|φ ′(z)|. (17)

Applying the relation (16) in the inequality (17) , we have

(1−|z0|)max
|z|=1

|p′(z)| � smax
|z|=1

|p(z)|+ (1+ |z0|)s+1(n− s)
(kn−s−2μ+1 + kn−s−μ+1)

max
|z|=1

|φ(z)|.

Using the fact that max
|z|=1

|φ(z)| � 1
(1−|z0|)s max

|z|=1
|p(z)|, we get

(1−|z0|)max
|z|=1

|p′(z)| �
[
s+

(1+ |z0|)s+1(n− s)
(kn−s−2μ+1 + kn−s−μ+1)(1−|z0|)s

]
max
|z|=1

|p(z)|.

Therefore,

max
|z|=1

|p′(z)| �
[

s
1−|z0| +

(1+ |z0|)s+1(n− s)
(kn−s−2μ+1 + kn−s−μ+1)(1−|z0|)s+1

]
max
|z|=1

|p(z)|. �

3. Conclusion

This paper gives an upper bound of a derivative for polynomials

p(z) = (z− zm)tm(z− zm−1)tm−1 · · · (z− z0)t0
(

a0 +
n−(tm+···+t0)

∑
v=μ

avz
v

)

of degree n having zeros z0, . . . ,zm with |z j| < 1 for 0 � j � m and the remaining
n− (tm + · · ·+ t0) zeros are outside {z : |z| < k} , k � 1.
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