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VOLUME EXTREMALS OF GENERAL Lp –CENTROID BODIES

WEIDONG WANG AND TIAN LI

(Communicated by J. Pečarić)

Abstract. Ludwig first discovered general Lp -centroid bodies in 2005 and Haberl and Schuster
determined the extremals of their volume in 2009. In this paper, we extend the Haberl-Schuster
result to all quermassintegrals and also obtain the extremals of the dual quermassintegrals of the
polars of general Lp -centroid bodies.

1. Introduction

The classical Brunn-Minkowski theory was extended to the Lp -Brunn-Minkowski
theory by Lutwak ([20, 21]). In 1997, Lutwak and Zhang ([29]) introduced the notion
of Lp -centroid bodies and established an affine isoperimetric inequality for their po-
lars which is an Lp version of the well-known Blaschke-Santaló inequality for origin-
symmetric bodies. More recently, Lutwak, Yang and Zhang ([22]) proved the stronger
Lp -Busemann-Petty centroid inequality which is equivalent to the Lp -Petty projection
inequality. In the past 20 years, the Lp -Brunn-Minkowski theory expanded into an
impressive body of results by Lutwak, Yang and Zhang, and many others (see e.g.,
[1, 2, 7, 8, 16, 22, 23, 24, 25, 26, 27, 28, 29, 40, 50, 51, 52, 53] and the two good books
[6, 34]).

In 2005, Ludwig [14] discovered the general Lp -centroid bodies (she actually de-
fined general Lp -moment bodies which are a dilation of the general Lp -centroid bod-
ies). More recently, Haberl and Schuster [11] showed that the general Lp -centroid body
is an Lp -Minkowski combination of the asymmetric Lp -centroid bodies. Moreover,
they obtained a general version of the Lp -Busemann-Petty centroid inequality which
is equivalent to the general Lp -Petty projection inequality. They also determined the
extremals of volume of the family of general Lp -centroid bodies.

In this paper, we extend the Haberl-Schuster result on the volume extremals of the
family of general Lp -centroid bodies to quermassintegrals. Moreover, the extremals
of dual quermassintegrals of the polars of general Lp -centroid bodies are obtained.
These results belong to the new and rapidly evolving asymmetric Lp -Brunn-Minkowski
theory that has its origins in the work of Ludwig, Haberl and Schuster (see [9, 10, 11,
12, 14, 15]) and was further developed in [4, 5, 13, 31, 32, 33, 35, 36, 37, 43, 44, 46,
47, 48, 49].
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Let K n denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space R

n . For the set of convex bodies containing the origin in
their interiors, we write K n

o . Let S n
o denote the set of star bodies (about the origin) in

R
n . Let Sn−1 denote the unit sphere in R

n , denote by V (K) the n -dimensional volume
of a body K and for the standard unit ball B in R

n , write ωn = V (B) .
Classical centroid bodies were attributed by Blaschke to Dupin (see [6, 34]), and

their definition was extended by Petty. For a compact set K , the centroid body, ΓK , of
K is the origin-symmetric convex body whose support function is given by (see [6])

hΓK(u) =
1

V (K)

∫
K
| u · x | dx (1.1)

for all u ∈ Sn−1 .
Centroid bodies have proven to be very important in Brunn-Minkowski theory. In

the recent 30 years, classical centroid bodies have attracted increased attention (see,
e.g., [18, 19, 30, 54] or the books [6, 34]).

In 1997, Lutwak and Zhang [29] introduced the notion of Lp -centroid bodies.
For each compact star-shaped (about the origin) K in R

n and real p � 1, the Lp -
centroid body, ΓpK , of K is the origin-symmetric convex body whose support function
is defined by

hp
ΓpK

(u) =
1

cn,pV (K)

∫
K
| u · x |p dx

=
1

cn,p(n+ p)V(K)

∫
Sn−1

| u · v |p ρK(v)n+pdv (1.2)

for all u ∈ Sn−1 . Here
cn,p = ωn+p/ω2ωnωp−1 (1.3)

and dv is the standard spherical Lebesgue measure on Sn−1 . The normalization above
is chosen so that for the standard unit ball B in R

n , we have ΓpB = B . For the case
p = 1, by (1.1) and (1.2) we see that Γ1K is the classical centroid body ΓK under
the normalization of definition (1.2) chosen such that ΓB = B (rather than the classical
c−1
n,1B).

Regarding investigations of Lp -centroid bodies, we refer to [1, 2, 3, 22, 41, 42, 45]
and the books [6, 34]. In particular, Lutwak, Yang and Zhang [22] established the
following Lp -Busemann-Petty centroid inequality (for another proof see [1]): If K ∈
S n

o , p � 1 , then
V (ΓpK) � V (K), (1.4)

with equality if and only if K is an ellipsoid centered at the origin.
In 2005, Ludwig [14] introduced a function ϕτ : R → [0,+∞) by

ϕτ (t) = |t|+ τt (1.5)

with a parameter τ ∈ [−1,1] . Using (1.5), Ludwig [14] (also see [5]) defined general
Lp -centroid bodies as follows: For K ∈ S n

o , p � 1 and τ ∈ [−1,1] , the general Lp -
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centroid body, Γτ
pK , of K is the convex body whose support function is defined by

hp
Γτ

pK
(u) =

2
cn,p(τ)V (K)

∫
K

ϕτ(u · x)pdx

=
2

cn,p(τ)(n+ p)V(K)

∫
Sn−1

ϕτ (u · v)pρK(v)n+pdv, (1.7)

where cn,p(τ) = cn,p[(1+τ)p+(1−τ)p] . The normalization is chosen such that Γτ
pB =

B for every τ ∈ [−1,1] . Obviously, if τ = 0 then Γτ
pK = ΓpK .

In 2009, Haberl and Schuster [11] (also see [5]) introduced the notion of asym-
metric Lp -centroid bodies (they actually defined the asymmetric Lp -moment bodies
which are a dilatation of the asymmetric Lp -centroid bodies) as follows: For K ∈ S n

o ,
p � 1, the asymmetric Lp -centroid body, Γ+

p K , of K is the convex body whose support
function is defined by

hp
Γ+

p K
(u) =

2
cn,pV (K)

∫
K
(u · x)p

+dx

=
2

cn,p(n+ p)V(K)

∫
Sn−1

(u · v)p
+ρK(v)n+pdv, (1.8)

where (u · x)+ = max{u · x,0} . From (1.3) and (1.8), we see that Γ+
p B = B . In [11]

Haberl and Schuster also defined

Γ−
p K = Γ+

p (−K). (1.9)

From the definitions of Γ±
p K and (1.7), Haberl and Schuster [11] deduced that for

K ∈ S n
o , p � 1 and τ ∈ [−1,1] ,

Γτ
pK = f1(τ) ·Γ+

p K +p f2(τ) ·Γ−
p K, (1.10)

where “+p ” denotes the Lp -Minkowski combination of convex bodies, and

f1(τ) =
(1+ τ)p

(1+ τ)p +(1− τ)p , f2(τ) =
(1− τ)p

(1+ τ)p +(1− τ)p . (1.11)

Setting τ = 0 in (1.10) and combining it with (1.11), we see that

ΓpK =
1
2
·Γ+

p K +p
1
2
·Γ−

p K. (1.12)

If τ = ±1 in (1.10) then, by (1.11), Γ+1
p K = Γ+

p K , Γ−1
p K = Γ−

p K .
For general Lp -centroid bodies, Haberl and Schuster [11] proved the following

general Lp -Busemann-Petty centroid inequality.

THEOREM 1.A. If K ∈ S n
o , p > 1 , then for every τ ∈ [−1,1] ,

V (Γτ
pK) � V (K), (1.13)

with equality if and only if K is an ellipsoid centered at the origin.

Note that if τ = 0 in Theorem 1.A, then inequality (1.13) is just inequality (1.4).
Moreoever, Haberl and Schuster [11] determined the following extremals of vol-

ume of the general Lp -centroid bodies:
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THEOREM 1.B. If K ∈ S n
o , p > 1 , τ ∈ [−1,1] , then

V (ΓpK) � V (Γτ
pK) � V (Γ±

p K). (1.14)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the
left inequality if and only if τ = 0 and equality in the right inequality if and only if
τ = ±1 .

One goal of this work is to extend inequality (1.14) from volume to quermassinte-
grals and obtain the extremals of quermassintegrals of general Lp -centroid bodies.

THEOREM 1.1. If K ∈ S n
o , p > 1 , τ ∈ [−1,1] , i = 0,1, · · · ,n−1 , then

Wi(ΓpK) � Wi(Γτ
pK) � Wi(Γ±

p K). (1.15)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the
left inequality if and only if τ = 0 and equality in the right inequality if and only if
τ = ±1 .

Here Wi(Q) denotes the i th quermassintegral of Q ∈ K n
o .

Obviously, if i = 0, then Theorem 1.1 becomes Theorem 1.B by (2.7).
Another aim of this paper is to determine the extremals of the dual quermassinte-

grals of polars Γτ,∗
p K of general Lp -centroid bodies Γτ

pK .

THEOREM 1.2. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] , real i �= n, then for i < n or

i > n+ p,
W̃i(Γ∗

pK) � W̃i(Γτ,∗
p K) � W̃i(Γ±,∗

p K); (1.16)

for n < i < n+ p,
W̃i(Γ∗

pK) � W̃i(Γτ,∗
p K) � W̃i(Γ±,∗

p K). (1.17)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the left
inequality of (1.16) (or (1.17)) if and only if τ = 0 and equality in the right inequality
of (1.16) (or (1.17)) if and only if τ = ±1 . For i = n+ p, (1.16) (or (1.17)) becomes
an equality.

Here W̃i(Q) denotes the i th dual quermassintegral of Q ∈ S n
o .

For i = 0 in Theorem 1.2, by (1.16) and (2.10) we have that

COROLLARY 1.1. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] , then

V (Γ∗
pK) � V (Γτ,∗

p K) � V (Γ±,∗
p K). (1.18)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the
left inequality if and only if τ = 0 and equality in the right inequality if and only if
τ = ±1 .

The proofs of Theorems 1.1 and 1.2 are given in Section 4. In Section 3, we collect
some properties of general Lp -centroid bodies.
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2. Background material

If K ∈ K n , then its support function, hK = h(K, ·) : R
n −→ (−∞,+∞) , is de-

fined by (see [6])
h(K,x) = max{x · y : y ∈ K}, x ∈ R

n,

where x · y denotes the standard inner product of x and y . From the definition of
support functions, we easily deduce that for K ∈ K n and c > 0, h(cK, ·) = ch(K, ·) ;
for K,L ∈ K n , h(K, ·) = h(L, ·) if and only if K = L . And if φ ∈ GL(n) then (see
[6, 34])

hφK(u) = hK(φ t u) (2.1)

for all u ∈ Sn−1 , where GL(n) denotes the group of general (nonsingular) linear trans-
formations and φ t denotes the transpose of φ .

If K is a compact star-shaped (about the origin) set in R
n , its radial function,

ρK = ρ(K, ·) : R
n\{0} −→ [0,+∞) , is defined by (see [34])

ρ(K,x) = max{λ � 0 : λx ∈ K}, x ∈ R
n\{0}.

If ρK is positive and continuous, K will be called a star body (about the origin). Two
star bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is indepen-
dent of u ∈ Sn−1 .

If E is a nonempty set in R
n , the polar set of E , E∗ , is defined by (see [6, 34])

E∗ = {x : x · y � 1,y ∈ E}, x ∈ R
n.

From the above definitions, we see that if K ∈ K n
o , then (see [6, 34])

hK∗ =
1

ρK
, ρK∗ =

1
hK

. (2.2)

For K,L ∈ K n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -Minkowski combi-

nation, λ ·K +p μ ·L ∈ K n
o , of K and L is defined by (see [20])

h(λ ·K +p μ ·L, ·)p = λh(K, ·)p + μh(L, ·)p. (2.3)

Note that λ ·K = λ 1/pK .
For K,L ∈ S n

o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic radial
combination, λ �K +−p μ �L ∈ S n

o , of K and L is defined by (see [21])

ρ(λ �K +−p μ �L, ·)−p = λ ρ(K, ·)−p + μρ(L, ·)−p. (2.4)

Note that λ �K = λ−1/pK .
From (2.2), (2.3) and (2.4), we easily get that if K,L ∈ K n

o , p � 1, and λ ,μ � 0
(not both zero), then (see [21])

(λ ·K +p μ ·L)∗ = λ �K∗+−p μ �L∗. (2.5)
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For K ∈ K n , i = 0,1, · · · ,n−1, the quermassintegrals, Wi(K) , of K are defined
by (see [6, 34])

Wi(K) =
1
n

∫
Sn−1

h(K,u)dSi(K,u), (2.6)

where Si(K, ·) ( i = 0,1, · · · ,n−1) denote the areas measures of order i of K , S0(K, ·)
is just the surface area measure S(K, ·) of K . From definition (2.6), we easily see that

W0(K) =
1
n

∫
Sn−1

h(K,u)dS(K,u) = V (K). (2.7)

For the Lp -Minkowski combination, Lutwak [20] proved the following Brunn-
Minkowski type inequality for quermassintegrals.

THEOREM 2.A. If K,L ∈ K n
o , p > 1 , i = 0,1, · · · ,n−1 , and λ ,μ � 0 (not both

zero), then
Wi(λ ·K +p μ ·L)

p
n−i � λWi(K)

p
n−i + μWi(L)

p
n−i , (2.8)

with equality if and only if K and L are dilates.

For K ∈ S n
o and any real i , the dual quermassintegrals, W̃i(K) , of K are defined

by (see [17])

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idu. (2.9)

Obviously, if i = 0 in (2.9), then

W̃0(K) =
1
n

∫
Sn−1

ρ(K,u)ndu = V (K). (2.10)

The Lp -dual mixed quermassintegrals were introduced by Wang and Leng (see
[38]). For K,L ∈ S n

o , p � 1 and real i �= n , the Lp−dual mixed quermassintegrals,
W̃−p,i(K,L) , of K and L are defined by

W̃−p,i(K,L) =
1
n

∫
Sn−1

ρn+p−i
K (u)ρ−p

L (u)du. (2.11)

From (2.11) and (2.9), we see that for each K ∈ S n
o and p � 1,

W̃−p,i(K,K) = W̃i(K). (2.12)

The Minkowski inequality for the Lp -dual mixed quermassintegrals states the fol-
lowing (see [38]).

THEOREM 2.B. If K,L ∈ S n
o , p � 1 and real i �= n, then for i < n or n < i <

n+ p,

W̃−p,i(K,L) � W̃i(K)
n+p−i

n−i W̃i(L)−
p

n−i ; (2.13)

for i > n+ p,

W̃−p,i(K,L) � W̃i(K)
n+p−i

n−i W̃i(L)−
p

n−i . (2.14)

Equality holds in each inequality if and only if K and L are dilates. For i = n + p,
(2.13) (or (2.14)) becomes an equality.

Further, Wang and Leng [39] established the following Brunn-Minkowski type
inequality for dual quermassintegrals.
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THEOREM 2.C. If K,L ∈ S n
o , p � 1 , real i �= n and λ ,μ � 0 (not both zero),

then for i < n or n < i < n+ p,

W̃i(λ �K +−p μ �L)−
p

n−i � λW̃i(K)−
p

n−i + μW̃i(L)−
p

n−i ; (2.15)

for i > n+ p,

W̃i(λ �K +−p μ �L)−
p

n−i � λW̃i(K)−
p

n−i + μW̃i(L)−
p

n−i . (2.16)

In each inequality, equality holds if and only if K and L are dilates. For i = n + p,
(2.15) (or (2.16)) becomes an equality.

3. Some properties of general Lp -centroid bodies

THEOREM 3.1. For K ∈S n
o , p � 1 and τ ∈ [−1,1] , if φ ∈GL(n) , then Γτ

pφK =
φΓτ

pK .

Proof. From definitions (1.7) and (2.1), we have that for φ ∈ GL(n) and all u ∈
Sn−1 ,

hp
Γτ

pφK(u) =
2

cn,p(τ)V (φK)

∫
φK

ϕτ(u · x)pdx

=
2

cn,p(τ)|detφ |V (K)

∫
K

ϕτ(u ·φy)p|detφ |dy (where y = φ−1x)

=
2

cn,p(τ)V (K)

∫
K

ϕτ(φ t u · y)pdy

= hp
Γτ

pK
(φ t u) = hp

φΓτ
pK

(u).

This gives the desired result. �

THEOREM 3.2. If K ∈ S n
o , p � 1 and τ ∈ [−1,1] , then

Γτ
p(−K) = −Γτ

pK = Γ−τ
p K. (3.1)

Proof. From definition (1.8), we have

hp
−Γ+

p K
(u) = hp

Γ+
p K

(−u) =
2

cn,pV (K)

∫
K
(−u · x)p

+dx = hp
Γ−

p K
(u)

for all u ∈ Sn−1 . This together with (1.9) yields

Γ−
p K = Γ+

p (−K) = −Γ+
p K. (3.2)

Similarly,
Γ+

p K = Γ−
p (−K) = −Γ−

p K. (3.3)
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Hence, by (3.2), (3.3) and (1.10) we obtain

Γτ
p(−K) = −Γτ

pK. (3.4)

In addition, by (1.11) we have that

f1(τ)+ f2(τ) = 1, (3.5)

f1(−τ) = f2(τ), f2(−τ) = f1(τ). (3.6)

This together with (3.2), (3.3) and (1.10) yields

Γ−τ
p K = f1(−τ) ·Γ+

p K +p f2(−τ) ·Γ−
p K

= f2(τ) ·Γ−
p (−K)+p f1(τ) ·Γ+

p (−K) = Γτ
p(−K). (3.7)

Obviously, (3.4) and (3.7) yield (3.1). �

THEOREM 3.3. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] and τ �= 0 , then

Γτ
pK = Γ−τ

p K ⇐⇒ Γ+
p K = Γ−

p K. (3.8)

Proof. By (1.10), for K ∈ S n
o , p � 1 and τ ∈ [−1,1] , we have that for all u ∈

Sn−1 ,
hp

Γτ
pK

(u) = f1(τ)hp
Γ+

p K
(u)+ f2(τ)hp

Γ−
p K

(u). (3.9)

On the other hand, by (1.10) and (3.6), we also have

Γ−τ
p K = f2(τ) ·Γ+

p K +p f1(τ) ·Γ−
p K.

Thus, we get for all u ∈ Sn−1 ,

hp
Γ−τ

p K
(u) = f2(τ)hp

Γ+
p K

(u)+ f1(τ)hp
Γ−

p K
(u). (3.10)

Hence, by (3.5), (3.9) and (3.10), if Γ+
p K = Γ−

p K , then for all u ∈ Sn−1 ,

hp
Γτ

pK
(u) = hp

Γ−τ
p K

(u).

This gives Γτ
pK = Γ−τ

p K .
Conversely, if Γτ

pK = Γ−τ
p K , then (3.9) and (3.10) yield that

[ f1(τ)− f2(τ)]hp
Γ+

p K
(u) = [ f1(τ)− f2(τ)]hp

Γ−
p K

(u),

for all u ∈ Sn−1 . Since f1(τ)− f2(τ) �= 0 when τ �= 0, we get Γ+
p K = Γ−

p K . �

In [11], Haberl and Schuster proved the following a fact.
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THEOREM 3.A. If K ∈ S n
o , p � 1 and p is not odd integer, then Γ+

p K = Γ−
p K if

and only if K is origin-symmetric.

From Theorem 3.3 and Theorem 3.A, we deduce that

COROLLARY 3.1. If K ∈S n
o , p � 1 and p is not odd integer, then for τ ∈ [−1,1]

and τ �= 0 , Γτ
pK = Γ−τ

p K if and only if K is origin-symmetric.

THEOREM 3.4. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] and τ �= 0 , then

Γτ
pK +p Γ−τ

p K = Γ+
p K +p Γ−

p K. (3.11)

Proof. By (3.9) and (3.10), and using (3.5), we have that for any u ∈ Sn−1 ,

hp(Γτ
pK,u)+hp(Γ−τ

p K,u) = hp(Γ+
p K,u)+hp(Γ−

p K,u), (3.12)

i.e.,
hp(Γτ

pK +p Γ−τ
p K,u) = hp(Γ+

p K +p Γ−
p K,u).

This proves (3.11). �

From (3.12) and (1.12), we easily get

COROLLARY 3.2. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] , then

ΓpK =
1
2
·Γτ

pK +p
1
2
·Γ−τ

p K. (3.13)

4. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Using (1.10) and inequality (2.8), we have

Wi(Γτ
pK)

p
n−i � f1(τ)Wi(Γ+

p K)
p

n−i + f2(τ)Wi(Γ−
p K)

p
n−i .

This combine with (3.5), (3.2) and (3.3), yields

Wi(Γτ
pK) � Wi(Γ±

p K).

This is just the right inequality of (1.15).
From the condition of equality in (2.8), we see that equality holds in the right

inequality of (1.15) for p > 1 if and only if Γ+
p K and Γ−

p K are dilates. From this, let
Γ+

p K = cΓ−
p K (c > 0) and use Wi(Γ+

p K) = Wi(Γ−
p K) , then c = 1, i.e. Γ+

p K = Γ−
p K .

Thus, by Theorem 3.A we see that if K is not origin-symmetric and p is not an odd
integer, then equality holds in the right inequality of (1.15) if and only if τ = ±1.

On the other hand, from (3.13) and inequality (2.8), we obtain

Wi(ΓpK)
p

n−i � 1
2
Wi(Γτ

pK)
p

n−i +
1
2
Wi(Γ−τ

p K)
p

n−i ,
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this together with (3.1), yields

Wi(ΓpK) � Wi(Γτ
pK).

This gives the left inequality of (1.15). And equality holds in the left inequality of
(1.15) for p > 1 if and only if Γτ

pK and Γ−τ
p K are dilates, this means Γτ

pK = Γ−τ
p K .

Hence, together with Corollary 3.1, we know that if K is not origin-symmetric and p
is not an odd integer, then equality holds in the left inequality of (1.15) if and only if
τ = 0. �

Proof of Theorem 1.2. From (1.10) and (2.5), we have

Γτ,∗
p K = f1(τ)� Γ+,∗

p K +−p f2(τ)� Γ−,∗
p K. (4.1)

Thus, for i < n or n < i < n+ p , by (4.1) and inequality (2.15) we know that

W̃i(Γτ,∗
p K)−

p
n−i � f1(τ)W̃i(Γ+,∗

p K)−
p

n−i + f2(τ)W̃i(Γ−,∗
p K)−

p
n−i . (4.2)

This together with (3.2) and (3.3), yields

W̃i(Γτ,∗
p K)−

p
n−i � W̃i(Γ±,∗

p K)−
p

n−i . (4.3)

Hence, if i < n then
W̃i(Γτ,∗

p K) � W̃i(Γ±,∗
p K). (4.4)

Inequality (4.4) is just the right inequality of (1.16). If n < i < n+ p , then by (4.3) we
get

W̃i(Γτ,∗
p K) � W̃i(Γ±,∗

p K), (4.5)

this gives the right inequality of (1.17).
For i > n+ p , from (4.1) and inequality (2.16), we get that

W̃i(Γτ,∗
p K)−

p
n−i � W̃i(Γ±,∗

p K)−
p

n−i ,

this yields (4.4).
According to the equality conditions of (2.15) and (2.16), we know that equality

hold in (4.4) and (4.5) if and only if Γ+,∗
p K and Γ−,∗

p K are dilates. From this, we may
get Γ+,∗

p K = Γ−,∗
p K , i.e. Γ+

p K = Γ−
p K . Hence, from Theorem 3.A, we see that if K

is not origin-symmetric and p is not an odd integer, then equality hold in the right
inequalities of (1.16) and (1.17) if and only if τ = ±1.

Now we prove the left inequalities of (1.16) and (1.17).
Using (2.9), we have that

W̃i(Γτ,∗
p K) =

1
n

∫
Sn−1

ρn−i
Γτ,∗

p K
(u)du =

1
n

∫
Sn−1

(ρ−p
Γτ,∗

p K
(u))−

n−i
p du.

But (4.1) gives that

ρ−p
Γτ,∗

p K
(u) = f1(τ)ρ−p

Γ+,∗
p K

(u)+ f2(τ)ρ−p

Γ−,∗
p K

(u), (4.6)
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for any u ∈ Sn−1 . Together with (4.6), we calculate the derivative of the function
W̃i(Γτ,∗

p K) with respect to τ as follows: For every τ ∈ [−1,1] ,

∂
∂τ

(W̃i(Γτ,∗
p K)) = −n− i

pn

∫
Sn−1

(ρ−p
Γτ,∗

p K
(u))−

n+p−i
p

∂
∂τ

(ρ−p
Γτ,∗

p K
(u))du

=
n− i
pn

f (τ)
∫

Sn−1
ρn+p−i

Γτ,∗
p K

(u)[ρ−p

Γ+,∗
p K

(u)−ρ−p

Γ−,∗
p K

(u)]du,

where

f (τ) = − f ′1(τ) = f ′2(τ) = − 2(1− τ2)p−1

[(1+ τ)p +(1− τ)p]2
� 0, τ ∈ [−1,1].

This combined with (2.11), yields

∂
∂τ

(W̃i(Γτ,∗
p K)) =

n− i
p

f (τ)[W̃−p,i(Γτ,∗
p K,Γ+,∗

p K)−W̃−p,i(Γτ,∗
p K,Γ−,∗

p K)].

Note that p > 1,
f (τ) = 0 ⇐⇒ τ = ±1.

Thus, when
∂

∂τ
(W̃i(Γτ,∗

p K)) = 0,

we get τ = ±1 for p > 1 or

W̃−p,i(Γτ,∗
p K,Γ+,∗

p K) = W̃−p,i(Γτ,∗
p K,Γ−,∗

p K).

If i < n or i > n+ p , then by the right inequality of (1.16) we know that

W̃i(Γτ,∗
p K) � W̃i(Γ±,∗

p K),

this means W̃i(Γτ,∗
p K) attains its maximum at τ = ±1. Thus the points where the

minimum of W̃i(Γτ,∗
p K) is attained are contained in (−1,1) . If τ = τ is such a point,

then
∂

∂τ
(W̃i(Γτ,∗

p K))|τ=τ = 0

or, equivalently,

W̃−p,i(Γτ ,∗
p K,Γ+,∗

p K) = W̃−p,i(Γτ ,∗
p K,Γ−,∗

p K). (4.7)

Therefore, by (4.1), (2.11) and (2.12)

W̃i(Γτ,∗
p K) = W̃−p,i(Γτ ,∗

p K,Γτ ,∗
p K)

= W̃−p,i(Γτ ,∗
p K, f1(τ )� Γ+,∗

p K +−p f2(τ )� Γ−,∗
p K)

= f1(τ )W̃−p,i(Γτ,∗
p K,Γ+,∗

p K)+ f2(τ )W̃−p,i(Γτ,∗
p K,Γ−,∗

p K),
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which together with (4.7) and equality (2.11), yields

W̃i(Γτ ,∗
p K) = f1(τ )W̃−p,i(Γτ ,∗

p K,Γ−,∗
p K)+ f2(τ )W̃−p,i(Γτ ,∗

p K,Γ+,∗
p K)

= W̃−p,i(Γτ,∗
p K, f1(τ )� Γ−,∗

p K +−p f2(τ )� (Γ+,∗
p K))

= W̃−p,i(Γτ,∗
p K, f2(−τ)� Γ−,∗

p K +−p f1(−τ)� (Γ+,∗
p K))

= W̃−p,i(Γτ,∗
p K,Γ−τ,∗

p K). (4.8)

Hence, for i < n , by (2.13) and (4.8) we have

W̃i(Γτ ,∗
p K) � W̃i(Γτ ,∗

p K)
n+p−i

n−i W̃i(Γ−τ,∗
p K)−

p
n−i ,

i.e.
W̃i(Γτ ,∗

p K) � W̃i(Γ−τ ,∗
p K); (4.9)

for i > n+ p , by (2.14) and (4.8) we obtain

W̃i(Γτ ,∗
p K) � W̃i(Γτ ,∗

p K)
n+p−i

n−i W̃i(Γ−τ,∗
p K)−

p
n−i ,

this still yields (4.9).
According to the equality conditions of (2.13) and (2.14), we know that equality

holds in (4.9) if and only if Γτ,∗
p K and Γ−τ,∗

p K are dilates.
Similarly, we also get for i < n or i > n+ p ,

W̃i(Γ−τ,∗
p K) � W̃i(Γτ ,∗

p K), (4.10)

and with equality if and only if Γτ ,∗
p K and Γ−τ,∗

p K are dilates.
Thus (4.9) and (4.10) give that for i < n or i > n+ p ,

W̃i(Γτ,∗
p K) = W̃i(Γ−τ,∗

p K)

and Γτ ,∗
p K and Γ−τ,∗

p K are dilates. This together with (2.9) yields Γτ ,∗
p K = Γ−τ,∗

p K ,
i.e.,

ρ−p(Γτ ,∗
p K,u) = ρ−p(Γ−τ ,∗

p K,u)

for any u ∈ Sn−1 . Hence, by (4.6) we obtain

[ f1(τ )− f2(τ )][ρ−p(Γ+,∗
p K,u)−ρ−p(Γ−,∗

p K,u)] = 0.

From this, if f1(τ )− f2(τ ) = 0, then we have τ = 0. This means W̃i(Γτ,∗
p K)

attains its minimum at τ = 0, i.e., for i < n or i > n+ p ,

W̃i(Γτ,∗
p K) � W̃i(Γ∗

pK).

So we get the left inequality of (1.16).
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If ρ−p(Γ+,∗
p K,u)− ρ−p(Γ−,∗

p K,u) = 0 for all u ∈ Sn−1 , then Γ+,∗
p K = Γ−,∗

p K ,
i.e., Γ+

p K = Γ−
p K . Thus by Theorem 3.3 we know that if τ �= 0 then Γτ

pK = Γ−τ
p K for

τ ∈ [−1,1] . This together with (3.13), yields Γτ
pK = ΓpK , i.e., for τ ∈ [−1,1] ,

W̃i(Γτ,∗
p K) = W̃i(Γ∗

pK).

But by Theorem 3.A, we see that Γ+
p K = Γ−

p K if and only if K is origin-symmetric.
This means that if K is not origin-symmetric then equality holds in the left inequality
of (1.16) if and only if τ = 0.

If n < i < n+ p , then by the right inequality of (1.17) we know that

W̃i(Γτ,∗
p K) � W̃i(Γ±,∗

p K),

this means W̃i(Γτ,∗
p K) attains its minimum at τ = ±1. Thus the points where the max-

imum of W̃i(Γτ,∗
p K) is attained are contained in (−1,1) . Similar to the above proof of

the cases i < n or i > n+ p , we can obtain the left inequality of (1.17). �
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