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GABRIEL BERCU

(Communicated by J. Pečarić)

Abstract. The aim of this work is to provide simple proofs of some remarkable trigonometric in-
equalities: Jordan inequality, Kober inequality, Becker-Stark inequality, Wu-Srivastava inequal-
ity. The proofs are based on Padé approximant method. We also obtain rational refinements for
these inequalities.

1. Introduction

The starting point of this paper is the following famous inequalities and their im-
provements.

The classical Jordan inequality (see [3]) states that

2
π

� sinx
x

< 1 for 0 < x <
π
2

. (1.1)

This inequality was improved in [1] as

2
π

x+
1

π3

(
π2−4x2)� sinx for x ∈

[
0,

π
2

]
. (1.2)

Furthermore,
1

π3 is the best constant in (1.2) in the sense that it cannot be replaced

by a larger constant.
In [6], R. Klen, M. Visuri and M. Vourinen established an upper bound for the

function
sinx
x

:

sinx
x

� 1− 2x2

3π2 , 0 < x <
π
2

. (1.3)

In fact, the best possible inequality of this type is the following:

sinx
x

� 1− x2

3π
, 0 < x <

π
2

. (1.4)
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The following inequality is due to Kober [7]:

1− 2x
π

� cosx � 1− x2

π
, for every 0 � x � π

2
. (1.5)

The left - hand side inequalities in (1.1) and (1.5) are equivalent to each other via

the transformation x → π
2
− x .

Becker and Stark [2] obtained the following two-sided rational approximation for
tanx

x
:

8
π2−4x2 <

tanx
x

<
π2

π2−4x2 for all x ∈
(
0,

π
2

)
. (1.6)

Furthermore, 8 and π2 are the best constants in (1.6).
Wu and Srivastava [15] proved the following inequality

( x
sinx

)2
+

x
tanx

> 2 for every 0 < x <
π
2

.

C. Mortici [9] obtained the following refinement

( x
sinx

)2
+

x
tanx

> 2+
2x4

45
for every 0 < x <

π
2

.

These inequalities have attracted the interest of many mathematicians in the recent
past. We refer to [1]–[16] and closely related references therein.Theywere proved using
the variation of some functions and their derivatives. Some of recent improvements
are important through their symmetric form, but these inequalities have also practical
applications, because they provide bounds for given functions. Some of these results
were also obtained using Taylor’s expansions of trigonometric functions.

It is known that a Padé approximant is the “best” approximation of a function by
a rational function of given order. The rational approximation is also good for series
with alternation terms and poor polynomial convergence.That is why in our paper we
will use Padé approximant method for solving and improving these inequalities.

The Padé approximant [L/M] corresponds to the Taylor series. When it exists,

the [L/M] Padé approximant to any power series A(x) =
∞
∑
j=0

a jx j is unique. If A(x)

is a transcendental function, then the terms are given by the Taylor series about x0 ,

an =
1
n!

A(n) (x0) .

The coefficients are found by setting

A(x) =
p0 + p1x+ . . .+ pLxL

1+q1x+ . . .+qMxM .
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These give the set of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = a0

p1 = a0q1 +a1

p2 = a0q2 +a1q1 +a2
...
pL = a0qL + . . .+aL−1q1 +aL

0 = aL−M+1qM + . . .+aLq1 +aL+1

0 = aLqM + . . .+aL+M−1q1 +aL+M.

For example, we consider the Taylor series for sin:

sinx = x− 1
6
x3 +

1
120

x5 +O
(
x7)

and its associate polynomial:

x− 1
6
x3 +

1
120

x5.

The Padé approximant

sin[3/3](x) =
p0 + p1x+ p2x2 + p3x3

1+q1x+q2x2 +q3x3

satisfies (
x− x3

6
+

x5

120

)(
1+q1x+q2x

2 +q3x
3)= p0 + p1 + p2x

2 + p3x
3.

We find

p0 = 0, p1 = 1, p2 = q1 = 0, p3 = − 7
60

, q2 =
1
20

, q3 = 0.

Therefore

sin[3/3](x) =
x− 7

60
x3

1+
1
20

x2
=

60x−7x3

60+3x2 .

Here are the first order versions of a few trigonometric functions which we will
use:

Function Padé Approximant Associate Taylor Polynomials

sinx sin[5/2](x) =
2520x−360x3+11x5

2520+60x2 x− x3

6
+

x5

120
− x7

5040

cosx cos[4/2](x) =
120−56x2 +3x4

120+4x2 1− x2

2
+

x4

24
− x6

720

cosx cos[4/4](x) =
1080−480x2+17x4

1080+60x2+2x4 1− x2

2
+

x4

24
− x6

720
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2. Main results

In order to attain our aim, we will prove our main results, rational refinements of
the inequalities mentioned in the first section.

THEOREM 2.1. The following inequalities hold

(i)
−7x2 +60
3x2 +60

<
sinx
x

<
11x4−360x2 +2520

60x2 +2520

for every x ∈
(
0,

π
2

)
;

(ii)
2
π

+
π2−4x2

π3 <
−7x2 +60
3x2 +60

for every x ∈ (0,1.4163);

(iii)
11x4−360x2 +2520

60x2 +2520
< 1− x2

3π

for every x ∈
(
0,

π
2

)
.

REMARK 2.1.
1. We notice that both sides of inequality (i) are positives for x ∈

(
0,

π
2

)
.

2. We also mention that our rational inequalities (i), (ii) and (iii) improve the
results (1.2) and (1.3).

Proof. (i) We introduce the function

r (x) =
(
3x2 +60

)
sinx−60x+7x3.

Easy computation yields

r′ (x) = 6xsinx+
(
3x2 +60

)
cosx−60+21x2,

r(2) (x) = −54sinx+120xcosx−3x2 sinx+42x,

r(3) (x) = −42cosx−18xsinx−3x2 cosx+42,

r(4) (x) = 24sinx−24xcosx+3x2 sinx,

r(5) (x) = 30xsinx+3x2 cosx.

Evidently r(5) > 0 on
(
0,

π
2

)
. Then r(4) is strictly increasing on

(
0,

π
2

)
. As

r(4) (0) = 0, we get r(4) > 0 on
(
0,

π
2

)
. Continuing the algorithm, finally we obtain

r (x) > 0 for all x ∈
(
0,

π
2

)
.
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Let
s(x) =

(
60x2 +2520

)
sinx−11x5 +360x3−2520x.

Then

s′ (x) = 120xsinx+
(
60x2 +2520

)
cosx−55x4 +1080x2−2520,

s(2) (x) = −2400sinx+240xcosx−60x2 sinx−220x3 +2160x,

s(3) (x) = −2160cosx−360xsinx−60x2 cosx−660x2 +2160,

s(4) (x) = 1800sinx−480xcosx+60x2 sinx−1320x,

s(5) (x) = 1320cosx+600xsinx+60x2 cosx−1320,

s(6) (x) = −720sinx+720xcosx−60x2 sinx,

s(7) (x) = −840xsinx−60x2 cosx.

The function s(7) < 0 for all x ∈
(
0,

π
2

)
, therefore s(6) is strictly decreasing on(

0,
π
2

)
. As s(6) (0) = 0, we get s(6) < 0 on

(
0,

π
2

)
. Using the same arguments, finally

we have s(x) < 0 for every x ∈
(
0,

π
2

)
.

(ii) The difference

E (x) =
−7x2 +60
3x2 +60

−
(

2
π

+
π2−4x2

π3

)

has the equivalent form

E (x) =
12x4 +

(
240−7π3−9π2

)
x2 +60π3−180π2

π3 (3x2 +60)
.

The polynomial function

P(x) = 12x4 +
(
240−7π3−9π2)x2 +60π3−180π2

has the real roots

x1 ≈−1.8663, x2 ≈−1.4163, x3 ≈ 1.4163 and x4 ≈ 1.8663.

Therefore P(x) > 0 for all x ∈ (0,1.4163).
(iii) The difference

F (x) =
11x4−360x2 +2520

60x2 +2520
− 3π − x2

3π

can be re - written as

F (x) =
x2
(
(60+33π)x2 +(2520−1260π)

)
3π (60x2 +2520)

.
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The polynomial function

Q(x) = (60+33π)x2 +(2520−1260π)

has the real roots

x1 = −2

√
105(π −2)
20+11π

≈−2.9644 and x2 = 2

√
105(π −2)
20+11π

≈ 2.9644.

Hence Q(x) < 0 for all x ∈
(
0,

π
2

)
. �

Related to Kober’s inequality, our result is

THEOREM 2.2. The following inequalities hold:

(i)
17x4−480x2 +1080
2x4 +60x2 +1080

< cosx <
3x4−56x2 +120

4x2 +120
,

for every x ∈
(
0,

π
2

)
;

(ii) 1− 2x
π

<
17x4−480x2 +1080
2x4 +60x2 +1080

for every x ∈ (0,1.5689).

REMARK 2.2.
1. We notice that the polynomial function t (x) = 17x4 − 480x2 + 1080 has the

real roots

x1 = −
√

240+6
√

1090
17

≈−5.0764, x2 = −
√

240−6
√

1090
17

≈−1.5701,

x3 =

√
240−6

√
1090

17
≈ 1.5701 and x4 =

√
240+6

√
1090

17
≈ 5.0764,

therefore t (x) > 0 for all

x ∈
⎛
⎝0,

√
240−6

√
1090

17

⎞
⎠= (0,1.5701)⊂

(
0,

π
2

)
= (0,1.5707).

2. We also specify that our rational refinement for cos improves the Kober’s
inequality for all x ∈ (0,1.5689).

Proof. (i) Let

f (x) =
(
4x2 +120

)
cosx−3x4 +56x2−120.
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We get
f ′ (x) = 8xcosx− (4x2 +120

)
sinx−12x3 +112x,

f (2) (x) =
(−4x2−112

)
cosx−16xsinx−36x2 +112,

f (3) (x) = −24xcosx+
(
4x2 +96

)
sinx−72x,

f (4) (x) =
(
4x2 +72

)
cosx+32xsinx−72,

f (5) (x) = −4x2 sinx−40sinx+40xcosx,

f (6) (x) = −4x2 cosx−48xsinx.

Evidently f (6) < 0 on
(
0,

π
2

)
. It follows that f (5) is strictly decreasing on(

0,
π
2

)
. As f (5) (0) = 0, we get f (5) < 0 on

(
0,

π
2

)
. Using the same algorithm,

we finally obtain f (x) < 0 for x ∈
(
0,

π
2

)
.

If we consider

g(x) =
(
2x4 +60x2 +1080

)
cosx−17x4 +480x2−1080,

then we have

g′ (x) =
(
8x3 +120x

)
cosx− (2x4 +60x2 +1080

)
sinx−68x3 +960x,

g(2) (x) =
(−2x4−36x2−960

)
cosx− (16x3 +240x

)
sinx−204x2 +960,

g(3) (x) =
(−24x3−312x

)
cosx+

(
2x4−12x2 +720

)
sinx−408x,

g(4) (x) =
(
2x4−84x2 +408

)
cosx+

(
32x3 +288x

)
sinx−408,

g(5) (x) =
(
40x3 +120x

)
cosx+

(−2x4 +180x2−120
)
sinx,

g(6) (x) =
(−2x4 +300x2)cosx+

(−48x3 +240x
)
sinx.

The positivity of g(6) on
(
0,

π
2

)
yields that g(5) is strictly increasing on

(
0,

π
2

)
.

As g(5) (0) = 0, we get g(5) > 0 on
(
0,

π
2

)
. Similar arguments lead us to the positivity

of g on
(
0,

π
2

)
.

(ii) The difference

G(x) =
17x4−480x2 +1080
2x4 +60x2 +1080

− π −2x
π

becomes

G(x) =
x
(
4x4 +15πx3 +120x2−540πx+2160

)
π (2x4 +60x2 +1080)

.
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The polynomial function

R(x) = 4x4 +15πx3 +120x2−540πx+2160

has the real roots
x1 ≈ 1.5689 and x2 ≈ 3.2693.

Hence, we have G(x) > 0 for all x ∈ (0,1.5689). �

Using Padé approximation for the sine and cosine functions, we obtain rational
refinement of Becker-Stark inequality as follows.

THEOREM 2.3. The following inequalities hold:
(i)

−28x4−600x2 +7200
9x6 +12x4−3000x2 +7200

<
tanx

x
<

22x8−60x6−4680x4−237600x2 +2721600
1020x6 +14040x4−1144800x2+2721600

for all x ∈ (0,1.5701);

(ii)
8

π2−4x2 <
−28x4−600x2 +7200

9x6 +12x4−3000x2 +7200

for all x ∈ (0,1.52305);

(iii)
22x8−60x6−4680x4−237600x2+2721600
1020x6 +14040x4−1144800x2+2721600

<
π2

π2−4x2

for all x ∈ (0,1.5672).

Proof. (i) Since both inequalities (i) from Theorem 2.1 and respectively Theo-
rem 2.2 contain only positive functions for all x ∈ (0,1.5701), we can multiply them
and obtain(−7x6 +60

)(
4x2 +120

)
(3x2 +60)(3x4−56x2 +120)

<
tanx

x
<

(
11x4−360x2 +2520

)(
2x4 +60x2 +1080

)
(60x2 +2520)(17x4−480x2 +1080)

or, equivalently,

−28x4−600x2 +7200
9x6 +12x4−3000x2 +7200

<
tanx

x
<

22x8−60x6−4680x4−237600x2 +2721600
1020x6 +14040x4−1144800x2+2721600

for all x ∈
(

0,

√
240−6

√
1090

17

)
= (0,1.5701).

(ii) The difference

H (x) =
−28x4−600x2 +7200

9x6 +12x4−3000x2 +7200
− 8

π2−4x2
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takes the form

H (x) =
40x6 +

(
2304−28π2

)
x4 − (600π2 +4800

)
x2 +7200π2−57600

(π2−4x2)(9x6 +12x4−3000x2 +7200)
.

The polynomial function

S (x) = 40x6 +
(
2304−28π2)x4− (600π2 +4800

)
x2 +7200π2−57600

has the real roots

x1 ≈−1.61505, x2 ≈−1.52305, x3 ≈ 1.52305 and x4 ≈ 1.61505,

so S (x) > 0 for all x ∈ (0,1.52305).
Therefore the inequality

−28x4−600x2 +7200
9x6 +12x4−3000x2 +7200

<
tanx

x

is true for all x ∈ (0,1.52305).
(iii) We consider the function

I (x) =
22x8−60x6−4680x4−237600x2 +2721600
1020x6 +14040x4−1144800x2+2721600

− π2

π2−4x2 .

An easy computation leads to

I (x) =
x2(−88x8+(22π2+240)x6−(1080π2−18720)x4−(18720π2−950400)x2−(10886400−907200π2))

(π2−4x2)(1020x6+14040x4−1144800x2+2721600) .

Since the polynomial function

T (x) = −88x8 +
(
22π2 +240

)
x6− (1080π2−18720

)
x4

−(18720π2−950400
)
x2 − (10886400−907200π2)

has the real roots

x1 ≈−4.8322, x2 ≈−1.5672, x3 ≈ 1.5672 and x4 ≈ 4.8322,

it follows that T (x) < 0 for all x ∈ (0,1.5672). �
Using the results from the above theorems, we can state and prove the refinement

of Mortici’s improvement of Wu - Srivastava inequality.

THEOREM 2.4. The following inequality( x
sinx

)2
+

x
tanx

>
11220x10−205560x8−14256000x6+512179200x4−3157056000x2+13716864000

242x12−8580x10+25560x8−1080000x6+103680000x4−1578528000x2+6858432000

> 2+
2
45

x4 > 2

is true for all x ∈
(

0,

√
240−6

√
1090

17

)
= (0,1.5701).
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Proof. We remind that for every x ∈
(

0,

√
240−6

√
1090

17

)
, all functions that

appear in the previous theorems are positive.
Then ( x

sinx

)2
+

x
tanx

> M (x) ,

where

M (x) =
(

60x2 +2520
11x4−360x2 +2520

)2

+

(
60x2 +2520

)(
17x4−480x2 +1080

)
(11x4−360x2 +2520)(2x4 +60x2 +1080)

.

After some elementary transformations we get

M (x) = 11220x10−205560x8−14256000x6+512179200x4−3157056000x2+13716864000
242x12−8580x10+25560x8−1080000x6+103680000x4−1578528000x2+6858432000

.

The inequality

M (x) > 2+
2
45

x4

is equivalent to the following form

x6
(
−484

45
x10 +

1144
3

x8−1620x6 +76380x4−4864680x2+58060800

)
> 0.

The last inequality is true for every x∈
(

0,

√
240−6

√
1090

17

)
, because the poly-

nomial function

U (x) = −484
45

x10 +
1144

3
x8 −1620x6 +76380x4−4864680x2+58060800

has the real roots
x1 ≈−5.1532 and x2 ≈ 5.1532. �

3. Final remarks

Using Padé approximation we obtain good rational refinements near the origin of
some remarkable trigonometric inequalities. We are convinced that Padé approximation
method is suitable to establish many other similar inequalities.
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