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A NOTE ON INEQUALITIES DUE TO CLAUSING AND LEVIN–STEČKIN

PETER R. MERCER

(Communicated by Josip Pečarić)

Abstract. A single argument yields inequalities due to Clausing and Levin-Stečkin.

The following pair of inequalities appears in Section 4.1(b) of A. Clausing’s paper
[1].

THEOREM 1. Let φ be continuous on [0,1] and increasing on [0,1/2], with
φ(x) = φ(1− x) for x ∈ [0,1] . Then for f concave and positive on (0,1) , we have

∫ 1

0
f (x)dx

∫ 1

0
φ(x)dx �

∫ 1

0
f (x)φ(x)dx �

∫ 1

0
f (x)dx

∫ 1

0
φ̂(x)dx,

where
φ̂ (x) = 4min{x,1− x}φ(x).

The right-hand side is new in [1] and is proved there, using some rather heavy
machinery. The left-hand side had already been obtained by Levin and Stečkin [2, 4,
5]; no proof is given in [1]. In the left-hand side, f can be replaced with f +C , so
evidently f need not be positive.

In this note we offer a simple argument which yields both of these inequalities
together.

Proof of Theorem 1. Let

C =
{

f ∈ C (0,1) : f > 0, f is concave, and
∫ 1

0
f (x)dx � 1

}
.

Then C is a compact convex subset of C (0,1), with local uniform convergence. There-
fore, by Bauer’s Maximum Principle, the linear functional on C given by

f �→
∫ 1

0
f (x)φ(x)dx
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attains its maximum and minimum values at extreme points of C . As shown in [3], the
extreme points of C are the functions

ζu(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(1− x) if u = 0

2min

{
x
u
,
1− x
1−u

}
if u ∈ (0,1)

2x if u = 1.

�

Each of these functions ζu has
∫ 1
0 ζu = 1. Here, for example, are three of their

graphs:

y

x

2

1u v

ζu(x) ζv(x) ζ1(x)

So we consider the integrals

I(u) =
∫ 1

0
ζu(x)φ(x)dx, over u ∈ [0,1].

Since I(u) = I(1− u) , it suffices to consider u ∈ [0,1/2]. We claim that that I is in-
creasing there. This would be enough: For

∫ 1
0 f = 1, we would have

I(0) �
∫ 1

0
f (x)φ(x)dx � I(1/2).

Then by the symmetry of φ ,

I(0) = I(1) =
∫ 1

0
ζ1(x)φ(x)dx =

∫ 1

0
2xφ(x)dx =

∫ 1

0
φ(x)dx

and

I(1/2) =
∫ 1

0
ζ1/2(x)φ(x)dx = 4

∫ 1

0
min{x,1− x}φ(x)dx,

so the proof would be complete.
To verify the claim, we compute I′(u) then show that I′(u) � 0 on [0,1/2]. We
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have

I(u)− I(v)
u− v

=
2

u− v

∫ 1

0

(
min

{
x
u
,
1− x
1−u

}
−min

{
x
v
,
1− x
1− v

})
φ(x)dx

=
2

u− v

∫ u

0

x(v−u)
uv

φ(x)dx+
2

u− v

∫ v

u

v− x− x(v−u)
v(1−u)

φ(x)dx

+
2

u− v

∫ 1

v

x(v−u)+ (u− v)
(1−u)(1− v)

φ(x)dx.

Letting v→ u (and using the Mean Value Theorem for Integrals on the second integral),
we get

I′(u) = 2
∫ u

0

−x
u2 φ(x)dx+2

∫ 1

u

−x+1
(1−u)2 φ(x)dx.

Now we show that I′(u) � 0 on [0,1/2] . Since φ(x) = φ(1− x) , we have

2
∫ 1

u

−x+1
(1−u)2 φ(x)dx = 2

∫ 1−u

0

x
(1−u)2 φ(x)dx,

so we show that

2
∫ u

0

x
u2 φ(x)dx � 2

∫ 1−u

0

x
(1−u)2 φ(x)dx.

This reads
u∫
0

xφ(x)dx

u∫
0

xdx
�

1−u∫
0

xφ(x)dx

1−u∫
0

xdx

=

u∫
0

xφ(x)dx+
1−u∫
u

xφ(x)dx

u∫
0

xdx+
1−u∫
u

xdx

.

And for this, it suffices to show that

u∫
0

xφ(x)dx

u∫
0

xdx
�

1−u∫
u

xφ(x)dx

1−u∫
u

xdx

.

But this is immediate, since φ is increasing on [0,1/2] and φ(u) = φ(1−u) :

u∫
0

xφ(x)dx

u∫
0

xdx
�

φ(u)
u∫
0

xdx

u∫
0

xdx
= φ(u) =

φ(u)
1−u∫
u

xdx

1−u∫
u

xdx

�

1−u∫
u

xφ(x)dx

1−u∫
u

xdx

. �
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