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A PROOF OF TWO CONJECTURES OF CHAO–PING

CHEN FOR INVERSE TRIGONOMETRIC FUNCTIONS

BRANKO MALEŠEVIĆ, BOJAN BANJAC AND IVANA JOVOVIĆ

(Communicated by J. Pečarić)

Abstract. In this paper we prove two conjectures stated by Chao-Ping Chen in [Int. Trans. Spec.
Funct. 23:12 (2012), 865–873], using a method for proving inequalities of mixed trigonometric
polynomial functions.

Wilker in [3] formulated two problems. First one was to prove that
(

sinx
x

)2
+ tanx

x
> 2 (1)

holds for 0 < x <
π
2

; and second one was to find the largest constant c such that

(
sinx
x

)2
+ tanx

x
> 2+ cx3 tanx,

for 0 < x <
π
2

.
Sumner, Jagers, Vowe, and Anglesio in [4] gave an improvement of the inequality

(1) in the form of

2+
(

2
π

)4
x3 tanx <

(
sinx
x

)2
+ tanx

x
< 2+ 8

45
x3 tanx,

where the constants
(

2
π

)4
and 8

45
were the best possible. Huygens in [2] presented

the inequality

2 sinx
x

+ tanx
x

> 3, (2)

for 0 < |x| < π
2

.
Neuman, and Sandor in [8] established the relation between inequalities (1) and

(2). The relevant papers on the topic are also [5], [7], [10], [11] and [17]. The inverse
trigonometric and inverse hyperbolic versions of Wilker and Huygens’s inequalities
were considered in [6], [8], [12] and [13]. Recently, the analogue inequalities for the
generalized trigonometric functions [14] and different special functions [15] and [18]
have been taken into consideration.

Chao-Ping Chen in [1] proved the following two theorems and proposed two open
problems.
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THEOREM 1. If 0 < x < 1 , then

2+ 17
45

x3 arctanx <
(

arcsinx
x

)2
+ arctan x

x
,

where the constant 17
45

is the best possible.

Considering the previous theorem, it was natural to ask what is the best possible
constat c such that

(
arcsinx

x

)2
+ arctanx

x
< 2+ cx3 arctanx

holds, for 0 < x < 1. The choice of constant
(
π2 + π −8

)
/π is somehow motivated,

since it is the limit at π
2

of the function

x �→
(
(arcsinx/x)2 +(arctanx/x−2)

)
/
(
x3 arctanx

)
.

Therefore, Chao-Ping Chen in [1] stated the following conjecture.

CONJECTURE 1. If 0 < x < 1 , then

(
arcsinx

x

)2
+ arctan x

x
< 2+ π2 +π −8

π
x3 arctanx, (3)

where the constant π2 +π −8
π

is the best possible.

In the paper [1] one can also find the following theorem.

THEOREM 2. If 0 < x < 1 , then

3+ 7
20

x3 arctanx < 2
(

arcsinx
x

)
+ arctan x

x
,

where the constant 7
20

is the best possible.

And so, there is a matching conjecture.

CONJECTURE 2. If 0 < x < 1 , then

2
(

arcsinx
x

)
+ arctanx

x
< 3+ 5π −12

π
x3 arctanx, (4)

where the constant 5π −12
π

is the best possible.

The proofs of the previous two theorems are based on the usage of the appropriate
infinite power series. In the proofs of the stated conjectures a method from [20] will
be used and it is based on the usage of the appropriate approximations of some mixed
trigonometric polynomials with finite Taylor series. This method presents continuation



A PROOF OF CONJECTURES C.-P. CHEN FOR INVERSE TRIGONOMETRIC FUNCTIONS 153

of Mortici’s method from [9]. The method is also applied on inequalities closely related
to presented ones, see [21], [22] and [23].

We follow the notation used in [20]. Let ϕ : [a,b] −→ R be a differentiable func-
tion on a segment [a,b] and differentiable on a right at x = a an arbitrary number
of times. Denote by T ϕ,a

m (x) the Taylor polynomial of the order m of the function
ϕ in the point x = a . If there is some η > 0 such that T ϕ,a

m (x) � ϕ(x) holds for
x ∈ (a,a + η) ⊂ [a,b] , then we define T

ϕ,a
m (x) = T ϕ,a

m (x) , and T
ϕ,a
m (x) presents an

upward approximation of the order m of the function ϕ in the right neighborhood
(a,a+η) of the point a . Analogously, if there is some η > 0 such that T ϕ,a

m (x) � ϕ(x)
holds for x ∈ (a,a + η) ⊂ [a,b] , then we define T ϕ,a

m (x) = T ϕ,a
m (x) , and T ϕ,a

m (x)
presents a downward approximation of the order m of the function ϕ in the right neigh-
borhood (a,a+ η) of the point a . In the same manner, it is possible to define upward
and downward approximations in the left neighborhood of a point.

1. Proof of the Conjecture 1

Let us first observe the inequality (3) of the Conjecture 1 written in the form

2+ π2 +π −8
π

x3 arctanx− arctanx
x

−
(

arcsinx
x

)2
> 0, (5)

for x ∈ (0,1) . Substituting x = sin t into (5), for t ∈
(
0,

π
2

)
, we obtain

2+ (π2 +π −8)sin4 t−π
π sin t

arctan(sin t)− t2

sin2 t
> 0. (6)

It is enough to prove that

g(t) = 2π sin2 t +(π2 + π −8)sin5 t arctan(sin t)

−π sin t arctan(sin t)−π t2 > 0,
(7)

for t ∈
(
0,

π
2

)
. Let us notice that t = 0 is zero of the sixth order and t = π

2
is the

simple zero of the function g . Furthermore, we differentiate two cases: t ∈ (0,1.1] or
t ∈ (1.1,π/2) .

(I) t ∈ (0,1.1] Let us start from the series arctanx = ∑∞
k=0 (−1)k x2k+1

2k+1
, which

holds for x ∈ [−1,1] . Let us notice that T arctan,0
3+4k1

(x) < arctanx < T
arctan,0
1+4k2

(x) are true
for x ∈ (0,1] and k1,2 ∈ N0 . By introducing the substitution x = sin t , we can conclude
that

T arctan,0
3+4k1

(sin t) < arctan(sin t) < T
arctan,0
1+4k2

(sin t),

for t ∈
(
0,

π
2

)
and k1,2 ∈ N0 . For the proof of the Conjecture 1 we will use previous

inequalities for k1 = 0 and k2 = 1, i.e. we will only need

T arctan,0
3 (sin t) < arctan(sin t) < T

arctan,0
5 (sin t), (8)
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for t ∈
(
0,

π
2

)
. It is also possible to prove the inequality (8) directly via differentiation.

Next, since T arctan,0
3 (sin t) > 0 for t ∈

(
0,

π
2

)
and π2 + π −8 > 0 we have

g(t) > 2π sin2 t +(π2 + π −8)sin5 t T arctan,0
3 (sin t)−π sin t T

arctan,0
5 (sin t)−π t2,

for t ∈ (0,1.1] . It remains to prove that

h(t) = 2π sin2 t +(π2 + π −8)sin5 t
(
sin t − 1

3
sin3 t

)

−π sin t
(
sin t− 1

3
sin3 t + 1

5
sin5 t

)
−π t2 > 0,

for t ∈ (0,1.1] . The function h is a mixed trigonometric polynomial function. For the
proof of the inequality h(t) > 0, for t ∈ (0,1.1] , we use method from the paper [20].
Using trigonometric multiple angle formulas, we obtain

h(t) =
(
− π2

384
− π

384
+ 1

48

)
cos8 t +

(
−π2

96
− π

240
+ 1

12

)
cos6 t

+
(

11π2

96
+ 19π

160
− 11

12

)
cos4 t +

(
− 31π2

96
− 43π

48
+ 31

12

)
cos2 t

−π t2 + 85π2

384
+ 301π

384
− 85

48
.

Inequalities from the paper [20]:

T
cos,0
k (y) > cosy

(
k = 4,12,16

)
and cosy > T cos,0

10 (y),

y ∈ (
0,

√
(k+3)(k+4)

)
, yield

h(t) > P16(t) =
(
− π2

384
− π

384
+ 1

48

)
T

cos,0
16 (8 t)

+
(
−π2

96
− π

240
+ 1

12

)
T

cos,0
12 (6 t)

+
(

11π2

96
+ 19π

160
− 11

12

)
T cos,0

10 (4 t)

+
(
− 31π2

96
− 43π

48
+ 31

12

)
T

cos,0
4 (2 t)

−π t2 + 85π2

384
+ 301π

384
− 85

48
,
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for t ∈ (0,1.1] . Hence we prove that

P16(t) =
(
− 67108864π2

1915538625
− 67108864π

1915538625
+ 536870912

1915538625

)
t16

+
(

16777216π2

127702575
+ 16777216π

127702575
− 134217728

127702575

)
t14

+
(
− 945149π2

2245320
− 11017201π

28066500
+ 945149

280665

)
t12

+
(

309929π2

340200
+ 27409π

34020
− 309929

42525

)
t10

+
(
− 20129π2

15120
− 1609π

1512
+ 20129

1890

)
t8

+
(

1049π2

1080
+ 293π

540
− 1049

135

)
t6 > 0

holds for t ∈ (0,1.1] . Notice that P16(t) = t6

30648618000
P10(t) for

P10(t) =
(−1073741824π2−1073741824π +8589934592

)
t10

+
(
4026531840π2+4026531840π−32212254720

)
t8

+
(−12901283850π2−12030783492π +103210270800

)
t6

+
(
27921503610π2+24692768100π−223372028880

)
t4

+
(−40801986225π2−32614832250π +326415889800

)
t2

+
(
29768889150π2+16629713100π−238151113200

)
.

Let us introduce substitution z = t2 , for z∈ (0,1.21] , and prove that P5(z) = P10(
√

z) >
0. According to the Ferrari’s formulas, the derivative polynomial P′

5 does not have real
roots. Since P′

5(0) < 0 we can assert that P′
5(z) < 0, for every z ∈ (0,1.21] . Therefore,

P5 is strictly decreasing function with unique real root z1 = 1.233 . . . > 1.21. So we
have P5(z) > 0 for z ∈ (0,1.21] , i.e. P10(t) > 0 for t ∈ (0,1.1] . Finally, we conclude

g(t) > h(t) > P16(t) = t6

30648618000
P10(t) > 0,

for t ∈ (0,1.1] .

(II) t ∈ (1.1,π /2) We transform the inequality (7), for t ∈
(
1.1,

π
2

)
, to the in-

equality

g2(t) = g(π
2
− t) =

(
(π2 + π −8)cos4 t−π

)
cost arctan(cost)

−π
(

π
2
− t

)2
+2π cos2 t > 0,

for t ∈
(
0,

π
2
−1.1

)
=

(
0,0.470 . . .

)
. Let us notice that (π2 + π −8)cos4 t−π > 0 is

true for t ∈
(
0,

π
2
−1.1

)
. Furthermore, we consider the additional inequality

arctan(cost) � π
4
− t

2
, (9)
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for t ∈
[
0,

π
2

]
. Equality holds for t = 0 or t = π

2
. Obviously

(arctan(cost))′ = −sin t
cos2 t +1

< 0 and (arctan(cost))′′ = (cos2 t −3)cos t
(cos2 t +1)2 < 0,

for t ∈
(
0,

π
2

)
. Therefore, the inequality (9) is a consequence of the fact that is the

decreasing concave curve above the secant line over segment
[
0,

π
2

]
. Based on the

inequality (9), we have

g2(t) > h2(t) =
(
(π2 + π −8)cos4 t−π

)
cost

(
π
4
− t

2

)

−π
(

π
2
− t

)2
+2π cos2 t,

for t ∈
(
0,

π
2
−1.1

)
. Thus, we need to prove that

h2(t) > 0,

for t ∈
(
0,

π
2
−1.1

)
. Let us notice that h2 is one mixed trigonometric polynomial

h2(t) =
((− π2

2
− π

2
+4

)
t + π3

4
+ π2

4
−2π

)
cos5 t

+2π cos2 t +
(

π
2

t− π2

4

)
cost−π t2 + π2 t− π3

4
.

For the proof of the inequality h2(t) > 0, for t ∈
(
0,

π
2
−1.1

)
, we use method from

the paper [20]. Using trigonometric multiple angle formulas, we obtain

h2(t) =
((− π2

32
− π

32
+ 1

4

)
t + π3

64
+ π2

64
− π

8

)
cos5 t

+
((− 5π2

32
− 5π

32
+ 5

4

)
t + 5π3

64
+ 5π2

64
− 5π

8

)
cos3 t

+ π cos2 t +
((− 5π2

16
+ 3π

16
+ 5

2

)
t + 5π3

32
− 3π2

32
− 5π

4

)
cost

−πt2 + π2t− π3

4
.

For t ∈
(
0,

π
2
−1.1

)
the following inequalities are true:

(− π2

32
− π

32
+ 1

4

)
t + π3

64
+ π2

64
− π

8
> 0,

(− 5π2

32
− 5π

32
+ 5

4

)
t + 5π3

64
+ 5π2

64
− 5π

8
> 0,

(− 5π2

16
+ 3π

16
+ 5

2

)
t + 5π3

32
− 3π2

32
− 5π

4
< 0.

In the purpose of proving that h2(t) > 0, for t ∈
(
0,

π
2
−1.1

)
, we use the inequalities

from [20]:

T
cos,0
k (y) > cosy

(
k = 0

)
and cosy > T cos,0

k (y)
(
k = 2

)
,
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for y ∈ (
0,

√
(k+3)(k+4)

)
. Therefore, we get

h2(t) > P3(t) =
((− π2

32
− π

32
+ 1

4

)
t + π3

64
+ π2

64
− π

8

)
T cos,0

2 (5 t)

+
((− 5π2

32
− 5π

32
+ 5

4

)
t + 5π3

64
+ 5π2

64
− 5π

8

)
T cos,0

2 (3 t)

+ π T cos,0
2 (2 t)

+
((− 5π2

16
+ 3π

16
+ 5

2

)
t + 5π3

32
− 3π2

32
− 5π

4

)
T

cos,0
0 (t)

−πt2 + π2t + π − π3

4
,

for t ∈
(
0,

π
2
−1.1

)
. It is simple to prove that

P3(t) =
(

35π2

32
+ 35π

32
− 35

4

)
t3 +

(
− 35π3

64
− 35π2

64
+ 11π

8

)
t2 +

(
π2

2
+4

)
t > 0

for t ∈
(
0,

π
2
−1.1

)
. Therefore, we conclude that

g2(t) > h2(t) > P3(t) > 0,

for t ∈
(
0,

π
2
−1.1

)
and consequently that

g(t) > 0,

for t ∈
(
1.1,

π
2

)
, which proves the inequality (6). The elementary calculus gives

lim
x→ π

2 −

(arcsinx/x)2 +(arctanx/x)−2
x3 arctan x

= π2 +π −8
π

.

The proof is completed. �

2. Proof of the Conjecture 2

Let us now observe the inequality (4) of the Conjecture 2 written in the form

3+ (5π −12)x3 arctan x
π

− arctanx
x

−2
(

arctanx
x

)
> 0, (10)

for x ∈ (0,1) . Substituting x = sin t into (10), for t ∈
(
0,

π
2

)
, we obtain

3+
(
(5π −12)sin4 t −π

)
arctan (sin t)

π sin t
− 2t

sin t
> 0. (11)

It is enough to prove that

g(t) = 3π sin t +((5π −12)sin4 t−π)arctan(sin t)−2π t > 0, (12)
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for t ∈
(
0,

π
2

)
. Let us notice that t = 0 is zero of the fifth order and t = π

2
is the

simple zero of the function g . Furthermore, we differentiate two cases if t ∈ (0,1.3] or
t ∈ (1.3,π/2) .

(I) t ∈ (0,1.3] Based on the inequality (8), it may be concluded that

g(t) > h(t) = 3π sin t +(5π −12)sin4 t T arctan,0
3 (sin t)

−π T
arctan,0
5 (sin t)−2π t,

for t ∈ (0,1.3] . Therefore, we just need to prove

h(t) = 3π sin t +(5π −12)sin4 t
(
sin t− 1

3
sin3 t

)

−π
(
sin t− 1

3
sin3 t + 1

5
sin5 t

)
−2π t > 0,

for t ∈ (0,1.3] . The function h is a mixed trigonometric polynomial function. For the
proof of the inequality h(t) > 0, for t ∈ (0,1.3] , we use method from the paper [20].
Using trigonometric multiple angle formulas, we obtain

h(t) =
(

5π
192

− 1
16

)
sin7 t +

(
113π
960

− 5
16

)
sin5 t

+
(
− 199π

192
+ 39

16

)
sin3 t +

(
833π
192

− 85
16

)
sin t−2π t.

We also need inequalities from the paper [20]:

T
sin,0
k (y) > siny

(
k = 9

)
and siny > T sin,0

k (y)
(
k = 7,15,19

)
,

for y ∈ (
0,

√
(k+3)(k+4)

)
. Putting things together, we get

h(t) > P19(t) =
(

5π
192

− 1
16

)
T sin,0

19 (7 t)

+
(

113π
960

− 5
16

)
T sin,0

15 (5 t)

+
(
− 199π

192
+ 39

16

)
T

sin,0
9 (3 t)

+
(

833π
192

− 85
16

)
T sin,0

7 (t)−2π t,
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for t ∈ (0,1.3] . Hence, we only have to prove that

P19(t) =
(
− 232630513987207π

95330037871411200
+ 232630513987207

39720849113088000

)
t19

+
(

4747561509943π
278742800793600

− 4747561509943
116142833664000

)
t17

+
(
− 111034112797π

1141243084800
+ 612518675071

2615348736000

)
t15

+
(

25601647133π
59779399680

− 585184807
566092800

)
t13

+
(
− 549507467π

383201280
+ 277683421

79833600

)
t11

+
(

34570249π
9953280

− 9870319
1161216

)
t9

+
(
− 473π

84
+ 14

)
t7

+
(

93π
20

− 12
)

t5 > 0,

for t ∈ (0,1.3] . Let us notice that P19(t) = t5

23355859278495744000
P14(t) , where

P14(t) =
(−56994475926865715π +136786742224477716

)
t14

+
(
397798178918123970π−954715629403497528

)
t12

+
(−2272344207942188160π +5469977974061251584

)
t10

+
(
10002584016180806400π−24143557388833935360

)
t8

+
(−33492109086208281600π +81238161686899875840

)
t6

+
(
81120783386638195200π−198524461941501696000

)
t4

+
(−131515731413434368000π +326982029898940416000

)
t2

+108604745645005209600π−280270311341948928000.

Let us introduce substitution z = t2 , for z ∈ (0,1.69] and prove P7(z) = P14(
√

z) > 0.
It is enough to observe that the third - order derivative polynomial P′′′

7 does not have
real roots according to the Ferrari’s formula and P′′′

7 (0) < 0 yields P′′′
7 (z) < 0 for every

z ∈ (0,1.69] . Thus the second - order derivative polynomial P′′
7 is strictly decreasing

function with unique real root z1 = 1.834 . . . > 1.69. From P′′
7 (1.69) > 0 follows that

P′′
7 (z) > 0 for z∈ (0,1.69] , thus derivative polynomial P′

7 is strictly increasing function
for z∈ (0,1.69] . As P′

7(1.69) < 0 then P′
7(z) < 0 for every z∈ (0,1.69] . From P′

7(z) <
0 follows that P7 is strictly decreasing function (with real root z2 = 1.870 . . . > 1.69).
As P7(1.69) > 0, we conclude P7(z) > 0 for z ∈ (0,1.69] , i.e. P14(t) > 0 for t ∈
(0,1.3] . Finally, from

g(t) > h(t) > P19(t) = t5

23355859278495744000
P14(t)

follows that g(t) > 0 for t ∈ (0,1.3] .
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(II) t ∈ (1.3,π /2) We transform the inequality (12), for t ∈
(
1.3,

π
2

)
, to the

inequality
g2(t) = g(π

2
− t) =

(
(5π −12)cos4 t−π

)
arctan(cost)

+3π cost −2π
(

π
2
− t

)
> 0,

for t ∈
(
0,

π
2
−1.3

)
=

(
0,0.270 . . .

)
. Let us notice that (5π −12)cos4 t − π > 0 is

true for t ∈
(
0,

π
2
−1.3

)
. Based on the inequality (9) we have

g2(t) > h2(t) =
(
(5π −12)cos4 t−π

)(
π
4
− t

2

)
+ 3π cost −2π

(
π
2
− t

)
,

for t ∈
(
0,

π
2
−1.3

)
; so it should be proved

h2(t) > 0,

for t ∈
(
0,

π
2
−1.3

)
. Notice that h2 is one mixed trigonometric polynomial

h2(t) =
((

6− 5π
2

)
t + 5π2

4
−3π

)
cos4 t + 3π cost + 5π

2
t− 5π2

4
.

For the proof of the inequality h2(t) > 0, for t ∈ (1.3,π/2), we use method from the
paper [20]. Using trigonometric multiple angle formulas, we obtain

h2(t) =
((− 5π

16
+ 3

4

)
t + 5π2

32
− 3

8
π
)

cos4 t +
((− 5π

4
+3

)
t + 5π2

8
− 3π

2

)
cos2 t

+3π cost +
(25π

16
+ 9

4

)
t− 25π2

32
− 9π

8
.

For t ∈
(
0,

π
2
−1.3

)
we have

(− 5π
16

+ 3
4

)
t + 5π2

32
− 3π

8
> 0,

(− 5π
4

+3
)
t + 5π2

8
− 3π

2
> 0,

Having in mind inequality from [20]:

cosy > T cos,0
2 (y) ,

for y ∈ (
0,
√

30
)
, we conclude that

h2(t) > P3(t) =
((− 5π

16
+ 3

4

)
t + 5π2

32
− 3π

8

)
T cos,0

2 (4 t)

+
((− 5π

4
+3

)
t + 5π2

8
− 3π

2

)
T cos,0

2 (2 t)

+3π T cos,0
2 (t)+

(25π
16

+ 9
4

)
t − 25π2

32
− 9π

8
,
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for t ∈
(
0,

π
2
−1.3

)
. It is simple to prove that

P3(t) = (5π −12)t3 +
(− 5π2

2
+ 9π

2

)
t2 +6 t > 0,

for t ∈
(
0,

π
2
−1.3

)
. Therefore, we conclude that

g2(t) > h2(t) > P3(t) > 0,

for t ∈
(
0,

π
2
−1.3

)
and consequently that

g(t) > 0,

for t ∈
(
1.3,

π
2

)
, which proves the inequality (11). The elementary calculus proposes

lim
x→ π

2 −

2(arcsinx/x)+(arctan x/x)−3
x3 arctan x

= 5π −12
π

.

Therefore, the proof of the second conjecture is also completed. �

3. Results, Discussion and Conclusions

Let us emphasize that the method from [20] was applied here for proving two
conjectures stated by C.-P. Chen [1]. In the paper [20] the open problem was stated
by Z.-J. Sun and L. Zhu [10] and in the paper [23] the open problem was stated by
Y. Nishizawa [19] and they were proved in the same manner. We expect that the method
will be useful in solving some others problems concerning inequalities which can be
reduced to some mixed trigonometric inequalities.
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