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THE DAVIS–GUT LAW AND LAI LAW FOR

FINITELY INHOMOGENEOUS WALKS
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Abstract. Let {Xn,� 1} be a sequence of independent and identically distributed random vari-
ables with partial sums Sn = ∑n

k=1 Xk , n � 1 . Davis-Gut law states that
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< ∞, if ε > 0,

= ∞, if ε < 0

if and only if EX1 = 0 and EX2
1 = 1 . Lai law states that
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< ∞, if ε > 0,

= ∞, if ε < 0

if and only if EX1 = 0 , EX2
1 = 1 and E(X2

1 / log |X1|)r+1 < ∞ , where r > 0 . The paper will
extend those results to the case where {Xn,n � 1} are no longer identically distributed, but rather
their distributions come from a finite set of distributions.
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