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VOLUME EXTREMALS OF GENERAL L,-CENTROID BODIES

WEIDONG WANG AND TIAN LI

(Communicated by J. Pecari¢)

Abstract. Ludwig first discovered general L, -centroid bodies in 2005 and Haberl and Schuster
determined the extremals of their volume in 2009. In this paper, we extend the Haberl-Schuster
result to all quermassintegrals and also obtain the extremals of the dual quermassintegrals of the
polars of general L, -centroid bodies.

1. Introduction

The classical Brunn-Minkowski theory was extended to the L,-Brunn-Minkowski
theory by Lutwak ([20, 21]). In 1997, Lutwak and Zhang ([29]) introduced the notion
of L,-centroid bodies and established an affine isoperimetric inequality for their po-
lars which is an L, version of the well-known Blaschke-Santal6 inequality for origin-
symmetric bodies. More recently, Lutwak, Yang and Zhang ([22]) proved the stronger
L, -Busemann-Petty centroid inequality which is equivalent to the L, -Petty projection
inequality. In the past 20 years, the L,-Brunn-Minkowski theory expanded into an
impressive body of results by Lutwak, Yang and Zhang, and many others (see e.g.,
[1,2,7,8,16,22,23,24,25,26,27, 28,29, 40, 50, 51, 52, 53] and the two good books
[6, 34]).

In 2005, Ludwig [14] discovered the general L, -centroid bodies (she actually de-
fined general L,-moment bodies which are a dilation of the general L,-centroid bod-
ies). More recently, Haberl and Schuster [11] showed that the general L, -centroid body
is an L,-Minkowski combination of the asymmetric L,-centroid bodies. Moreover,
they obtained a general version of the L,-Busemann-Petty centroid inequality which
is equivalent to the general L,-Petty projection inequality. They also determined the
extremals of volume of the family of general L, -centroid bodies.

In this paper, we extend the Haberl-Schuster result on the volume extremals of the
family of general L,-centroid bodies to quermassintegrals. Moreover, the extremals
of dual quermassintegrals of the polars of general L,-centroid bodies are obtained.
These results belong to the new and rapidly evolving asymmetric L, -Brunn-Minkowski
theory that has its origins in the work of Ludwig, Haberl and Schuster (see [9, 10, 11,
12, 14, 15]) and was further developed in [4, 5, 13, 31, 32, 33, 35, 36, 37, 43, 44, 46,
47, 48, 49].
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Let #" denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space R”. For the set of convex bodies containing the origin in
their interiors, we write .%,". Let .} denote the set of star bodies (about the origin) in
R”. Let §"~! denote the unit sphere in R”, denote by V(K) the n-dimensional volume
of abody K and for the standard unit ball B in R”, write @, = V(B).

Classical centroid bodies were attributed by Blaschke to Dupin (see [6, 34]), and
their definition was extended by Petty. For a compact set K, the centroid body, 'K, of
K is the origin-symmetric convex body whose support function is given by (see [6])

hrK(u)zﬁ/K\wﬂdx (L.1)

forall ue " .

Centroid bodies have proven to be very important in Brunn-Minkowski theory. In
the recent 30 years, classical centroid bodies have attracted increased attention (see,
e.g., [18, 19, 30, 54] or the books [6, 34]).

In 1997, Lutwak and Zhang [29] introduced the notion of L,-centroid bodies.
For each compact star-shaped (about the origin) K in R" and real p > 1, the L,-
centroid body, I',K, of K is the origin-symmetric convex body whose support function
is defined by

1
P _ P
thK(u)— an,V(K)/K‘M x |7 dx
1

= m/ﬂ* lu-v [P px(v)"Pdy (12)

forall u e S"!. Here
Cnp = Onip/ D20 D1 (1.3)

and dv is the standard spherical Lebesgue measure on S”~!. The normalization above
is chosen so that for the standard unit ball B in R", we have I',B = B. For the case
p =1, by (1.1) and (1.2) we see that I'|K is the classical centroid body I'K under
the1 normalization of definition (1.2) chosen such that I'B = B (rather than the classical
¢, 1B).

! Regarding investigations of L, -centroid bodies, we refer to [1, 2, 3, 22,41, 42, 45]
and the books [0, 34]. In particular, Lutwak, Yang and Zhang [22] established the
following L,-Busemann-Petty centroid inequality (for another proof see [1]): If K €
SN p =1, then

V(T'pK) 2 V(K), (1.4)
with equality if and only if K is an ellipsoid centered at the origin.
In 2005, Ludwig [14] introduced a function @; : R — [0,+e0) by

@e(t) = ||+t (1.5)

with a parameter 7 € [—1,1]. Using (1.5), Ludwig [14] (also see [5]) defined general
L, -centroid bodies as follows: For K € ./}, p>1 and 7 € [—1,1], the general L,-
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centroid body, FIT,K , of K is the convex body whose support function is defined by

hIIZ;K( u)= /qor u-x)?

Cnp

— P n+p
CW(T)(HP)V(K) - @c(u-v)Ppg(v)"Pdv, (L.7)
where ¢, p(T) = cu p[(1+7)” + (1 —7)?]. The normalization is chosen such that T B =
B forevery 7 € [—1,1]. Obviously, if =0 then [}K =T,K.

In 2009, Haberl and Schuster [11] (also see [5]) introduced the notion of asym-
metric L, -centroid bodies (they actually defined the asymmetric L,-moment bodies
which are a dilatation of the asymmetric L, -centroid bodies) as follows: For K € .,
p = 1, the asymmetric L, -centroid body, F;K , of K is the convex body whose support
function is defined by

Tk = oy /K (- %)% dx
_ 2 14 n+pd 18
B m/grz—l(u.v)+pK(v) v, ( X )

where (u-x)+ = max{u-x,0}. From (1.3) and (1.8), we see that F;B =B. In[11]
Haberl and Schuster also defined
— T+
FI,K_FI,(—K). (1.9)
From the definitions of FfK and (1.7), Haberl and Schuster [11] deduced that for
Ke!, p>land te€[-1,1],
K= fi(1) T,K+, /(1) T, K, (1.10)
where “+,” denotes the L,-Minkowski combination of convex bodies, and
(L+1)? (I—1)?
T)= , 1.11
MO =rra—or PO~ arprra—or (L.11)
Setting 7 =0 in (1.10) and combining it with (1.11), we see that
1 1
FPKZE-F;K—F,,E-FI,K. (1.12)

If T==+1 in (1.10) then, by (1.11), F;lK: F;K, F;lK: K.
For general L,-centroid bodies, Haberl and Schuster [11] proved the following
general L,-Busemann-Petty centroid inequality.

THEOREM 1.A. If K € .}, p > 1, then for every T € [—1,1],
V(F;K) >V(K), (1.13)
with equality if and only if K is an ellipsoid centered at the origin.

Note that if 7 =0 in Theorem 1.A, then inequality (1.13) is just inequality (1.4).
Moreoever, Haberl and Schuster [11] determined the following extremals of vol-
ume of the general L), -centroid bodies:
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THEOREM 1.B. If K € ", p>1, 1€ [—1,1], then
V(T,K) > V(TEK) > V(T K). (1.14)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the
left inequality if and only if T =0 and equality in the right inequality if and only if
T==l.

One goal of this work is to extend inequality (1.14) from volume to quermassinte-
grals and obtain the extremals of quermassintegrals of general L, -centroid bodies.

THEOREM 1.1. If K€ .}, p>1, t€[-1,1],i=0,1,---,n—1, then
Wi(T,K) = Wi(TK) > Wi(T, K). (1.15)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the
left inequality if and only if T = 0 and equality in the right inequality if and only if
T==l1.

Here W;(Q) denotes the ith quermassintegral of Q € 2.

Obviously, if i = 0, then Theorem 1.1 becomes Theorem 1.B by (2.7).

Another aim of this paper is to determine the extremals of the dual quermassinte-
grals of polars F;’*K of general L,-centroid bodies T',K .

THEOREM 1.2. If K € ./, p> 1, t€[-1,1], real i # n, then for i <n or
i>n+p,
i

Wi(THK) < Wi(TH*K) < Wi(T57K); (1.16)

forn<i<n+p,

Wi(T,K) > Wi(T5°K) > Wi(T, " K). (1.17)
If K is not origin-symmetric and p is not an odd integer, then there is equality in the left
inequality of (1.16) (or (1.17)) if and only if T =0 and equality in the right inequality
of (1.16) (or (1.17)) if and only if T =+1. For i=n+p, (1.16) (or (1.17)) becomes
an equality.

Here W;(Q) denotes the ith dual quermassintegral of Q € .%7".
For i =0 in Theorem 1.2, by (1.16) and (2.10) we have that

COROLLARY 1.1. If K€ ./}, p>1, t€[-1,1], then
V([,K) < V(THK) < V(I *K). (1.18)

If K is not origin-symmetric and p is not an odd integer, then there is equality in the
left inequality if and only if T = 0 and equality in the right inequality if and only if
T==l.

The proofs of Theorems 1.1 and 1.2 are given in Section 4. In Section 3, we collect
some properties of general L, -centroid bodies.
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2. Background material

If K € ", then its support function, hg = h(K,-) : R" — (—eo +e0), is de-
fined by (see [6])
h(K,x) =max{x-y:ye€ K}, xeR"

where x -y denotes the standard inner product of x and y. From the definition of
support functions, we easily deduce that for K € #" and ¢ > 0, h(cK,-) = ch(K,-);
for K,L € %", h(K,-) = h(L,-) if and only if K = L. And if ¢ € GL(n) then (see
[6, 34])

hok (u) = hk (¢"u) (2.1)

for all u € §"~!, where GL(n) denotes the group of general (nonsingular) linear trans-
formations and ¢’ denotes the transpose of ¢ .

If K is a compact star-shaped (about the origin) set in R”, its radial function,
px =p(K,) : R"\{0} — [0,+0), is defined by (see [34])

p(K,x) =max{A >0:Axe K}, xeR"\{0}.

If pk is positive and continuous, K will be called a star body (about the origin). Two
star bodies K and L are said to be dilates (of one another) if px(«)/pr(u) is indepen-
dentof ue "1,

If E is a nonempty set in R”, the polar set of E, E*, is defined by (see [0, 34])

E'={x:x-y<l,yeE}, xeR"
From the above definitions, we see that if K € 7", then (see [0, 34])

1

s pK* = —. (2.2)

hpr =
K I

1
Pk
For K,L € £

o

nation, A-K+,u-Le€ %)

o

p=>1and A,u >0 (not both zero), the L,-Minkowski combi-
of K and L is defined by (see [20])

h(A-K+ppt L) = Ah(K, )P + ph(L, )" (2.3)

Note that A - K = A1/PK.
For K,L € ./}, p>1 and A,u > 0 (not both zero), the L,-harmonic radial
combination, A *K+ ,uxLe .7}, of K and L is defined by (see [21])

PAxK+_puxL,-)"=Ap(K,-) P +up(L,-)"". (24)

Note that A xK = A~ !/PK.
From (2.2), (2.3) and (2.4), we easily get thatif K,L € )", p>1,and A,u >0
(not both zero), then (see [21])

(A-K+pu-L)" =A%K"+_,uxL". (2.5)
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For K € ", i=0,1,---,n— 1, the quermassintegrals, W;(K), of K are defined
by (see [6, 34])

1
Wi(K) = — 1h(K}u)dSi(KM)7 (2.6)
n.Jsn—
where S;(K,-) (i=0,1,---,n— 1) denote the areas measures of order i of K, So(K,-)
is just the surface area measure S(K,-) of K. From definition (2.6), we easily see that
1
Wo(K) = p lh(K,u)dS(K,u) =V(K). (2.7)
S)'l*

For the L,-Minkowski combination, Lutwak [20] proved the following Brunn-
Minkowski type inequality for quermassintegrals.

THEOREM 2.A. IfK, L€ )", p>1,i=0,1,---,n—1,and A,u >0 (not both

zero), then

L P

WiA K +p gt L)77 = AWi(K)i7 + pWi(L)77, (2.8)
with equality if and only if K and L are dilates.

For K € .} and any real i, the dual quermassintegrals, Wl(K ), of K are defined
by (see [17])
~ 1 .
Wi(K) = — p(K,u)"'du. (2.9)
n Jsn—1
Obviously, if i =0 in (2.9), then

Wo(K) = %/Sl p (K, u)"du=V(K). (2.10)

The L,-dual mixed quermassintegrals were introduced by Wang and Leng (see
[38]). For K,L € ./}, p>1 and real i # n, the L,—dual mixed quermassintegrals,

W,m(K,L), of K and L are defined by

1 et p—i _
Wyl == [ Pk w)p, " (u)d. (2.11)
From (2.11) and (2.9), we see that for each K € . and p > 1
W_pi(K,K) = Wi(K). (2.12)

The Minkowski inequality for the L, -dual mixed quermassintegrals states the fol-
lowing (see [38]).

THEOREM 2.B. If K,L € ./}, p>1 and real i # n, then for i <n or n <i <
n+p, .
W_pi(K,L) > Wi(K) 7 Wi(L) "7 (2.13)
fori>n+p,
W_pi(K,L) < Wi(K) "5 Wi(L)~ 5. (2.14)

Equality holds in each inequality if and only if K and L are dilates. For i =n+ p,
(2.13) (or (2.14)) becomes an equality.

Further, Wang and Leng [39] established the following Brunn-Minkowski type
inequality for dual quermassintegrals.
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THEOREM 2.C. If K,L € ./

(4

thenfori<norn<i<n+p,

> 1, real i #n and A,u =0 (not both zero),

Wi(Ax K +_p % L)~ i = AWH(K) i + pWi(L) " #; (2.15)
fori>n+p,

WiA*xK+_puxL) 7 < AW(K) 7 + uWy(L) "7 (2.16)
In each inequality, equality holds if and only if K and L are dilates. For i =n+ p,

(2.15) (or (2.16)) becomes an equality.

3. Some properties of general L,-centroid bodies

THEOREM 3.1. For K€ .}, p> 1l and 1€ [-1,1],if ¢ € GL(n), then T, 0K =
OTIK.

Proof. From definitions (1.7) and (2.1), we have that for ¢ € GL(n) and all u €
Snfl ,

hlef,q)l((”) = W/ @r(u-x)Pdx

2
" Cup(7)|detd|V(K /‘PT -0y)P|detd|dy (where y= ¢~ 'x)
2
- CPT/ @c(9'u-y)Pdy
:hlliz’z’(((bt”) er( u).

This gives the desired result. [

THEOREM 3.2. If K€ .}, p> 1 and t € [—1,1], then

T _ T 177
l"p(—K) =-T,K=T,'K. (3.1)
Proof. From definition (1.8), we have

) = () = s [ (=L ()

for all u € §"~!. This together with (1.9) yields
[,K=T}(-K)=-T,K. (3.2)

Similarly,

+ _ — _ —
I'{K=T,(-K)=-T,K. (3.3)
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Hence, by (3.2), (3.3) and (1.10) we obtain
[ (-K)=-T,K. (3.4)
In addition, by (1.11) we have that
A+ () =1, (3.5)

fil=1)=f(1), fl-1)=/f(T). (3.6)
This together with (3.2), (3.3) and (1.10) yields

[,°K = fi(—7)-TjK+, fo(—7)- T, K

= f2(0) T, (=K) +, fi(7) - T, (-K) =T}(=K). 3.7)
Obviously, (3.4) and (3.7) yield (3.1). O
THEOREM 3.3. If K€ ./, p>1, t€[-1,1] and T#0, then

e o G
ITK=T,"K <= T;K=T,K. (3.8)

Proof. By (1.10), for K € ./

", p>1and T e [—1,1], we have that for all u €
Sn—l’

) = AL )+ SO (). (3.9)
On the other hand, by (1.10) and (3.6), we also have
[,°K = fo(t) - TyK+, f1(1)-T,K.
Thus, we get for all u € S"~ !,
W) = LR, () + i (DR () (3.10)
Hence, by (3.5), (3.9) and (3.10), if FIJ;K = F;K, then forall u € §* 1,
hl’ZﬁK(u) = hlli;TK(u).

This gives [,K =T ,°K.
Conversely, if I";K = F;TK , then (3.9) and (3.10) yield that

1(0) = AOIRL, (1) = [ (0)~ P (),
forall u € §"~!. Since f1(1) — f2(7) #0 when T#0,we get [;K=T,K. [

In [11], Haberl and Schuster proved the following a fact.
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THEOREM 3.A. If K € .7},
and only if K is origin-symmetric.

p > 1 and p is not odd integer, then FI";K =I,Kif

From Theorem 3.3 and Theorem 3.A, we deduce that

COROLLARY 3.1. If K€ .?, p>1 and p is not odd integer, then for T € [—1,1]
and T #0, T,K =T ,"K if and only if K is origin-symmetric.

THEOREM 3.4. If K€ ./, p>1, t€[-1,1] and T#0, then

[ K+,T,"K=T,K+,[,K. (3.11)

Proof. By (3.9) and (3.10), and using (3.5), we have that for any u € N
hP(T,K,u) +hP (T, K, u) = hP (T K, u) + kP (T, K, u), (3.12)
ie.,
hP(TLK +p T, K u) = h? (T K +, T, K, u).
This proves (3.11). [0

From (3.12) and (1.12), we easily get

COROLLARY 3.2. If K€ ./}, p>1, 1€ [-1,1], then

1 1

K =5 TjK -+, T,°K. (3.13)

p

4. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Using (1.10) and inequality (2.8), we have

L

Wi(T5K) 77 > fi(T)Wi(T5K) i + fo(T)Wi(T, K) 7
This combine with (3.5), (3.2) and (3.3), yields
Wi(T5K) = Wi(T, K).

This is just the right inequality of (1.15).

From the condition of equality in (2.8), we see that equality holds in the right
inequality of (1.15) for p > 1 if and only if F;K and I') K are dilates. From this, let
l";,rK =cI',K (¢ >0) and use W,-(F;K) =Wi(T',K), then c =1, i.e. F;K =I,K.
Thus, by Theorem 3.A we see that if K is not origin-symmetric and p is not an odd
integer, then equality holds in the right inequality of (1.15) if and only if 7 = +1.

On the other hand, from (3.13) and inequality (2.8), we obtain

1 T
Wi(TLK) 5= + s Wi(T,TK) 7,

Wi(T,K)m1 > 5

I\JI'—‘
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this together with (3.1), yields
Wi(T,K) > Wi(TEK).

This gives the left inequality of (1.15). And equality holds in the left inequality of
(1.15) for p > 1 if and only if I')K and I',*K are dilates, this means [';)K =T ,"K.
Hence, together with Corollary 3.1, we know that if K is not origin-symmetric and p
is not an odd integer, then equality holds in the left inequality of (1.15) if and only if
t=0. O

Proof of Theorem 1.2. From (1.10) and (2.5), we have
F;’*K = fl(r)*F;7*K+_pf2(T)*F;’*K. (4.1)
Thus, for i <n or n <i<n+ p,by (4.1) and inequality (2.15) we know that
Wi(T5*K) ™77 > fi(D)Wi([)"K) "7 + ()W, K) 7. (42)

This together with (3.2) and (3.3), yields

P

WL K) ™77 > Wi(TEK) 7. (4.3)

Hence, if i < n then B B
Wi(T5*K) < Wi(T,*K). (4.4)
Inequality (4.4) is just the right inequality of (1.16). If n <i < n+ p, then by (4.3) we
get B B
Wi(T5*K) > Wi(T5*K), (4.5)
this gives the right inequality of (1.17).
For i > n+ p, from (4.1) and inequality (2.16), we get that

Wi(T5 K) 7 < Wi(TE*K) i,

this yields (4.4).

According to the equality conditions of (2.15) and (2.16), we know that equality
hold in (4.4) and (4.5) if and only if T;"*K and T',”"K are dilates. From this, we may
get [°K =T,7K, ie. I'JK =T,K. Hence, from Theorem 3.A, we see that if K
is not origin-symmetric and p is not an odd integer, then equality hold in the right
inequalities of (1.16) and (1.17) if and only if 7 = =+1.

Now we prove the left inequalities of (1.16) and (1.17).

Using (2.9), we have that

1 1 _ _n=i
W(FT *K) /Sn lp?’) lK( )du = Z/S”*l (PFI{)*K(u)) I’ du
But (4.1) gives that
Pt ) = ADP L 1)+ (0P . () (4.6)
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for any u € §"~1. Together with (4.6), we calculate the derivative of the function
W;(T',"K) with respect to 7 as follows: For every 7 € [—1,1],

d =iy N — _mpsi d
S ) =" | (el ) T a)

_n—i ntp—i -p -p
=) [, P o0 =y

where

2(1 — 21
I+ +(1-1)7]

f(T):_f{(T):fZ/(T):_[ 2§0, TE[—],I].

This combined with (2.11), yields

J = * n—i 1/ * * 07 * — %
E(Wi(r;’ K)) = Tf(f)[W—p,i(r;’ K,T,*K)=W_,(T"K, T, "K)].

Note that p > 1,
fr)=0 «— 1=+

Thus, when
2 (W5 K) =0,
we get T==x1 for p>1 or
W_pi(TH KT K) =W, (TH*K,T,"K).
If i <n ori>n+ p, then by the right inequality of (1.16) we know that
Wi(TH*K) < Wi(T5*K),

this means VT/,(F;*K ) attains its maximum at T = £1. Thus the points where the
minimum of W;(I',"K) is attained are contained in (—1,1). If 7= 7 is such a point,

then 5
= (W K)) |z = 0

or, equivalently,
W_p (T3 K, Ty *K) = W (T K, T, *K). (4.7)
Therefore, by (4.1), (2.11) and (2.12)
Wi(THK) = W_p (T K, TH7K)
=W i(TE*K, f1(T)* T K+ f2(T) % T, *K)
= [IEW-p (T KT K) + (D)W (T3 7K, T, K),
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which together with (4.7) and equality (2.11), yields

Wi} K) = fi(D)W-p(T5 KT, K)o+ fo(R)Wp (T K T K)
= Wi (T5 K1 (D)4 T K (1) % (T K
= WU Ko=) 5T K (= 2) (1K)
=W_,i(T)"K,T,7"K).

Hence, for i < n, by (2.13) and (4.8) we have

ntp—i ~

W T W (T 7 n—i ([T 7%
WTEK) > WIS K) 5 W (T P K) 7,

ie.
Wi(TT*K) < Wi(T, " K);

for i > n+ p, by (2.14) and (4.8) we obtain

n+p—i ~

7. (17, % 7. (T kO e W7 (T 5% k) — s
WTEK) < W(T5 K) 5 Wy K) 7,

this still yields (4.9).

(4.8)

According to the equality conditions of (2.13) and (2.14), we know that equality

holds in (4.9) if and only if T5*K and T, “*K are dilates.
Similarly, we also get for i <n or i >n+p,

i

Wi, *K) < Wi(T5*K),

and with equality if and only if T5*K and ', ™K are dilates.
Thus (4.9) and (4.10) give that for i <n or i >n+p,

(4.10)

and T5K and T, "*K are dilates. This together with (2.9) yields T5*K = T', ™K,

ie.,
p_p(r;*Kv u) = p—p(r;‘f,*K7 u)

for any u € S"~!. Hence, by (4.6) we obtain

L1(T) = L(D)][p (T, "K,u) — p~P(T,"K,u)] = 0.

From this, if f1(T) — f2(7) = 0, then we have T = 0. This means W;(T';*K)

attains its minimum at 7 =0,i.e.,fori<nori>n+p,

Wi(T*K) > Wi(5K).

So we get the left inequality of (1.16).
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If p=P(Ty " K,u) — p~P(T,"K,u) =0 for all u € §""!, then T)"'K =T,"K,
ie., Iy K =T,K. Thus by Theorem 3.3 we know that if 7 # 0 then I',K =T, *K for
€ [—1,1]. This together with (3.13), yields FIT,K =TI,K,ie.,for Te[-1,1],

Wi(T*K) = Wi(T5K).

But by Theorem 3.A, we see that F;K =T,K if and only if K is origin-symmetric.
This means that if K is not origin-symmetric then equality holds in the left inequality
of (1.16) if and only if T =0.

If n <i < n+ p, then by the right inequality of (1.17) we know that

Wi(T5°K) = Wi(T, " K),

this means Wl(l";*K ) attains its minimum at T = +1. Thus the points where the max-
imum of W;(I';"K) is attained are contained in (—1,1). Similar to the above proof of
the cases i < n or i > n+ p, we can obtain the left inequality of (1.17). [J
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