
Journal of
Mathematical

Inequalities

Volume 11, Number 1 (2017), 281–289 doi:10.7153/jmi-11-25

THE DAVIS–GUT LAW AND LAI LAW FOR

FINITELY INHOMOGENEOUS WALKS

XIANGDONG LIU AND JIA MENG

(Communicated by J. Pečarić)

Abstract. Let {Xn,� 1} be a sequence of independent and identically distributed random vari-
ables with partial sums Sn = ∑n

k=1 Xk , n � 1 . Davis-Gut law states that

∞

∑
n=1

1
n
P

{
|Sn| > (1+ ε)

√
2n log logn

}{
< ∞, if ε > 0,

= ∞, if ε < 0

if and only if EX1 = 0 and EX2
1 = 1 . Lai law states that

∞

∑
n=1

nr−1P{|Sn| > (1+ ε)
√

2rn logn}
{

< ∞, if ε > 0,

= ∞, if ε < 0

if and only if EX1 = 0 , EX2
1 = 1 and E(X2

1 / log |X1|)r+1 < ∞ , where r > 0 . The paper will
extend those results to the case where {Xn,n � 1} are no longer identically distributed, but rather
their distributions come from a finite set of distributions.

1. Introduction and the main result

The classical Hartman-Wintner law of the iterated logarithm (see Hartman and
Wintner [6]) states that for {Xn,n � 1} , a sequence of independent and identically
distributed random variables, if

EX1 = 0 and EX2
1 = 1, (1.1)

then

limsup
n→∞

Sn√
2n loglogn

= 1 a.s. and liminf
n→∞

Sn√
2n loglogn

= −1 a.s., (1.2)

where Sn = ∑n
k=1 Xk , n � 1, logx = loge max{x,e} for x > 0. The converse, the impli-

cation (1.2)⇒(1.1), was proved by Strassen [15].
The following theorem, related to the Hartman-Wintner law of the iterated loga-

rithm, is well-known.
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THEOREM A. Let {Xn,n � 1} be a sequence of independent and identically dis-
tributed random variables with partial sums Sn = ∑n

k=1 Xk , n � 1 . The following state-
ments are equivalent

(1.1) holds,

∞

∑
n=1

1
n
P

{
|Sn| > (1+ ε)

√
2n loglogn

}{
< ∞, if ε > 0,

= ∞, if ε < 0.
(1.3)

One can call this result the Davis-Gut law. The implication (1.1)⇒(1.3) should be
due to Theorem 4 of Davis [4] which was remedied by Corollary 2.3 of Li et al. [10].
For the implication (1.3)⇒(1.1), see Theorem 6.2 of Gut [5]. The sufficient part of
Theorem A for the moving processes, i.e. (1.1)⇒(1.3), is obtained by Chen and Wang
[2].

The following theorem, related to the law of single logarithm, is also well-known.

THEOREM B. Let r > 0 and {Xn,n � 1} be a sequence of independent and iden-
tically distributed random variables with partial sums Sn = ∑n

k=1 Xk , n � 1 . Suppose
that

EX1 = 0, EX2
1 = 1 and E(X2

1 / log |X1|)r+1 < ∞. (1.4)
Then

∞

∑
n=1

nr−1P{|Sn| > (1+ ε)
√

2rn logn} < ∞, for all ε > 0. (1.5)

Conversely, if (1.5) holds for some ε >−1 , then EX1 = 0 and E(X2
1 / log |X1|)r+1 < ∞ .

One can label this result as the Lai law which first established by Lai [9]. Chen
and Wang [2] extended it to the moving processes partly, and furthermore showed that

∞

∑
n=1

nr−1P{|Sn| > (1+ ε)
√

2rn logn} = ∞, for all ε < 0.

Combining the results of Lai [9] and Chen and Wang [2], we have

∞

∑
n=1

nr−1P{|Sn| > (1+ ε)
√

2rn logn}
{

< ∞, if ε > 0,

= ∞, if ε < 0
(1.6)

if and only if (1.4) holds.
When r = 0, an analog of (1.6) is discussed by Chen and Qi [1].
Recently, Spătaru [14] obtained the classical Hartman-Wintner law of the iterated

logarithm for finitely inhomogeneous walks. The term finitely inhomogeneous walk
designs a sequence of sums Sn = ∑n

k=1 Xk,n � 1, where the steps Xn , n � 1, are inde-
pendent random variables having a finite number of possible distributions. This setting
arises naturally in the study of some type Galton-Watson process, and was proposed by
Kesten and Lawler [8]. Due to the work of Spătaru [14], the purpose of this paper is to
generalize Theorem A and Theorem B to the finitely inhomogeneous walks.

In the following, we always assume that {Xn,n � 1} is a sequence of independent
random variables having a finite number of possible distributions as Y1, · · · ,Yp , p � 1,
set Sn = ∑n

k=1 Xk , n � 1. Some lemmas and the proofs of the main results will be
presented in the next section.
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THEOREM 1.1. Assume that EYi = 0 and EY 2
i = 1 for 1 � i � p. Then (1.3)

holds.

THEOREM 1.2. Let r > 0 . Assume that EYi = 0 , EY 2
i = 1 and E(Y 2

i / log |Yi|)r+1

< ∞ for 1 � i � p. Then (1.6) holds.

THEOREM 1.3. Let {Xnk,1 � k �,n � 1} be an array of independent random
variables having a finite number of possible distributions as Y1, · · · ,Yp , p � 1 , set
Snn = ∑n

k=1 Xnk , n � 1 . Assume that EYi = 0 , EY 2
i = 1 and E(Y 2

i / log |Yi|)2 < ∞ for
1 � i � p. Then

limsup
n→∞

|Snn|√
2n logn

= 1 a.s. (1.7)

Throughout this paper, C always stands for a positive constant which may differ
from one place to another and I(A) denotes the indicator function of the event A .

2. Lemmas and proofs of main results

The main idea in the proof of the main result is from the invariance principle’ way
to estimate the rate of convergence (see Sakhanenko [11, 12, 13]), which is a powerful
tool in the field of limit theory (for example, see Csörgo, Szyszkowicz and Wu [3],
Jiang and Zhang [7], Chen and Wang [2], etc.) and is listed as the following lemma.

LEMMA 2.1. For any q > 2 , there exists B = B(q) > 0 satisfying that for any se-
quence of independent random variables {ξk,1 � k � n} with mean zero and E|ξk|q <
∞,1 � k � n, there is a sequence of independent normal random variables {ηk,1 �
k � n} with Eηk = 0 , Eη2

k = Eξ 2
k and for all y > 0 ,

P

{
max

1�m�n
|

m

∑
k=1

ξk −
m

∑
k=1

ηk| > y

}
� By−q

n

∑
k=1

E|ξk|q. (2.1)

The following two lemmas are well-known.

LEMMA 2.2. Let Y be a random variable with EY 2 < ∞ . Then

∞

∑
n=1

P{|Y | > √
n} � CEY 2 < ∞

and
∞

∑
n=1

n−q/2E|Y |qI(|Y | � √
n) � CE|Y |2 < ∞,

for any q > 2 .

LEMMA 2.3. Let Y be a random variable with E(Y 2/ log |Y |)r+1 < ∞ for some
r > 0 . Then

∞

∑
n=1

nrP{|Y | >
√

n logn} � CE(Y 2/ log |Y |)r+1 < ∞
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and
∞

∑
n=1

nr(n logn)−q/2E|Y |qI(|Y | �
√

n logn) � CE(Y 2/ log |Y |)r+1 < ∞

for any q > 2(r+1) .

Proof of Theorem 1.1. Set an =
√

2n loglogn , Xnk = XkI(|Xk| � √
n) and Tn =

∑n
k=1 Xnk . We first prove that

∞

∑
n=1

1
n
P{|Sn| > (1+ ε)an} < ∞, ∀ ε > 0. (2.2)

Note that

{|Sn| > (1+ ε)an} ⊂ { max
1�k�n

|Xk| >
√

n}∪{|Tn| > (1+ ε)an}

and by Lemma 2.2,

∞

∑
n=1

1
n
P{ max

1�k�n
|Xk| >

√
n} �

p

∑
i=1

∞

∑
n=1

P{|Yi| >
√

n} � C
p

∑
i=1

EY 2
i < ∞ (2.3)

and
1
an

|ETn| � 1
an

n

∑
k=1

E|Xk|I(|Xk| >
√

n) � 1√
2loglogn

→ 0 (2.4)

as n → ∞ . Hence to prove (2.2), it is enough to prove that

∞

∑
n=1

1
n
P{|Tn −ETn| > (1+ ε)an} < ∞, ∀ ε > 0. (2.5)

We can get from Lemma 2.1 that for any n � 1, there exists normal random variables
Znk with EZnk = 0 and EZ2

nk = E(Xnk −EXnk)2 , 1 � k � n , such that for any q > 2
and all y > 0

P

{
|(Tn−ETn)−

n

∑
k=1

Znk| > y

}
� Ay−q

n

∑
k=1

E|Xnk −EXnk|q. (2.6)

Note that

{|Tn−ETn| > (1+ ε)an} ⊂
{
|(Tn −ETn)−

k

∑
k=1

Znk| > ε1an

}

∪
{
|

n

∑
k=1

Znk| > (1+ ε2)an

}
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where ε1 > 0,ε1 > 0 with ε = ε1 + ε2 . Hence
∞

∑
n=1

1
n
P{|Tn−ETn| > (1+ ε)an}

�
∞

∑
n=1

1
n
P

{
|(Tn −ETn)−

n

∑
k=1

Znk| > ε1an

}
+

∞

∑
n=1

1
n
P

{
|

n

∑
k=1

Znk| > (1+ ε2)an

}

= I1 + I2.

By (2.6) and Lemma 2.2 we can derive that for q > 2

I1 � C
∞

∑
n=1

1
naq

n

n

∑
k=1

E|Xnk −EXnk|q

� C
∞

∑
n=1

1
naq

n

n

∑
k=1

E|Xk|qI(|Xk| �
√

n)

� C
p

∑
i=1

∞

∑
n=1

1
aq

n
E|Yi|qI(|Yi| �

√
n)

� C
p

∑
i=1

EY 2
i < ∞.

Let N be a standard normal random variable. Note that E(Xnk −EXnk)2 � 1 for all
1 � k � n and n � 1, and P{|N| > x} ∼ √

2/π x−1e−x2/2 . Hence for large enough n ,

P

{
|

n

∑
k=1

Znk| > (1+ ε2)an

}
= P

{
|N| > (1+ ε2)an√

∑n
k=1 E(Xnk −EXnk)2

}

� Cexp

{
− (1+ ε2)2n loglogn

∑n
k=1 E(Xnk −EXnk)2

}
� Cexp

{−(1+ ε2)2 loglogn
}

= C(logn)−t1 ,

where t1 = (1+ ε2)2 > 1. Then I2 < ∞ .
Now we prove that

∞

∑
n=1

1
n
P{|Sn| > (1+ ε)an} = ∞, ∀ ε < 0. (2.7)

By (2.3) and (2.4), (2.7) is equivalent to
∞

∑
n=1

1
n
P{|Tn −ETn| > (1+ ε)an} = ∞, ∀ ε < 0. (2.8)

Note that for any ε < 0, if we take ε3 > 0 and ε4 < 0 with ε4 = ε3 + ε , then{
|

n

∑
k=1

Znk| > (1+ ε4)an

}
⊂

{
|(Tn−ETn)−

n

∑
k=1

Znk| > ε3an

}

∪{|Tn −ETn| > (1+ ε)an} ,
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Then by I1 < ∞ , it is enough to show that

∞

∑
n=1

1
n
P

{
|

n

∑
k=1

Znk| > (1+ ε4)an

}
= ∞. (2.9)

Since n−1 ∑n
k=1 E(Xnk − EXnk)2 → 1 as n → ∞ , then there exists δ < 1 close to 1

enough with t2 = (1 + ε4)2/δ < 1 such that ∑n
k=1 E(Xnk −EXnk)2 � δn for n large

enough. Using P{|N| > x} ∼ √
2/π x−1e−x2/2 again,

P

{
|

n

∑
k=1

Znk| > (1+ ε4)an

}
= P

{
|N| > (1+ ε4)an√

∑n
k=1 E(Xnk −EXnk)2

}

� P

{
|N| > (1+ ε4)an√

δn

}
∼ C

(logn)t2(log logn)1/2
.

Therefore (2.9) holds by the fact that the series ∑∞
n=1 n−1(logn)−t2(loglogn)−1/2 = ∞ .

The proof is completed. �

Proof of Theorem 1.2. For all 1 � k � n and n � 1, set

Xnk = XkI(|Xnk| �
√

n logn), Tn =
n

∑
k=1

Xnk.

We first prove that

∞

∑
n=1

nr−1P{|Sn| > (1+ ε)
√

2rn logn} < ∞, ∀ ε > 0. (2.10)

Note that

P{|Sn| > (1+ ε)
√

2rn logn} ⊂ { max
1�k�n

|Xk| >
√

n logn}∪{|Tn| > (1+ ε)
√

2rn logn}

and by Lemma 2.3,

∞

∑
n=1

nr−1P{ max
1�k�n

|Xk| >
√

n logn} �
p

∑
i=1

∞

∑
n=1

nrP{|Yi| >
√

n logn}}

� C
p

∑
i=1

E
(
Y 2

i / log |Yi|
)r+1

< ∞ (2.11)

and

1√
n logn

|ETn| � 1√
n logn

n

∑
k=1

E|Xk|I(|Xk| �
√

n logn) � 1
logn

→ 0 (2.12)

as n → ∞ . Hence to prove (2.10), it is enough to prove that

∞

∑
n=1

nr−1P{|Tn−ETn| > (1+ ε)
√

2rn logn} < ∞, ∀ ε > 0. (2.13)
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We can get from Lemma 2.1 that for any n � 1, there exists normal random variables
Znk with EZnk = 0 and EZ2

nk = E(Xnk −EXnk)2 , 1 � k � n , such that for any q > 2
and all y > 0

P

{
|(Tn−ETn)−

n

∑
k=1

Znk| > y

}
� Ay−q

n

∑
k=1

E|Xnk −EXnk|q. (2.14)

Note that{
|Tn−ETn| > (1+ ε)

√
2rn logn

}
⊂

{
|(Tn −ETn)−

k

∑
k=1

Znk| > ε1

√
2rn logn

}

∪
{
|

n

∑
k=1

Znk| > (1+ ε2)
√

2rn logn

}

where ε1 > 0,ε1 > 0 with ε = ε1 + ε2 . Hence
∞

∑
n=1

nr−1P
{
|Tn −ETn| > (1+ ε)

√
2rn logn

}

�
∞

∑
n=1

nr−1P

{
|(Tn −ETn)−

n

∑
k=1

Znk| > ε1

√
2rn logn

}

+
∞

∑
n=1

nr−1P

{
|

n

∑
k=1

Znk| > (1+ ε2)
√

2rn logn

}
= J1 + J2.

By (2.14) and Lemma 2.3 we can derive that for any q > 2(r+1) ,

J1 � C
∞

∑
n=1

nr−1−q/2(logn)−q/2
n

∑
k=1

E|Xnk −EXnk|q

� C
∞

∑
n=1

nr−1−q/2(logn)−q/2
n

∑
k=1

E|Xk|qI(|Xk| �
√

n logn)

� C
p

∑
i=1

∞

∑
n=1

nr−q/2(logn)−q/2E|Yi|qI(|Yi| �
√

n logn)

� C
p

∑
i=1

E(Y 2
i / log |Yi|)r+1 < ∞.

Let N be a standard normal random variable. Note that E(Xnk −EXnk)2 � 1 for all
1 � k � n and n � 1, and P{|N| > x} ∼ √

2/π x−1e−x2/2 . Hence for large enough n ,

P

{
|

n

∑
k=1

Znk| > (1+ ε2)
√

2rn logn

}
= P

{
|N| > (1+ ε2)

√
2rn logn√

∑n
k=1 E(Xnk −EXnk)2

}

� Cexp

{
− r(1+ ε2)2n logn

∑n
k=1 E(Xnk −EXnk)2

}
� Cexp

{−r(1+ ε2)2 logn
}

= Cn−t1 ,
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where t1 = r(1+ ε2)2 > r . Then J2 < ∞ .
Now we prove that

∞

∑
n=1

nr−1P
{
|Sn| > (1+ ε)

√
2rn logn

}
= ∞, ∀ ε < 0. (2.15)

By (2.11) and (2.12), (2.15) is equivalent to
∞

∑
n=1

nr−1P
{
|Tn −ETn| > (1+ ε)

√
2rn logn

}
= ∞, ∀ ε < 0. (2.16)

Note that for any ε < 0, if we take ε3 > 0 and ε4 < 0 with ε4 = ε3 + ε , then{
|

n

∑
k=1

Znk| > (1+ ε4)
√

2rn logn

}
⊂

{
|(Tn−ETn)−

n

∑
k=1

Znk| > ε3

√
2rn logn

}

∪
{
|Tn −ETn| > (1+ ε)

√
2rn logn

}
,

Then by J1 < ∞ , it is enough to show that

∞

∑
n=1

nr−1P

{
|

n

∑
k=1

Znk| > (1+ ε4)
√

2rn logn

}
= ∞. (2.17)

Since n−1 ∑n
k=1 E(Xnk − EXnk)2 → 1 as n → ∞ , then there exists δ < 1 close to 1

enough with t2 = r(1 + ε4)2/δ < r such that ∑n
k=1 E(Xnk −EXnk)2 � δn for n large

enough. Using P{|N| > x} ∼ √
2/π x−1e−x2/2 again,

P

{
|

n

∑
k=1

Znk| > (1+ ε4)
√

2rn logn

}
= P

{
|N| > (1+ ε4)

√
2rn logn√

∑n
k=1 E(Xnk −EXnk)2

}

� P

{
|N| > (1+ ε4)

√
2rn logn√

δn

}

∼ C

nt2(logn)1/2
.

Therefore (2.17) holds by the fact that the series ∑∞
n=1 nr−1−t2(logn)−1/2 = ∞ . The

proof is completed. �

Proof of Theorem 1.3. By the same argument as Theorem 1.2, we have

∞

∑
n=1

P{|Snn| > (1+ ε)
√

2n logn}
{

< ∞, if ε > 0,

= ∞, if ε < 0.

Then by the Borel-Cantelli lemma, (1.7) holds at once. �
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