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INEQUALITIES INVOLVING NORM AND ESSENTIAL
NORM OF WEIGHTED COMPOSITION OPERATORS

AJAY K. SHARMA, AMBIKA BHAT, RENU CHUGH AND ELINA SUBHADARSINI

(Communicated by S. Stevic)

Abstract. We characterize the boundedness and compactness of the weighted composition oper-
ator acting from the weighted Bergman space /” (o) to the Zygmund-type space %, , where &
is an admissible weight and v is a normal weight. Some upper and lower bounds for the norm
and essential norm of the operator are also given.

1. Introduction and preliminaries

Let D be the open unit disk in the complex plane C, H(ID) the space of all holo-
morphic functions on D and H* the Banach space of bounded analytic functions on
D. Let w € H(D) and ¢ be a holomorphic self-map of D. Then the weighted com-
position operator Wy o is a linear operator on H (D) defined by Wy of = ¥ - fo @
for f € H(D). Itis of interest to provide function-theoretic characterizations involving
symbols y and ¢ for the boundedness and compactness of Wy, ,, acting between dif-
ferent function spaces. Recently, several authors have studied these type of operators
on different spaces of holomorphic functions, see for example, [2]-[34] and the related
references therein.

Let 0 :[0,1) — [0,%) be a non-increasing continuous function. We extend it on
D by o(z) = o(|z]), z € D and call it a weight or a weight function. Throughout this
paper, we assume that a weight o will also satisfy the following properties:

(1) o(r)(1—r)~U+7 is non-decreasing for some y > 0;

(2) lim o(r)=0.

r—1-
Such a weight function is called an admissible weight. For 0 < p < e and 0 an
admissible weight, we denote by «/”(0) the weighted Bergman space consisting of
holomorphic functions f on D such that

W10 = [ 1FDIPORIAR) <o
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1 1
where dA(z) = ded y= Erdrd 6 stands for the normalized area measure in . Recall

that a weight v is normal if there exist positive numbers 17 and 7, 0 <71 < 7 and
6 €10,1) such that

v(r) . . v
=L is decreasing on [0, 1) and }gr} = 0;
L)T is increasing on [J,1) and hm v(r) =oo
(I—7) 1(1—r)T

It is well known that classical weights 0¢(z) = (1 —|z|*)%, & > —1 are normal
weights.

The following lemma is folklore and can be proved as Lemma 2.1 in [6] or Lemma
1 in [18], we omit the details.

LEMMA 1.1. Assume that p > 0, k € Ny and © is an admissible weight. Then,
there is a positive constant C such that

1 Lerp (o)

ol/P(z)(1 — |z]?)k+2/p

M) <c
Sforevery z€ DD and f € o/P(0).

LEMMA 1.2. Let y> 0 and ¢ be an admissible weight. Then

= AeD
f1a () Gl/l’(k)(l —/lz) 22+n/p (D)
is in /P (o). Moreover, sup; cp || fyallaro) S 1-

Proof. Proof is an easy consequence of Lemma 2.4 in [2]. [
The next lemma can be found in [13].
LEMMA 1.3. Let 1 < p < oo and ¢ be an admissible weight. If a bounded se-

quence {fi}ren in &/P(0) converges to 0 uniformly on compact subsets of D, then
{fi}ren also converges to 0 weakly in </P(0).

The following functions play an important role in the rest of the paper.
For y>0, n € Ny and A € D, consider the family of function.

( M‘ ) (1+7y)/p+n

prm— . l
Using Lemma 1.2 it is easy to show that f,, 3, € &/”(0). Moreover,
1
Jyna(A) = ()

SUP () (1~ AP
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Also an easy calculation yields the following equalities:

, 442y (L [ApRCen/pen
f%"l() ( p +n)lgl/p(l)( —lz) (2+y)/pnt1’

442y A
N R e @

.y 442y N\ (4+2r 2 (1=|A)2 /i
Fena ()= ( P )( P o +1>(M ol/P(A)(1 — Az)2C@+1/ptn+2’

v (A2 4+2y (A)?
fm,a@)—( p +">< » +”+1>Gl/p(x)(1_7L|2)2+2/p' @

For a normal weight v, the Zygmund-type space %, on D is the space of all holomor-
phic functions f on D such that

sup v(z)|f" (z)] < oo

z€eD

For v(z) = 1 —|z|? is obtained the (standard) Zygmund space 2, which was defined
in [5]. The space 2, is a Banach space with the norm

11l = 1£(O)]+ £ (0)] +Sg£V(Z)|f”(Z)I~

Zygmund-type spaces and operators on them have attracted a considerable attention
recently. For some operators from or to the Zygmund-type spaces on the unit disk, see,
for example, [3, 4, 5, 9, 7, 8, 12, 23, 27, 32, 34]. Zygmund-type spaces on the unit
ball and operators from or to them are studied, for example, in [10, 11, 17, 31, 33],
while some results in the setting of the upper half-plane can be found, for example, in
[15, 21, 22]. For some generalizations of Zygmund-type spaces and operators on them,
see, for example, [21, 20, 24, 25, 22, 26].

In this paper, we characterize the boundedness and compactness of weighted com-
position operators acting from weighted Bergman spaces «/”(c) with admissible
weights to Zygmund-type spaces Z,. We also give some upper and lower bounds for
the norm and essential norm of the operators. For some results, in this direction, see,
for example, [13, 14, 16, 30] and the references therein.

The next criterion for compactness follows by standard arguments similar to those
outlined in the Proposition 3.11 in [1].

LEMMA 1.4. Let 6 be an admissible weight, v a normal weight and Wy ¢ :
AP (0) — Zy is bounded. Then Wy o : /7 (0) — 2, is compact if and only if for any
bounded sequence {fy}nen in /P (0) which converges to zero uniformly on compact
subsets of D, we have ||Wy o full 2, — 0 as n — oo.

Throughout this paper constants are denoted by C, they are positive and not nec-
essarily the same at each occurrence. The notations A < B means that A is less than
or equal to a constant times B and D 2 E, means that D is greater than or equal to a
constant times E.
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2. Boundedness and compactness of Wy, , : &/7(0) — Z,.

THEOREM 2.1. Let p > 0, o an admissible weight, v a normal weight, y €
H(D) and ¢ be a holomorphic self-map of D. Then Wy, o : &/P(0) — 2, is bounded
if and only if the following conditions are satisfied:

(1) My = sup vEIv' ()] <o

ep 61/P(9(2))(1—[@(2)[*)>/P

_vE@RY(2)'(2) + w(z)e" (z)|
@) Mo = D o (0 () (1 o () P27

| 2

oD 5P (9() (1 — [p(o) P27

Moreover, the following relation hold

(3) My=s vy ()¢’ (2)

My +My+Ms S Wy ol orr(o)— 2,

ly(0)| + [y'(0)] N lw(0)¢'(0)]
~ ol/r(p(0)(1—19(0))2/P  al/P(e(0))(1—|@(0)[>)!+2/r
+ M+ M, 4+ Ms. 5)

Proof. First suppose that Wy, : /7 (0) — 2, is bounded. Then

Wy.of

for every f € o/P(0). By taking f(z) =1 in (6) we have that

%, < Wy ollaro)—2, 1 fllar(o) (6)

supv(z)| V' (@) < Wy pllorr(o)—2- )
z€

Also by taking f(z) = z in (6), using (7) and the fact that |@(z)| < 1, we see that

supv(2)[2¢/(2)9'(2) + ¥ () 9" (2)| < [Wy.pll v () 2 (8

zeD

Again by taking f(z) = z?/2 in (6), using (7), (8) and the fact that |¢(z)| < 1, we have
that

SugV(Z)“//(Z)H(P/(Z)F S Wyollor(o)—2,- ®)
z€

Next we consider the following family of functions

12(2) = f10,000)(2) = 2f31,02) (@) + fr2,00)(2)s

where fy; o1), i =0,1,2 are defined in (1). Then

21—  (1—|e)*)?
((1 - |<l(’p((7L))z|)> * ((1 —%z))z T1r0.00) (@) = Tpa)(2) fr0.0(2)(2),

@)= |1-
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where
2(1—|<P(7L)|2)+(1—\@\2)2'
(I-p(A)z)  (1-0(A)2)?

T‘P(M(Z) =1-

Then 7y) € H™ as

21— [P . (1- o))
supl o) @< sup | 10 mn T U ez | <

Therefore, f; € </P(0) and sup || ||»(o) S 1. Moreover, using (2), (3) and (4), we
AeD

have that

2(p(2))

f1(0(2)) =0, f;(p(4)) =0 and f;(p(1)) = (o)) (1= A2

Thus

HWVMPHWP —>jv ~ HWu/ quJLHZv

vV (M) (1) + 2y (A)e' (1)
) /

+l//(7t) "N (@A) +w(A) (@ (1)) 1 (@A)l
vIMlyA)lle' A)Ple(r)?
. 10
(@)1~ [p(2) Py o
Therefore, we have that
viV)lwA)lle' (M) Ple(r)
W P 4>
S Sna)(1 — [p(n) i ~ IMeellrio2
Thus for fixed § € (0,1), we have that
AW RE
o()>6 SY/P(@(A))(1—|@(A)R)2r2/p ~ TTV0 S
Since o is non-increasing, so by using (9), we have that
viM)lwA)lle' (1) 1
oot P s ST o) (1 — o) P27 < GTn(8)(1 = 52yarp | v llrrion2i
(12)
Hence from (11) and (12), we have that
viV)lw)lle' (A)?
2P ST o)1 — o) Py ~ IMrellario2 (43

Again, let A = @({) and consider the family of function

@ = (T wa) 00 - (0 k6) s+ (T 42) a0,
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Then
814y ) <l6+8y )1—x|2 (8—1—47/ )(l—llz)z}
)= —+4 - +6 =+ +2 7 :
8(3) K P P 17z P (g [roxt
= pa(2)fy02(2)-
Since
844 16+8 L—|AP
sup|p; (2)| = sup <ﬂ+4)_< + 7/4_6) |_‘
sup up p p -2z
ERPRERY
o (B ) UARR g (227) o
p (1—12)2 p

so py € H”. Therefore, we have that g; € «/”(0) and sup; cp [|ga[|o7r(5) < 1. More-

over,

8+4 1648 8+4
2h(2) = <+Ty +4>f3//,0,x (2)— ( ; y+6)f;7m (2)+ <+Ty +2>f{/,2,x (2)

8+4 16+8 8+4
()= (—y+4>f;’,o,l(z> - ( ; y+6)f;///,1,/1 (2)+ (Ty+2>f;’,u(z>-
Therefore, by using (2), (3) and (4), we have that
g2(A) =0, g/(A)=0 and g, (A) = 2
* $ o * ! /P(2)(1— @A) ) +2/r

and so
HWu/.,qu,ofP(o)H% b |‘Wu/~,¢gk‘|%
> v( Q)" (§)ga (o) + 2y (0)¢'(£)
+W(£)0"(£)g5 (0(0) +w(O)(¢'(£))eh (9(0))]
(S)e"(

(
YORY(©)9/0) +y(©)9'(E)
> 2 o g (- gy P

Thus we have

v(E) 12y ()’ (E) +w ()" (O)l|e(L)] < HWW-<PHQ.V”(G)~>Q" '

b o P(p(0)(1— Q)PP

Thus there exist some 6; € (0,1), such that

V(O RY'(0)e'(E) +v(&)e" ()]
\¢(S£Zl)l|p>61 al/P(o(8))(1—|@(8)2)+1/r S Wy ollarr (o) -2, -

(14)
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Since ¢ is monotonically increasing, so by (8), we have that

VOV (D)0 () + w(0)e" Q)] 1
o o)1 e QP T S G(an (i~ enas yellaror-z
(15)
Combining (14) and (15) we have that
vV (D)0 () + v(0)e" Q)]
(o)1 - lp)p) e~ Wwellorez. (16)

Again, let A = ¢({) and consider the family of functions

hy(z) = 2(2%% 1) (A%ZYJF 1)fy.,o.,x (z)

) 5 o () (2

Then
o= (25 e) (457200) () ()
+2<2;y> (44;)2y+ 1) ((11—_%2))22}&% .

=81(2) fro1 (2)-

Proceeding as above we can show that g; € H”, h; € &/P(0) and sup; cp [|ha || v (o) S
1 and
2

Wy () =0, (A) =0 and &y (A) = ST AT

Therefore,

v(Oly" (Ol
P(E)(1—lp(&)2)/r

Wy ollorr(o)—2 2 [[Wyohall 2, = o1

Taking the supermum over { € D, we have that

D o G S Wrellavo-2: n

From (13), (16) and (17) we have that

M+ My +Ms S Wy ol v (0)— 2, - (18)
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Conversely, suppose that the conditions (1)—(3) hold. Then

V(@) (Wyof)" (2)] = V( ' (2)f(0(2) + 2v' ()¢’ (2)
v(@)"(2)f (9() + w(@)(@' ()" (0(2)]

< ( vy (2)] L YRRV + v(@)e" ()]
Ye(p(2)(1=lo@)[)¥r  ol/P(p(2)(1—|p(z)]?)+2/r
vy (E)lle' (2)?
2

P01~ () >2+2/P)f lorio)

Taking the supremum over z € D, we get

sup v (2)|(Wypf)" (2)| < (My + Mo+ M3) || £ (o)

z€eD

Further, we have
Wyollarr(c)— 2, S Mi+My+Ms, (19)

(W (O)[[|f]l 77 (c)
al/P(@(0))(1 —[@(0)?)/»

Wy.of (0)] = [w(O)||f (¢(0)] < (20)

(Wy0f)'(0)]
= [y/(0)£(9(0)) + y(0)¢'(0)f (9(0))|
( ¥ (0)] [y (0)¢(0)] )n p o
~ o 7r(9(0))(1-[@(0) 2P a/r(p(0)(1—|p(0)2)12/p ) 110
Combining (19), (20) and (21), we have that
Woolmors |y (0)] + |y (0)]
VRIS 1 (p(0)) (1~ [p(0)P)7
[y (0)¢(0)]
cl/r(9(0))(1— |p(0)2)1+2/p
From (18) and (22), (6) holds. [l

+ My + M, + Ms. (22)

THEOREM 2.2. Let p > 0, o an admissible weight, v a normal weight, y €
H(D) and ¢ be a holomorphic self map of I such that ||@|l. < 1. Let Wy :
AP (0) — 2, is bounded. Then following conditions are equivalent:

(1) Wy.p: P(G) — % is bounded.
(2) Wy : dP(0) — %, is compact.
(3) N1 = SHPV(Z)W/ (2)] <o,
_flelngv(z” V' (2)¢'(2) + y(2)9"(2)] < e,
N; —sup\/(Z)IW( )| (2] < oo,
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Proof. (2) = (1) is trivially true. To complete the theorem we only need to prove

that (1) = (3) and (3) = (2).
(1) = (3) By taking f(z) =1, f(z) =z and f(z) =2z*/2, respectivelyin |Wy o f]
<

o). We see that all the conditions in (3) hold.
in /(o) such that sup||fj|lar(o) <M and f; — O uniformly on compact subsets of
J

(3) = (2). Suppose that conditions in (3) hold. Let {f;} be a bounded sequence

D. From this and by the Cauchy inequality we have that f} — 0 and f} — 0 uniformly
on compact subsets of . Thus for fixed z € D, we have that

V@ (Wy.ofi)" @) < V@I (@£ (0E)]+ v(2)12¥' (2)9'(2) + v (2) 9" (2)]| £i(9(2))]
+v@Iw@)e' @)L ()]

<v(@E@)y'(z >|\CI max x (O +v(@) 2y (2)9'(2)
+y(2)e"(z )||C\I?mw|f’(g)|+ @yEIe' ) max f7(©)
Thus
supv(2)|(Wyefj)" ()| <Ni_max [f;(§)|+ N> max |fi()]
€D [CI<ll¢lle ICI<loll
+N; max [f{(§)] = 0as j—eo
ICI<llolle

and so 1im;j e sup.cp V(z)|(Wy.o fj)" (z)] = 0. Moreover, |y(0)||f;(¢(0))| — 0 and
W' (0).i(9(0)) + w(0)¢'(0);(9(0))| — 0 as j — e. Thus

lim [[Wy o fjll 2, = 0.
J—roo

Hence by Lemma 1.4, Wy, o : &/?(0) — Zy is compact. [J

3. Essential norm of Wy, , : &/?(0) — 2.

In this section, we give some upper and lower bounds for the essential norm of the
operators.

Recall that if X and Y are two Banach spaces, then the essential norm || T'||¢ x—y
of a bounded linear operator 7 : X — Y is defined as

IT||ex—y =inf{||T — K|| : K is compact from X to Y },

where ||T|| denote the usual operator norm. Clearly 7 is compact if and only if
IT]lex—y =0.

THEOREM 3.1. Let p > 1,0 an admissible weight, v a normal weight, y €
H(D) and ¢ be a holomorphic self map of I such that ||@|l. = 1. Let Wy :
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P(0) — 2y is bounded. Then

. vy Q)]
Wogllessrior = U S o) (1~ [P
mup VOV OO C) + Vo)
TS S ((2) (1 [p(2) )27
iy VO

oL () (1= |@R)P)PP

Proof. Lower Bound. Let {z;} be a sequence in D such that |¢(z;)| — 1 as
J — oo. Consider the functions f},g; and h; defined, respectively as

fj( ):fy0<pzj- (z )_zfy,l,(p(zj)(z)+fy,2,<p(zj)(z)7
8+4 16+8 844
gj(z) ( —; 7/"'4)f)/70(pz, ( ) ( —1’7_ Y )fqu)z, ( ) ( - 7/ 2)fy727(P(Zj)(Z)7

+
=2 (a2 2

247\ (4427
+2< p )<T+ )fmz,w(z,-)(Z),

where f}0 o( ) Jr1,0( Z) and fy3 (;;) are defined as in (1). As in Theorem 2.1,
we have that {f;}, {g;} and {h;} are bounded in «/?(o) and sup||KjH < M, where

K; = fjorgjorhj. Moreover K; — 0 as j — e uniformly on compact subsets of D.
Let K :.a/P(0) — %, is compact. Then by Lemma 1.3, ||[Kfj||2, — 0 as j— co. As
in Theorem 2.1,

2(p(z)))’
o!/P((z))(1 - lo(z)P)>+2/r

fi(9(z;)) =0.£i(9(z;)) =0 and f}(9(z;)) =

Therefore,

e,r(0)—2, = Climsup [[Wy o f; — Kfjllz,
J—ee

2 Climsup |Wy.¢ fjllz, —limsup || K fl|z,
J—oo Jjeo
: v)lw(z)lle' ()

> Climsup : .
e OYP(0(2)))(1 = |@(z))|?)?+2/P

Proceeding as in Theorem 2.1, we have that

(23)

—20(z;)
cl/P(@(zj)) (1 —|@(z;) )1 2/p

8i(9(z)) =0, gj((z)) =0 and gi(¢(z))) =
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and so

HWV/a§0||e,,QW’(G)~>Q‘§/ > Climsup [Wy.08; —Kgjll 2,

/—»

ChmsupHWl,,q,g, , —limsup||Kg;| 2,

= J—ee

. V(@) 12y ()9 (z)) + w(z)) 9" (z))]
> ISP = oo —loeypr Y
Jeo J J
Once again as in Theorem 2.1, we have that

H(0() =0, K(9(21) =0 and Iy(9(2)) = iz

Therefore,

[Wy.plle.crr(o)—2, = Climsup ||[Wy ohj — Khj|| z,

J—oo

> Climsup [|[Wy,oh;| 2, — limsup || Khj| #,
J—roo J—oo

VW0 )P
> s o) (L~ PP =

Combining (23), (24) and (25), we get

Wy, ||e,,9.¢l’ H,zthmsup
roleane @0

p(2)|—107(0(2)

. ()I2w(z><p’) (29" ()]

*ff,,‘?ﬁﬂo Tr(0(@)(1— o) P)2r
y

v(2)|y(2)||e'(2)? (26)

s ST (0(2) (1 — o) PP

Upper Bound. Let @(z) = k%z. Then || @kl < 1. Let

L@ =Cas@ =1 (7))

Then by Corollary 4 in [13], we have that L; : &/?(0) — &/P(0) is compact. Since
Wy 1 &P (0) — Z, is bounded, so Wy, oLy : #/7(0) — %, is compact. Thus

Wy olle < [[Wy.p — Wy oLkl
< osup ([Wyo(I—Li)fll =,

£l (o) <1
< osup ([Wyo(T= L) £(O)]| +[(Wy o (I —Li) f)'(0)]
£l erp (o) <1
+supv(2)|(Wyo(I = Li) /)" @) | 27)

zeD
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where [ is the identity operator on </?(c). For any r € (0,1), we can write

sup V(@) (Wy o (I = Li)f)"(2)| = Sup V(@) |(Wy.o (I = Le).f)" (2)]
zE o(z)|<r

+ sup v()|(Wyo(I=Lo)f)" ()] (28)
() >r

Now

|(Wyo(I—Le)f)" (2)] =

vi{ o) - 1( o) f+ v

e {700 - o (fe) |

v {700 - s (0@
(29)

Let |¢(z)] < r and w = ¢(z). Denote the straight line segment from kw/(k+1) to
w by [kw/(k+1),w]. Then [kw/(k+ 1),w] C D(0,r), where D(0,r) = {z:|z| < r}.
Thus for i € {0,1,2}, by Lemma 1.1 and the fact that ¢ is non-increasing, we have
that

0 () — ¢ [ K — (i+1)
'f W) =1 <k+1w)‘ '/[kw/(k+1),w]f (C)dg‘

< sup |fI())

[l 1£llerv (o)
’S Sup 1 2\i+1+42
+ 1 ¢epo,) 0V/P(8) (1 —[§?)i+1+2/p

< Iwl £l 72 ()
~k+1ol/r(r)(1—r2)+ie2/p

Using Lemma 1.1, (29) and (30), we have that
sup  sup V(2)|(Wyo(I — L) f)"(2)| — 0ask — . (1)

I£llarp (o) <1 l@(2)[<r

(30)

Using (30) with i = 0, we have that

Wy 1~ L 0) = W01 (6(0) - w0 (700 )|

< w(0)e(0)] £ lerp (o)
Yookl aVe(r) (1= )2

(32)
On the other hand, by Lemma 1.1 and (30) with i =0 and i = 1, we have that
|(Wy.(I—Li)£)'(0)|

< O p(0) -1 700)) +1v0)0'O)

100)- (00|
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000~ (o) [+ HP2O o)

o) -1 (Fge0)|

(W' (0)9(0)| 1 [w(0)¢'(0)] 1
~ k+1  ol/r(r)(1—r2)t+2/r k+1  ol/r(r)(1—r2)t+2/p

[y (0)9!(0)]

lv(0)p(0)g'(0)] & 1
R R S T r2)2+2/p) 1/ llre(a): (33)

Combining (32) and (33), we have that

sup [|Ww7<p<1—Lk>f<o> T <Ww,¢<I—Lk>f>’<o>] 0 @)

1 fllerp (o) <1

as k — oo. The second term in the right hand side of (28) is dominated by

sup v @I 1701+ 1 (700 )

lp(z)[>r
" ! k k
+ s vORYOYOvOe ONIrel ) (feo) |}
u / 2 1/ k2
v s OO0 e (700 ||

which is further dominated by a constant multiple of

1fllroio) 1fllrr(o)
o VI >|{Gl/p((P(Z))(1—(P(Z)2)2/p+01/P(Hil(p(z))(l ot >|z>z/p}

1F v (o)
c!/r(e(2))(1- |<P(Z)|2)”2/”

+ s VRV R R+ ><p”<>|{
lo(z)|>r

k 11l crr (o)
+ k
k+1 ol/P(Z50(z)(1—

(Z)|2)1+2/p}
o 1 lrr(o)
—l—l(p??)%rV(Z)W(Z)((P (Z)) {GI/P((p(Z))(l _ |¢(Z)|2)2+2/p
n K2 Hf”ofp }
(+ 17 61/r( 10 (1 - Gl lo@)P)>2/r )

k2
@l

(35)
Letting k — oo in (35), we get
limsup sup  sup V()| (Wyoll — L))" (2)]

k—eo || fllrp () <1l@(2)[>r
v@)Iy" ()|
5\90??)?» P(@(2))(1—|o(z)*)¥/r
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( )IZV/’(ZW( )+ v(2)e"(2)
+ sup
o>+ OY/P(0(2))(1—|o(2)?)1+2/P
vRIy@E)Ie' (2)?

T STrp()(1— [pEPR (30
Using (28), (31), (34) and (36) in (27), we have that
) VIV
o2 % S S )1~ eGP
YRV QI0E) + vl
T oeR o (p(0) (1= [p(o) ) 727
VORI @)L
T oeR 5(0() (1 - o) P27
Finally, letting r — 1, then we get
. VIV @)
Woolleornio) 2 S U0 T @) (1L~ [P
i L2V Q) )0'(0)
S S () (1 [p() )+
+ imsap —VEVEI QP -

(o)1 017 (9(2))(1—[@(2)|*) 22/

Combining (26) and (37), we get the desired result. [J

COROLLARY 3.2. Let p > 1, 0 an admissible weight, v a normal weight, y €
H(D) and ¢ be a holomorphic self map of D, such that ||@|l. = 1. Let Wy o :
AP (0) — 2, is bounded. Then Wy o : &/P(0) — 2, is compact if and only if the
following conditions are satisfied

. valv'el
O D o o) (1 — 0P

m v(R)2¥'(2)9' () + v(2) 9" ()|
@ D b () (1~ [ o)) 2P

. vyl P
) s o (0 () (1 — o) P27
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