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COMMUTATORS OF GENERALIZED CALDERON-ZYGMUND
OPERATORS ON WEIGHTED HERZ-TYPE HARDY SPACES

YAN LIN AND GUOMING ZHANG

(Communicated by A. Meskhi)

Abstract. In this paper, the authors establish the boundedness of commutators generated by the
generalized Calderén-Zygmund operators and weighted BMO functions or weighted Lipschitz
functions on weighted Herz-type Hardy spaces.

1. Introduction

The research of the generalized Calderén-Zygmund operator is motivated by the
classical Calderén-Zygmund operator, whose theory is one of the greatest results of
classical analysis in the last century.

Suppose that T is a generalized Calderén-Zygmund operator, whose accurate defi-
nition will be given later, and b is a locally integrable function on R”. The commutator
[b,T] generated by b and T is defined as following:

[0, T](f)(x) = b(X)T f(x) = T (bf) (x).

In 1995, Pérez [17] studied the boundedness of the commutators generated by
classical Calderén-Zygmund operators and BMO functions from Hardy type spaces to
Lebesgue spaces. Lu, Wu and Yang in [ 1] established the boundedness of the com-
mutators generated by classical Calderén-Zygmund operators and Lipschitz functions
from Hardy spaces to Lebesgue spaces. Since Herz spaces and Herz-type Hardy spaces
cover, respectively, the Lebesgue spaces and the Hardy spaces and their weighted ver-
sions with power weights, it is a natural idea to generalize the above results to the
corresponding boundedness from Herz-type Hardy spaces to Herz spaces. The bound-
edness of the commutators generated by classical Calderén-Zygmund operators and
BMO functions or Lipschitz functions from Herz-type Hardy spaces to Herz spaces
was established in [14, 11], respectively.

The authors in [1] discussed the boundedness of generalized Calderén-Zygmund
operators on weighted Lebesgue spaces and weighted Hardy spaces. In 2011, Lin [6]
proved the boundedeness of [, 7] on Morrey spaces when b is a BMO function or a
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Lipschitz function respectively. Lin and Sun [8] showed the boundedness of the gener-
alized Calder6n-Zygmund operator and its commutators with weighted BMO functions
on weighted Morrey spaces. In 2015, Lin, Liu and Cong [7] obtained the bounded-
ness of commutators generated by the generalized Calderén-Zygmund operators and
weighted Lipschitz functions on weighted Morrey spaces. Liu and Li [10] established
the boundedness of the commutators generated by generalized Calderén-Zygmund op-
erators and BMO functions or Lipschitz functions from Herz-type Hardy spaces to Herz
spaces, respectively.

Inspired by the above results, with further development, it is naturally interesting
to consider the boudedness of commutators generated by the generalized Calderdén-
Zygmund operator and a weighted BMO function or a weighted Lipschitz function
from weighted Herz-type Hardy spaces to weighted Herz spaces in this paper.

DEFINITION 1. Let S be the space of all Schwartz functions on R” and S’ its
dual space, the class of all tempered distributions on R”. Suppose T : S — &’ is a linear
operator with K(..) defined initially by

y

TN = [ Kenf()ds, £ € R, x ¢ suppf.

The operator 7T is called a generalized Calderén-Zygmund operator provided the fol-
lowing three conditions are satisfied.

(1) T can be extended into a continuous operator on L?(RR").

(2) K is smooth away from the diagonal {(x,y) : x =y} with

/\X*YI>2|z7y|(|K(x’y) — K(x2)[+[K(y.x) — K(z.0))dx < C,

where C > 0 is a constant independent of y and z.
(3) There is a sequence of positive constant numbers {C;} such that for each
JeN,

L

q0 ) -

(/, o KO K fear) T <62 l)
2 |[z=y|< =yl <2/ z—y)|

and

n

1
a0 . L
(/, o KO —Klenmar) " < Cs)) F.
27 |y—z|<[y—x <2/t [y '

where (qo,q;) is a fixed pair of positive numbers with 1/go+1/g,=1 and 1 < g, < 2.
Comparing the generalized Calderén-Zygmund operator with the classical Calde-
rén-Zygmund operator, whose kernel K(x,y) enjoys the conditions:

IK(x,y)| <Clx—y|™"
and

- - (Y’
K() =K ()| +IK(0) = K9] < sl (=31 )
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where |x —y| > 2|z —y| for some & > 0, we can find out that the classical Calderén-
Zygmund operator is actually a generalized Calderén-Zygmund operator defined as in
Definition 1 with C; =27/% j € N, and any 1 < g < ce.

DEFINITION 2. ([15]) A non-negative measurable function @ is said to be in the
Muckenhouptclass A, with 1 < p <o if for every cube Q in R", there exists a positive
constant C independent of Q such that

(o) (s o)~ <

where Q denotes a cube in R” with the side parallel to the coordinate axes and 1/p +
1/p' =1. When p = 1, a non-negative measurable function @ is said to belong to Ay,
if there exists a constant C > 0 such that for any cube Q,

1
@/Qa)(y)dy < Co(x), a.ex € Q.

It is well known that if @ € A, with 1 < p < e, then w € A, for all r > p, and
o €A, for some 1 < g < p. In particularly, Aw = Ui pcodp.

For k €7, let By = {x € R" : |x| <2}, Ex = B{\Bx_1 and j; denote the charac-
teristic function of the set E;. For any given weight function ® on R” and 0 < p < oo,
we denote by L%, (R") the space of all functions f satisfying

1/p
o= ([ 1P otas) <o

DEFINITION 3. ([12]) Let € R,0 < p < oo, 1 < g <o and w;, @, be two weight
functions on R". The homogeneous weighted Herz space K,}x Py, @) is defined by

K;{p(wl: ) {f € Llac(Rn \ {O};(DZ) : Hf||1'{ff"”(w17a)2) = °°}7

where .

;
1l oy = (2080 Wl )

keZ

DEFINITION 4. ([13]) Let 0 < 0t < 00,0 < p < o0,1 < g < oo and wy, @, be two
weight functions on R”". Let G(f) is the grand maximal function of f defined by

Gf(x) = sup sup |f*q(y)l,

PEAN [x—y|<t

where Ay = {¢ € S(R") : supq |g|<n x*DP(x)] <1} and N > n+1.
The homogeneous weighted Herz-type Hardy space H K;‘ P(wy, @) is defined by

HK{ P (o1, 02) = {f €s:G(f) e Kg’p(“’h“b)}’

and we define Hf”HKg‘p(wl,wz) = HG(f)HKg‘p(wl,wz) :
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DEFINITION 5. ([13]) Let 1 <g<eo, n(l1—1/g) < a <eoand s > [ +n(1/q—

(i) A function a(x) on R” is said to be a central (o, q, @y, @;)-atom if it satisfies
(a) suppa C B(0,r) ={x e R": |x| < r},r > 0;
() llallLo(wy) < (01(B(0,r))"7;

(©) Jgna(x)xPdx =0 for every multi-index B with |B| <s.
Here and in what follows, for # € R, [¢] is the largest integer no more than 7.

(ii) Let b(x) be alocally integrable function on R”. A function a(x) on R” is said
to be a central (or,q,b, ®;, ®,)-atom if it satisfies

(d) aisa(a,q, o, m)-atom;

() Jgna(x)b(x)dx=0.

DEFINITION 6. Let @1, i €A}, 0 < p <o, 1 <g<oo,n(l—1/q) <o <eo
and b be a locally integrable function on R". Define

HKZ}’]p(a)l,a)z) = {f:f: 2 Ajajin S'(R") and Z AP < oo}7
Jj€z i
where each a; is a central (a,q,b,®;,,)-atom supported on B; = B(0,2/). More-
over,
. 1/p
Ik ) ~ 1nf{ (Z W) }
JEZ

Here the infimum is taken over all decompositions of f as above.

DEFINITION 7. Let 1 < p < e and ® be a weighted function. A locally inte-
grable function b is said to be in the weighted BMO space BMO, (o) if

1

1 »
b = — [ |b(x) = bo|Pw(x)'"Pd o
[ ”BMO,,(a)) Sgp<a)(Q)/Q (x) = bolP w(x) x) < o,

1

Q|
O C R". Moreover, we denote simply by BMO(®) when p = 1.

where bg = — [, b(y)dy, ®(Q) = [, ®(y)dy and the supremum is taken over all cubes

DEFINITION 8. Let 1 < p<e, 0<f3 <1 and ® be a weighted function. A
locally integrable function b is said to be in the weighted Lipschitz space Li pg (w) if

1 1 _ »
||b||Lipg(m) :SZP w(Q)% (w/Qb(x)—bQ|“’a)(x)l pdx) < oo,

where bg = @ Job(y)dy, ®(Q) = |, @(y)dy and the supremum is taken over all cubes

Q C R". Moreover, we denote simply by Lipg(®w) when p = 1.
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DEFINITION 9. The Hardy-Littlewood maximal operator M is defined by
M =sup [ 170)
x 0]

We set M,(f) = (\f\)v where 0 <5 < co.
The sharp maximal operator M* is defined by

1
# _ ~ : _
M (f)(x Zuag‘@/ |f(v) — foldy Z‘;EJE&Q\/QV@) aldy.

We define the -sharp maximal operator M’ (f) = M?(|f|')7, where 0 <7 < 1.
Let @ be a weight. The weighted maximal operator My, is defined by

1
Mo(£)() = sup = /Q 70)

We also set My o(f) = Mw(|f|5)% , where 0 < s < oo,

DEFINITION 10. ([3]) A weighted function @ belongs to the reverse Holder class
RH, if there exists two constants > 1 and C > 0 such that the following reverse Holder

inequality
1 Y 1
(a/Qw(x) dx) gC(E/Qw(x)dx)

holds for every cube Q in R". Denote r¢ = sup{r >1: ® € RH,}.

DEFINITION 11. For 0 < o0 <n,1 <1 <o, the fractional maximal operator M
is defined by

1
1 T
M) =sup( i [0y
0>x ‘Q| ~n JO
where the supremum is taken over all cubes Q containing x.

DEFINITION 12. For 0 < 8 <n,1 < r < e and a weight @, the weighted frac-
tional maximal operator Mg ., is defined by

anw(f)(x)—zgg( = [ irorol )

where the supremum is taken over all cubes Q containing x.

It follows from [18] that Mpg ., is bounded from LP(®) to LY(@), where 0 < 8 <
n,l<r<p<n/B,1/q=1/p—B/nand © € A;.
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2. Main results

Firstly, we establish the boundedness of commutators of generalized Calderén-
Zygmund operators on weighted Lebesgue spaces.

THEOREM 1. Let T be a generalized Calderon-Zygmund operator, g, be the
same as in Deﬁnition 1 and the sequence {jC;} € I'. Suppose qy<p<e, €A

and rg > ( qo . If b€ BMO(®), then [b,T] is bounded from LF (®) to LP (&' ~P).

THEOREM 2. Let T be a generalized Calderdn-Zygmund operator, g be the
same as in Definition 1 and the sequence {jC;} € 1'. Suppose 0 < B < min{1, n/q}},

gy<p<n/B,1/qg=1/p—B/n, 0P € Ay and re > %. If b € Lipg(®), then
[b,T) is bounded from LP(®) to L4 (w'~9).

Secondly, we can also obtain the boundedness of the commutators on weighted
Herz-type Hardy spaces.

THEOREM 3. Let T be a generalized Calderon-Zygmund operator, g, be the
same as in Definition 1. Suppose qy < q < qo, 0 <p <eo, n(1—1/q) < o0 < oo,

e>a+n/q, ® €Ay, ro> max{(q_l)qo q—“} and the sequence {C;2/¢} € I'. If

q—qy 904
b € BMO(®), then [b,T] is continuous from HK Plo,0) to K37 (0,0'79).

THEOREM 4. Let T be a generalized Calderon-Zygmund operator, g, be the

same as in Definition 1. Suppose 0 < B <min{n(1—2 AV, gh <1 < ————,
i pp B {n(1-2/q0),1}, qp< a1 oot Bn

~1
/gy =1/q1 — B/n, 0®/1 c Ay, rw>max{%7%(’q2} 0<p<eo, n(l—

1/q1) < a <, € > ot +n/q) and the sequence {C;2/¢} € 1'. If b € Lipg (), then
[b,T] is continuous from HK ”;(w o) to Kg.¥ (0, 0'~%).

REMARK 1. The corresponding results of Theorem 3 and Theorem 4 on non-
homogeneous weighted Herz-type Hardy spaces can also be obtained. we omit the
details since their similarity.

3. Preliminaries
Before giving the proof of our main results, we need some lemmas.

LEMMA 1. ([13]) Let 0, i €A1, 0< p<oo, 1 <g<oo, n(l—1/g)< 00 <oo
and s > [o+n(1/q—1)]. Then f € HKG" (01, @) if and only if f(x) =3 ez Aja;(x)
in the sense of S'(R"), where Y ;cz|A;j|P < oo with each a; a central (o, q,y,@,)-
atom supported on Bj = B(0,27). Moreover,

1/p
o ~ 0] (2 1257)

JEZ
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where the infimum is taken over all the decompositions of f.

REMARK 2. By Definition 6 and Lemma 1, it is easy to see HK (wl,a)z) C
HK Pwy, o).

LEMMA 2. ([16,2]) Let w € Ay. Then for any 1 < p < oo, there exists an abso-
lute constant C > 0 such that ||b||pyo, () < Cl|b|lBmo(w)

LEMMA 3. ([16,2]) Let @ € Ay and 0 < B < 1. Then for any 1 < p < oo, there
exists an absolute constant C > 0 such that ||b||LlpB (@) S C||b||Llp/3

LEMMA 4. ([4]) Let w € Ay, then there are constants C1,Cy and 0 < n < 1
depending only on Ay -constant of ®, such that for any measurable subset E of a ball

B,
E o(E E
ol <o) <18 |)
\BI o(B) |B|
LEMMA 5. ([9]) If 1 < p <ooand @ € Aw, then forany 1 <s < p < oo,

1Ms.0(F)lr () < Cllf e (w)

LEMMA 6. ([8]) Let T be a generalized Calderdn-Zygmund operator, g, be the
same as in Definition 1 and the sequence {C;} € " If0< &< 1 and gy < 5 < oo,
there exists a positive constant C such that

M5(Tf)(x) < CMy(f)(x), xe€R",

for every bounded and compactly supported function f.

LEMMA 7. Ifl<r<p<ooand €A then,

p/rs

1M ()7 (@) < Cllflr(o)

Proof. Because of the (LP/"(w),L?/"(®)) bundedness of M, we have

1M (F)ll2r @) = MUy < CUATN 2y = ENFlir): O

LEMMA 8. Let T be a generalized Calderdon-Zygmund operator, q; be the same
as in Definition 1 and the sequence {C;} € I'. Suppose gy <p<eo and ® € Ap/%,
then we have

ITfllzr(w) < CllSfllzr (o)
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Proof. Since g < p <o and ® eAp/q/, there exists an [ such that 1 <1 < p/q

and @ € A;. So ¢ < p/l < p, and there exists an s such that g;, < s < p/l < p. By
Lemma 6 and Lemma 7, we can get

1T fllzr (@) < 1Ms(T )l (0) < CUME(T )20 (w) < CIMS(f) o (@) S CNflir@)- O

LEMMA 9. ([5]) If0<oa<n, l<l<p<n/o, 1/g=1/p—o/nand © € Ay,
then there is a constant C > 0, independent of f, such that

UR (M%lf(x))qw(x)dx) < C( [ rerows dx) v

LEMMA 10. ([8]) Let T be a generalized Calderdn-Zygmund operator, gy be the
same as in Definition 1 and the sequence {jC;} € I'. Let 0 < 8 <1, @ € A| NRH,

, , (r—1qp
with r > qq and b € BMO(®), then for all s > ~————

/
0

M5 (B, T)£) (x) < Cl1bl mro(e) (@(0)Ms o (T £) (x) + @ (x)My 0 (£) (x) + @ ()M, (£) (x)-

and a.e. x € R", we have

LEMMA 11. ([7]) Let T be a generalized Calderon-Zygmund operator, qj, be the
same as in Definition 1 and the sequence {jC;} € I'. Let 0 < § <1, 0 < f <1,
(ro — 1)‘]6

/

® €Ay, 1o > qq and b € Lipg(o), then for all s >
—q,

and a.e. x € R", we

have
ME([6.T1)(x) < Cllling @) (@Mp 5 o(TF) () + 0 (Mg (1))
+ () Mg (f)(x)).

4. Proof of main results

Now we are able to prove our main results.
(P*l) (p l)qo
17*‘1() pP— 510
and o € RH,. It follows from r > ( )qo that p (r_lq),qo. Then we can choose an

0

(r— )

Proof of Theorem 1. Since rg > , there exists a r such that r >

s such that p > s > . Since w € Al, then w!~? € A,. Applying Lemma 10,

Lemma 7, Lemma 5 and Lemma 8, we have

1B, TI | o (017
< HMS([va}f)”LI’(a)l*I’)
< CIM5 (6. 1) | o »)
< Cllbl o) | 0My,o (T ) + ©Ms.o () + OMs(f)|| r (w1-#)
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< Clbllsmotw) (IMs.o (T )N 17 (@) + [1Ms.0 ()| 2o (@) + 1Ms ()] 27 ()
< Clblsmoe) I T fllr(w) + 1f e (@)
< Clbll smo(a 1| r (o)

This completes the proof of Theorem 1. [J

Proof of Theorem 2. 1t follows from rg > % that p > %. Thus there
0 040

(rw Dy

exists a » such that p > r > qflo. Since /P €Aj, then w € A; and o' €A,

By Lemma 11, we have

H[bj](f)”m(w'*q)
< CHM’;([b, T1A) | o(w!-9)

B
< CHbHLipﬁ HwMﬁ ra)(Tf) + wM/i,r.,w(f) + o't Mﬁ,r(f)HLq (0!-9)
< ClIbl| ipg (o) (1MB 1.0 (T ) lLa (w) + 1M 0 (f) |9 (@) + 1M, (f )|| g ).

I’

Since Mg ., is bounded from L”(®) to L(®), then by Lemma 9 and Lemma 8,
we can get

16 T1()I o (o!-9)
< Clbllzipg () Il (@) + 1/ 1l2r(0))
< ClIbllipg(a) 1/ 1lzr (o)

which completes the proof of Theorem 2. [J

Proof of Theorem 3. For f € Hli';f;f’(a)7a))7 we can write f = Yz Akar with
each a; a (a,q,b,w,®)-atom supported on By = B(0,2%) and ez [A|? < oo. Then,
lallo(w)y < @(Br)”# and [pn ar(x)dx = [pn ar(x)b(x)dx = 0. Write

P
115,710 e,

®,0!79)

<CY oB)™

JEL

p

-2
D, Mo, T)ar)x,

ke —oo
+C Z w(BJ)_’
JEL
=Vi+W.

LI (0!19)

foo P
D b T)(an)x,

k=j—1

Li(01~9)

Let us estimate V; first. Since € > ot +n/q, o > n(1 —1/q) and the sequence
{C;278} €', then 2/¢ > 2/" > j and the sequence {;jC;} € I'. It follows from Theorem
1 that [b,T] is a continuous operator from L7(w) to L(a'~9).
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By Lemma 4, we have
1 and Holder’s inequality that

op = p
K<CY oB)E ( Y [Alb.T] <ak>m(wlq>)

jez k=j—1

foo W\ 7P
< CUBlE oy S, 0B, (z xk|w<Bk>—ﬁ)

‘) < C2U-kmn for > j— 1. It follows from Theorem

JGZ k=j—1
+oo - V4
< Cllor 2, 5 2 )
JEZ Nk=j—1
~+oo
beéMO(w)2< > P2t "””’) if0<p<l
JEZ \k=j—1
< ” ;
el 3 ( 3 pup2oien) (5 20} i
JEZ k=j—1 k=j—1
k+1
Clbl o) 2 1417 X, 2U70emifo < p< 1
< kEZ Jj=—oo
= k41
Clbl o) 2 1Ml? X, 20799 if p> 1
kEZ Jf—oc
< bl 3 1)
keZ

Now we estimate V;. Observe that
[b,T)(ax)(x) = (b(x) — bp;)Tax(x) + T ((bg; — b)ay)(x),

then,

1[5, 7] (ak)XjHLq(wlfq) < [le— bB_,-)T(ak)Xj||Lq(m1*q) + 17 ((bs; — b)ak)?{jnm(ml*q)
=G+ Gy

1
q

|, (KGe) = Ks o)ty

By the cancellation condition of @; and the Minkowski inequality, we then obtain
q
o(x)! _qu>

(/ b(x) — b

/ () (/ Ib(x) ij‘1K(x,y)—K(x,0)|‘1a)(x)l—‘1dx)qdy.

Since rg > qq—o there exists an s such that @ € RH, and s > qgoq Let r =
(s— 1)’10 then wecanget s =1+ 7 > qfoq Furthermore we have r> qgoq (‘20)’.
Since q_o +1 ~ <1, there exists an l > 1 such that E + ; + 7 = 1. It follows from

q

q
r(1—1) =3 +1=sthat © € RH,=RH,_1,.
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Thus, by Holder’s inequality for the three numbers %0 ,I and r, we have
1
1 1 q
Gy g/B ax(y)] (/E [b(x) — b, 70 (x) 1K (x,) —K(x,0)|‘1a)(x)11dx> dy
k j

1
I
S/ la(y) (/ |K(x,y) — K(x,0) |q°dx> (/ |b(x) ijl‘fco(x)”qu) !
By
71
(/ o(x (-7 dx) dy.

When x € Ej,y € B and k < j—2, we have |x| >2/71 > 21 > 2|y|. By the
condition (3) of Definition 1 and the sequence {C;2/¢} € !, we have

1
0+ 0
(/) W) - ko' s " ar) "
Ej
1

iy B +qoe 0
X ([ K0 K0 )
l;( 20yI<x[ <2y

1
~+oo . noe %
<3 @) (/ |K<x,y>—1<<x7o>|q0dx)
z 21y x| <25y

)1

<CZ Z’H\y\ Gi(2'ly])
C\y\g
Then,

1

(/ K(x,y) — K(x 0)|‘10dx> "

1
nf0 4 0
<c2”’ (/ |K(x,y) — K(x,0)|?]x| e dx) "

e
<c2 \y\s ey

Using the definition of the weighted BMO function and Lemma 2, we can easily
get

1
Iq 1
(/B |b(x) — ijlqw(x)”qu) < Cbl syo(w)@(By). 2)
J

Since w € RHr( 1), we have

1 -5 o(B;)
o(x)" T dx) F<C——.
(IB I/ 1B/l
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Then,

1 1
-7 L7

LN
(f otortbar) ™ <col) <4 3
Bj

Note that

[ oiav<e( [ o)’ ([ ot ta)

o
n

< CIBio(By) 1(B) .

Y.

“)

(B;)

By (1)-(4) and 475

< C2U~K" for k < j—2, we can get

—Jj(4+e€) 11
G <C|bllpmo@?2 0 |Bj|™

—i(

T+ 1
< C|bllgmo()2 %

€)+ke -~ a 1 1141
[Br|lo(By) @ @(By) "o (Bj)a|B;|7 a7l

—j( L&) +ke+hknt jn( L —1

1
L*’JFL) o4 (D(B) q
<C b 2 490 rq q'lq B T J
| HBMo(w) o(By) (a)(Bk)

—j(4 +¢€)+ke-+kn+ jn(

Loy (g
<CHbHBMo(w)2 a0 g T19) =k

1_
rq lq

=R

"o (By)

_a

k—j)(e+2
— C|bllsmow)2* T 0B 5)

Next we estimate G,.
By the cancellation condition of a; and the Minkowski inequality, we can obtain

that
Gy ( /
Ej
<(/,
( E;

i (/EJ /n(K(w) — K(x,0))(bp, — b(y))ax(y)dy

= Go1 + Goo.

1

qa)(x)lqu) ’

[ (Ky) = K(.0)) (b, — b(3))ax()dy

qa)(x)l_qu> !

[, (K3) = K(5,0))(bs, — b )a()dy

1
q

qa)(x)l_qu)

Notice that (%) = % and (1 —q)- % =1 — 490D 1o,/ = 2l pe
q q0—q q0—q q0—q q0—q

fact 1 + 1 =1 implies u = Zé’@:i;. It follows from @ € A; that @ € A,,. Thus,

() )
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Note that u — 1 = -99=9_ and

q0(q—1)
1 s\ B
(_/ a)(x)l"dx> <C | J|
|BJ‘ Bj w(BJ)
We have
q0—4
( 1 /w(x)(l—q)(%o)’d )qO("l <c-2il |Bj]
‘B/‘ B; (B/)
Then,
qlo, 1 1
(/o=@ ar) ¥ <cipfiom)
B]
Since
1 1
|bBiH—bBi|<Fi|</Bi|b( ~ b, [0) qdy) (/ o(y) L )
(B
S
1
we have
ka E‘szH i‘
H(i—kn_L
< C||Dl|ppo(w) (J — k) @(B;)2 B

The fact y € By implies |y| < 2¥. By the estimate of (4), we have

_1 _a
[ la)lbledy < C29(Bi (B P o(B) .
k

By (1), (6)~(8) and 223 < C2UK" for k< j—2, we get

q
Gy < |ij—ka|/B | (v |</ IK(x,y) —K(x,0)]90(x )1 ‘Idx) dy
3

L
g\ij—ka|/ lax(y |</ K (x,y) — xo>|qodx)

1 _—iCr+e) e
< ClIblswo) ()@ (B;)20 " —=2 b o(B)) 7 (B;|

x [ la)lyieay
By

_Q =

273

(6)

(7

®)
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1
(0BT
< s (k—j)e (D( J n
< C|bllBmo(w) (J — k)2 (w(Bk) ®(By)

< Clbll o) (i —*)2Y G o (By) 7. ©)

Using 25?‘_; < 200 for k < j—2, (1), (6) and the Minkowski inequality, we
J
obtain
1

Gy </ |b(y) — bp,||ax(y)] / |K(x,y) — K(x O)|qa)(x)l_qu> qdy
By

< [ 1b0) = ballar)
By

< C"bHBMO(w)z(kij)gw(Bk)i% (

_j nn
(k J)(S“r q/ ) (10)

< Ol pmo(w)2 o(B) .

Finally, by (5), (9) and (10), we have for k < j —2

16, T] (@) 21| a(or-a)
< Cllbllayow) 2 0(By) <2<k~f>q"f +(j— k203 +2<k.f>';’7>

< Clbllpmogw) @(B) ™7 (j— k)20,

So we obtain the following estimate,

sIR

Jj—2 . 0 p
Vi <ClblGyo0) 2 @B, —( Y 1= k2Y N (B ) :

/GZ k=—c0
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It follows from o + g — & <0 that

)4
Vi <Cl 000 2(2 A (j — k)2 @ets >)

jEZ k=—c0
Clol o) 2 Z AlP (j— k)Pl RE=etor —ifo < p <1
JeZk,ﬂx,
< CHbHII;MO 2(2 |2|P (j — k)pZ( )(OterZ))
jeZ k=—o0
P
(22/"“* )” if p>1
k=—oco
Cllol o) 2 14l Z j—kyp2URe=er i ip0 < p <1
< keZ ,+1<+2
Cllbl s yor 2 1P X (k)20 i p >
keZ Jj=k+2

< Bl oo (z W)

keZ

Combining V| and V,, we have

0TI 010 < IOl ( S 1P ):

keZ

By taking infimum over all decompositions of f, we get
||[b7T]( )HKap wwl q) < C”b”BMO ||fHHKap(w )"

This completes the proof of Theorem 3. [

Proof of Theorem 4. For f € HK(Z’I;((D, ®), we can write f = Yz Aar with

each a; a (&, q1,b, w, ®)-atom supported on By = B(0,2%) and Y,z |A4|? < . Then,
lallza (@) < o(By) ™7 and fgu ag(x)dx = [gn ag(x)b(x)dx = 0. Write

p
”[va](f)H '{l;;l’(w wlfqz)

P
<CY o(B)T 2 Ao, T (@) s
jez k=—oco L2 (' ~92)
+oo P
+CY 0B)) || Y, Mlb,T](ar)x;
JEZ k=j—1 L2 ('~ 92)

= H; + H,.
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Let us estimate H, firstly. Since € > a+n/qi, o > n(1—1/q;) and the sequence
{C;27¢} € 1!, then 2/¢ > 2/" > j and the sequence {jC;} € I!. It follows from Theorem

2 that [b, T] is a continuous operator from L9 (@) to L9 (w'~92).
By Lemma 4, we have ggz; < C2U=Km for k> j—1. As the estimate of V5 in

the proof of Theorem 3, we have

a T 14
H,<CY oB)" ( D 7Lk|||[b,T](ak)||qu(w1qz)>

Jez k=j—1

o0 p
<l 3 06)F (3 allasline

jeZ k=j—1

< ClBl 0 T4

keZ

Now we estimate H;. Observe that

[0, T)(ar) (x) = (b(x) = bp;) Tar(x) + T ((bs; — b)ay)(x),

then,

1[6 T)(ax) x5 Hmz(wlfqz) (x)
< 16— b8 T (@) 52 01— + I T (b — D)) i s )
=F+F.

By the cancellation condition of a; and the Minkowski inequality, similar to esti-
mate G, we obtain that

L

s /B o) (/E [b(x) —bg, | K (x.y) —K(x,O)I‘“w(x)“ﬂdx) " dy.

1

1 E . . . q0
The fact g; < q0+ B and = n implies g» < go. Since rgy > s there
exists an s such that @ € RHy and s > 2 2 Let r=(s— I)Z—g, then we can get
— rqz _ IQ 1,1
s=14—-2> 0 qo q . Furthermore, we have r> qo qz = (qz) . Since 47 + 5 <1, there

@
exists an / > 1 such that ﬁ + % +% = 1. It follows from r(1 — %) = r;—oz +1 =s that
7
o € RH, :RHr(l_%).
By Holder’s inequality for the three numbers Z—g,l and r, it is easy to estimate Fj
similarly to Gy . Thus,

F < /|ak (/ K (x,y) — x0|%dx> (/ Ib(x) ij|l‘12w(x)ll‘12dx)
(/ o(x 1dx>r dy.

L
lqy
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Using the definition of the weighted Lipschitz function, we can easily get

Tay 1B
qp S o
(/; 1o 000 ) ™ < Cllugymoty ™. an
J

As in the estimate of (3), we can get

1

3 Lpoooa g
(/ o(x dx) <Cw(Bj) 2 |Bj|"2 . (12)
Note that
1 a1
q1 7
/Iak(y)ldy<C</ |ax(v)| " o (v)dy (/ o(y qldy>q‘
By By
< C|Blo(B)~ ar w(By) " (13)
- o(B)) (j—k)n .
By (1), (11)-(13) and o) <C2 for k < j—2, we have
—j(Zr+e) nE
A< Clblipyo2 0 0(B) |8 [ a0yl
k
1
-G +8)+k8+kn+1n( L4y o [(®(Bj)\ U
<C b . gy 4z lqp B n J
H HLlpﬁ(w (D( k) CO(Bk)
(k—j)(e+2) _a
< CbILipg(w)2 " o(Be) (14)

Next we will estimate F.
By the cancellation condition of a; and the Minkowski inequality, we can obtain
that

m=(/,
<(,
(4

=P+ .

1

o(x)® dx) "
1

o(x) 1‘nd)c> ”

q2

[ (K(x) = K(x.0)) (B, — b(3))ax()dy

q2

[ (K(x.9) = K (.0)) (b, s )ax ()

@ >
q
a)(x)l_qzdx) ’

[ (Ky) = K(2.0)) (b, — b(3))ax()dy

: g\ — _90 _ — 1 _ 22(@-1 1 _ q2(q0-1)
Notice that (72)" = £ and (1 qg)q0 oo =120 Let v = 20
The fact %4—5 =1 implies v = % It follows from @ € A; that w € A,.

As in the estimate of (6), we have

1
_ q0 \/ qa0 v 7 (11
( w@WqM”WOWW)Sd&%ww»“qJ (15)
Bj
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WS-

1
1 B y _ (1=a2)dh
|bBi+l —bp| < m (/B b(y) _bBiH‘qzw(y)l qzdy) (/B.(D(y) E dy)

B
o(Biy1)'n
< C||b||Lipﬁ(w)T7
we have
ka| Z|b31+1_ i
<Cllb ' K)oo(B) 2t L 16
S CblLipy(w) (k) @(B;) B (16)
The fact y € By implies [y| < 2*. Using (13), we have
_ 1 o
| la)lbledy < €28 o(B) T w(B) . a7
k
By (1), (15)—(17) and 2&; < C2UM" for k < j—2, similar to (9), we get
: 18 (i _L 5 ~IGEE) o T g 1
Fa1 < C|b|| ipg(w) (J —K)@(B;) 772 m2 o o(Bj) “|B;|%
J
></ lax () |[y[*dy
By
<C|bl|; i k)2U PG ) 18
X ” ”Ltpﬁ(a))(] ) (D( k) (18)
It follows from (1), (15) and Holder’s inequality that
1
1- 9
(/ K (x,y) — K(x,0)|20(x) qm)
€1 }m
Il 40y
< ( A K(XJ)—K(X,O)V’“dx) ( [ o™ ‘12><qz>dx) ()
Ej
4o G0
<Co(B ') "2 |Bj| 02 "0 |yl (19)

1
R < [ 160) bl (/ ()~ K000 %av) "y
By,

L 7.
<o) A 62 "8 [ 150) - bullat) blay
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1
- T

1 L ,
<Ca(B)) % |B,|% 20 ( 1b(y) — b % ao(y) dy)
By

1
a1
) </ |“’<(y>|q‘w(y)dy)
By
1
—j e (0B A
<C||b||Lip/3(a))2(k j)gm(Bk) n( ( /ﬁ))‘lz

(k—j)(e+41) _a
S CY|bl| ipg(w)2 2 w(B)

S

(20)
Finally, by (14), (18) and (20), we have

116, T](ax) x; Hmz(wlw)
(k—J)

S

o (k— )L, o
<CHbHszﬁ k=g o(By) (2 7 _|_(]'_k)2(l K g +2

)

sIR

< 1B Lipy () (T~ 020 eo(By)~

So we obtain the following estimate

ap [ 12 P
H <3 06)F (3 b Tl o

jez k=—oo

b w (KRR e
< Clbll o 3 0B (T alti—020 (s E )

=/ k=—co

Similarly to estimate V; in the proof of Theorem 3, it follows from o + ;—1 —£<0
that

< ClBl 0 ( S0P
kEZ
Combining H; and H,, we have
P p
1,V ) < L0 (kzz )

By taking infimum over all decompositions of f, we get
116 T g @t-o2) < ClblLipgian 1k .

This completes the proof of Theorem 4. [
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