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INEQUALITIES RELATED TO HERON
MEANS FOR POSITIVE OPERATORS

DAESHIK CHOI

(Communicated by M. Fujii)

Abstract. For positive operators A and B on a Hilbert space, their Heron mean is defined by
H,;(A,B) = rA§yB+ (1 — r)AV,B, where AfyB and AV,B are the p-geometric and fi-
arithmetic means of A and B, respectively. Recently, the relationship H,;(A,B) < A!yB has
been shown under some condition on y and r. In this paper, we improve the condition and show
more sufficient conditions for the relationship.

1. Introduction

Throughout the paper, we use uppercase letters for invertible positive operators on
a Hilbert space and lowercase letters for real numbers. The following notation will be
used:

e A > B (A > B)denotes that A — B is a positive (invertible positive) operator.
e A>0 (A>0) denotes that A is a positive (invertible positive) operator.

For A;B >0 and 0 < u < 1, the p-arithmetic, pt-geometric, and u-harmonic means
of A and B are defined, respectively, by

AVyB = (1—-u)A+uB,
Aﬁ[,lB — Al/z(A71/2BA71/2)[JAl/2’
AB = ((1—pA ' ug =L
In the case u = %, we will omit the p-value in them. For example, AVB denotes
AV ! B. As in the case of scalars, the following relationship is well-known:
AlyB < AfyB<AV,B

for A,B >0 and 0 < u < 1. There are several means that interpolate between the basic
three means. One of them is the Heron mean defined by

Hy.u(A,B) = rAfuB+ (1 —r)AV,B

for re R and 0 < u <1 (see [1]). It interpolates between the arithmetic mean and the
geometric mean.
The following has been recently proved in [2].
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THEOREM 1. Let A,B>0 and r € R.
1. If0<pu<1andr<1,then H.; (A B) > Al,B.

2(2—p)
3(1=p) "

2. If Y <u<1landr>ry, then Hyy(A,B) < AlyB, where ry =

In this paper, we will improve the second result of the theorem and give other
conditions on r, i, A, and B for the relationship H,,(A,B) < A!,B.

2. Improved result

LEMMA 2. For 0 < pu <1 andt >0, define fy(t) by

[ 0,121,
fult) = —u(l—u) r=1
! .

)

Then forall 0 < u <1 andt >0,

—p(1—p)
WO G

Proof. Since (1 —p)t' ™+ ur# > 1=W 4042 — ¢ by Young inequality, fu(t) <
0 for all # > 0. Moreover, it is easy to show that

t—oo
lin}fu(f):fu(l)»
(=17 75(0) = =1 =1+~ { (0 =)+ ) 41, (M

Consider #, # 1 at which f}, attains its minimum value. Then 7 =1, satisfies

o t(t+1)

T @

by (1). Using the equation above, we can express fy (f,) by

—p(1—p)iy
(1= +p) +1,
—p(1—p) .
(1= )ty + 1) Jty +1

Ju(tu) =
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A direct computation shows that the map 7 +— ((1 — u)r+ [.1)2 /t attains its minimum
value at r = /(1 — u). Thus

—u(l—p)
MOZ g1

for all # > 0 (note that the right hand side of the inequality is larger than or equal to
fu(l)). O

The following improves the second result of Theorem 1.

THEOREM 3. F0r0<u<l,letr;1=1+m.lfr>r’,then
Hy (A, B) < Al,B

forall A,B > 0.
Proof. Assume that the following holds for all # > 0 and r > ”L :
1
b (=) (L= )+ ) < (L= p) + ) 3)
Then for any X > 0 we have

PXH (1) (1= I+ pX) < (1 - I +px )™

by the operator monotonicity of continuous functions, where I is the identity operator.
Replacing X by A~1/2BA~1/2 we have

r(AV2BAT V)R 4 (1 p) ((1 s /,LA_I/ZBA_V2> <((1—p)I+pA2B=141/2)71

and thereby the desired inequality H,;(A,B) <A!,B.
Now we prove (3). A simple algebra shows that (3) can be written as

u (t—1)?
r(l—p+pr—1) 2#(1—H)m
which in terms of f, (r) defined in Lemma 2 is
r (=) + fu(0) 2 (1 - p). 4)
By Lemma 2,
1—
B0+ £u(0) > 01 -0 - R
_ Ap(l—p)
_ p(d—p)
-

forall t > 0. Thusif r > ”;1 , then we have (4). O

Note that Theorem 3 improves the second result of Theorem 1, since
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L 2<r <rgfory<pu<l

2. 1y, is defined for all u € (0,1) and symmetric about y = %

In the proof of Lemma 2, we simply used (2). We can analyze it more and produce
another condition for H,;(A,B) <A!B.

LEMMA 4. Let fy(t) be the function defined in Lemma 2. If (2u —1)(r—1) <0,
then
—u(l—p)

fult) > ful1) = =555

Proof. Letting s =¢~! in (1), we have

=1 () = (1=t ps)? s —sH (s + 1). 5)

Putting the right hand side by gy (s), we will show that g, (s) > 0 for s and p with
(2u—1)(s—1) > 0. A direct computation shows

uls) = 2(1 = ps)u+1—pusH ™ — (14 p)s
guls)/u =20+ (1 —p)s" 2= (14 p)s* !
o 1-
:(I—HL)( S s’“‘_l).

I4+u 1+u
By Young inequality,
I S
I+u 1+u

Moreover, since

(1—u>(u—2)_( _1)_1 u

2u—1
I4+pu I+u (2u=1),

if (2u—1)(s—1) >0, then s(!"#H=2)/(F1) > gi=1 and thereby g}, (s) > 0. There-
fore, since g, (1) = gu(1) =0, gu(s) >0 for s and p with (2u —1)(s—1) > 0. By
(5), we have (1 —1)f; (1) > 0 for  and p with (2u —1)(t—1) <0. That s, if u < 3
and # > 1, then f(r) >0 and if p > 1 and t < 1, then fi(t) < 0. Consequently,
Sfu(®)> fu(1) for r and p with Qu—1)(r—1)<0. O

We give another proof of [3, Corollary 2.7].

THEOREM 5. If r > 2, then H,;(A,B) < AluB forall u € (0,1) and A,B >0
with (2 —1)(B—A) < 0.

Proof. We have
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by Lemma 4 and thus (4) is satisfied. By the argument used in the proof of Theorem 3,
we have the desired result. [J

A more delicate computation results in another sufficient condition for H,;, (A, B) <
Al,B. By Lemma 4, we know that if u < 1, fu(#) >0 for t > 1 and if u > 1
Ju(t) <0 for t < 1. We can expand the result as follows.

LEMMA 6. Let f,(t) be the function in Lemma 2. If p < é Ju(t) >0 on
(A1) and if 1> L, £1(6) <0 on (1, 125). Thus if (2 — 1)((1 — ) — ) <0,
then fu(t) > fu(t55)-

Proof. From (5), it suffices to show thatif y > 1, then g, (s) <0 for LA <5< 1

and if pu < %, then g, (s) <0 for 1 <s < 1_7’“‘, where gy (s) is the right hand side of
5), i.e.,
guls) = (1—p+ps)’ +s—s(s+1).

Case u > % and FT” <s<1:Wewill fix 0 <s <1, consider g,(s) as a function
in u, and show A(u) = —gu(s) >0 for u € Iy = (l+S’ 1). A simple algebra shows

()= (s+1)s"Ins —2(s — 1)(1 — u+ us),
') = (s+1)s*(Ins)> = 2(s — 1)%,
R (1) = (s+1)s*(Ins)>.

Since #”(u) <0, A" is a decreasing function. We will show that #” (ﬁ\) <0, that is,
(s+1)s"/0)(ns)? < 2(s—1)* for 0 < s < 1,
or replacing s by z,
(t+ 1) (Inr)? < 2(t — 1) forz > 1.
Taking the logarithm, ¢’(z) > 0 will be shown for z > 1, where
Int
o()=In2+2In(r—1)—In(r+1)— 1 2Inlnz.

Inz 2
(t+1)2  tlnz>

Since ¢'(1) = % — ,l +

t+1 tint 2

"H>0 = —4+ ——— > —.
a0 t—1+(l‘+1)2 Int

It is trivial to show (¢4 1)In¢ > 2(r — 1) for ¢ > 1, which implies -} > 2. Thus

—1
¢'(t) > 0 follows directly from the above relationship. Therefore h (% 0 and
1
+

>
) <
thus 4" () <0 on I. Since h'(u) is decreasing on the interval, if #'(17=) <0, h(u)
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is also decreasing. In this case, since h(1) =0, h(u) > 0 for u € I;. On the other

) =
h(1)} on . Thus it suffices to show that

hand, if h'(1) >0, h(u) >m1n{h(1+x)
h(— ):sl/<1+-“>(s+1)—5—7‘”2
L+ (1+3s)?

is positive for 0 < s < 1. Since

_ 1+5)>+4s
S0 s o/ o (LE8)7H4s
T g (1+5)
slns

h(

+31n(1 +5)—In(s? +6s+1)>0
= l//(s) = —slns+3(1+s)In(1+s)— (1 +5)In(s* + 65+ 1) > 0,
we will show that y(s) > 0 for 0 < s < 1. A direct computation shows

4(s—1)

V'(s) = —Ins+31In(14s) —In(s> + 65+ 1) +m,
—s* 4+ 125 — 2257 + 125 — 1

yils) = s(s+1)(s2+6s+1)2

Letting @(s) = —s* + 12s® — 225 + 125 — 1, we can show that

'(5)/4 = —s> + 95> — 115+ 3,
"(5)/4 = =35>+ 19s— 11

S. s

and that ¢”(s) is an increasing function with ¢”(0) <0 and ¢”(1) > 0. Since ¢'(0) >
0 and ¢'(1) =0, ¢'(so) >0 on (0,s0) and @’(so) <0 on (so, 1) for some sp € (0,1).
Moreover, since @(0) <0 and ¢(1) =0, ¢@(s) <0 on (0,s1) and ¢(s) >0 on (s,1)
for some s; € (0,1). Thus y”(s) <0 on (0,s;) and y”(s) >0 on (s;,1). Since
limg_o+ Y'(s) = +oo and ¥'(1) =0, y/(s) >0 on (0,s;) and ¥'(s) <0 on (sp,1) for
some s; € (0, 1) Finally, since v (0) = w(1) =0, we conclude y(s) >0 for s € (0,1).

Case u < 2 and 1 <s< 2 ” : By the previous result, g, (s) <0 for s and u with

p> 3 and lﬂ” <s<1.Replac1ngsbyt L
guls) = gu(t™")
=12 ((l—u)t—l—u)z-l-t—tl_“(t-i-l)]
:f_zgl—u(t)~

Thus g1—,() <O for r and u with u > 2 and 1 <t < t&;. Replacing u by 1—p,
gu(t) <0 forall  and u such that u < § and 1 <t < lﬂ“. O
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THEOREM 7. For u € (0,1), let

L (2u—1)
GG R T T

If r>Fy then H.u(A,B) < AlB for A,B >0 with (21— 1) ((1 — u)B— uA) < 0.

Proof. Since

fulrt) =~ Bt ut -y ),

we have
u(l _“)+fu(t) >u(l—p)— % . (Z,U“(l _‘u)l—u - 1)
(u—1)> —2uk(1—p)'# 41
(2u—1)?

=p(l—p)-

by Lemma 6. Thus if r > 7, then r satisfies (4). By the argument in the proof of
Theorem 3, we have the desired result. [

REMARK 8. For VL and 7, defined in Theorem 3 and Theorem 7, respectively, a
direct computation shows 7y < VL forO<pu<1.
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