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Abstract. In this paper we develop a general method for improving Jensen-type inequalities for
convex and, even more generally, for piecewise convex functions. Our main result relies on the
linear interpolation of a convex function. As a consequence, we obtain improvements of some
recently established Young-type inequalities. Finally, our method is also applied to matrix case.
In such a way we obtain improvements of some important matrix inequalities known from the
literature.

1. Introduction

The classical Young inequality, or the arithmetic-geometric mean inequality, states
that

(1− v)a+ vb � a1−vbv, (1.1)

where a,b > 0 and 0 � v � 1. Refining this inequality and its reverse has taken the
attention of numerous researchers. Kittaneh and Manasrah [13], improved (1.1) to

(1− v)a+ vb � a1−vbv + r0(v)(
√

a−
√

b)2, (1.2)

where r0(v) = min{v,1− v} . Moreover, Zhao and Wu [22], established even more
accurate improvement:

(1− v)a+ vb � a1−vbv + r0(v)(
√

a−
√

b)2 (1.3)

+r1(v)
[(√

a− 4
√

ab
)2

χ(0, 1
2 )(v)+

(
4
√

ab−
√

b
)2

χ( 1
2 ,1)(v)

]
,

where r1(v) = min{2r0(v),1−2r0(v)} and χI(v) stands for the characteristic function

of an interval I , defined by χI(v) =

{
1, v ∈ I

0, v /∈ I
.

On the other hand, the reverses of inequalities (1.2) and (1.3) read as follows [14,
22]:

(1− v)a+ vb � a1−vbv +R0(v)(
√

a−
√

b)2 (1.4)
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and

(1− v)a+ vb � a1−vbv +R0(v)(
√

a−
√

b)2 (1.5)

−r1(v)
[(√

b− 4
√

ab
)2

χ(0, 1
2 )(v)+

(
4
√

ab−√
a
)2

χ( 1
2 ,1)(v)

]
,

where R0(v) = 1− r0(v) .
Other types of improvements of the Young inequality have been studied in numer-

ous recent papers. For example, Wu and Zhao [20], showed a pair of relations

(1− v)a+ vb � K1(a,b)r1(v)a1−vbv + r0(v)(
√

a−
√

b)2, (1.6)

(1− v)a+ vb � K1(a,b)−r1(v)a1−vbv +R0(v)(
√

a−
√

b)2,

where K1(a,b) = (√a+
√

b)2

4
√

ab
. Recently, Liao and Wu [15], have proven the inequalities

(1− v)a+ vb � K2(a,b)r2(v)a1−vbv + r0(v)(
√

a−
√

b)2 (1.7)

+ r1(v)
[
( 4
√

ab−√
a)2χ(0, 1

2 )(v)+ (
√

b− 4
√

ab)2χ( 1
2 ,1)(v)

]
,

(1− v)a+ vb � K2(a,b)−r2(v)a1−vbv +R0(v)(
√

a−
√

b)2

− r1(v)
[
( 4
√

ab−
√

b)2χ(0, 1
2 )(v)+ (

√
a− 4

√
ab)2χ( 1

2 ,1)(v)
]
,

where r2(v) = min{2r1(v),1− 2r1(v)} and K2(a,b) =

(
4√a+ 4√b

)2

4 4√ab
. The constants of

the form (M+m)2
4Mm are called Kantorovich constants.

Further, Dragomir [6], showed the following pair of inequalities that hold for any
a,b > 0 and 0 � v � 1:

(1− v)a+ vb � a1−vbv +
1
2
v(1− v)

(
ln

b
a

)2

min{a,b}, (1.8)

(1− v)a+ vb � a1−vbv +
1
2
v(1− v)

(
ln

b
a

)2

max{a,b}.

Meanwhile, assuming a,b � 1 and 0 � v � 1, Minculete [16], proved that

(1− v)a+ vb � a1−vbv + r0(v)(
√

a−
√

b)2 + α(v)
(

ln
b
a

)2

, (1.9)

(1− v)a+ vb � a1−vbv +R0(v)(
√

a−
√

b)2 + α(v)
(

ln
b
a

)2

,

where

α(v) =
1
2
v(1− v)− 1

4
r0(v) =

1
4
r0(v)|2v−1|.

Finally, utilizing the Specht ratio

S(t) =
t1/(t−1)

e ln t1/(t−1) ,
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Furuichi and Tominaga [7, 19], showed that the series of inequalities

S
(
cr0(v)

)
a1−vbv � (1− v)a+ vb � S(c)a1−vbv, (1.10)

where c = a−1b , holds for any a,b > 0 and 0 � v � 1.
Basically, the Young inequality (1.1) is a consequence of the famous Jensen in-

equality
f ((1− v)a+ vb) � (1− v) f (a)+ v f (b), (1.11)

where f is a convex function defined on the interval I , a,b∈ I , and 0 � v � 1. Clearly,
the Young inequality (1.1) follows from (1.11) by putting f (x) = − lnx , where ln
stands for a natural logarithm.

The main objective of this paper is to provide a unified treatment of Young-type
inequalities presented in this Introduction. More precisely, we will present a general
improvement of a Jensen-type inequality related to piecewise convex functions and
use it to refine some well-known classical inequalities. As an application, we will
also derive improved versions of some important matrix inequalities known from the
literature. It should be noticed here that the operator or matrix inequalities related to
the scalar inequalities introduced in this section can be found in some recent papers
including [6, 7, 13, 15, 16, 20, 22]. For some related refinements and generalizations
of mean inequalities and the Jensen inequality, as well as for some generalized aspects
of convexity, the reader is referred to recent papers [1, 2, 4, 8, 10, 17, 23, 24] and
references therein.

2. The main result related to convex and piecewise convex functions

In this section we give an improved version of the Jensen inequality that will, in
some way, gather the relations presented in the previous section. Our main result will
rely on the linear interpolation of a convex function.

Throughout the paper, we will use the functions rn(v) defined recursively by

r0(v) = min{v,1− v},
rn(v) = min{2rn−1(v),1−2rn−1(v)},

for 0 � v � 1. Note that r0(v) and r1(v) can be rewritten as

r0(v) =

{
v, 0 � v � 1

2

1− v, 1
2 < v � 1

, r1(v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2v, 0 � v � 1
4

1−2v, 1
4 < v � 1

2

2v−1, 1
2 < v � 3

4

2−2v, 3
4 < v � 1

.

Generally, rn(v) can be expressed as multipart functions.
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LEMMA 1. [5] Let n be a nonnegative integer and 0 � v � 1 . If k−1
2n � v � k

2n

for k = 1, . . . ,2n , then

rn(v) =

{
2nv− k+1, k−1

2n � v � 2k−1
2n+1

k−2nv, 2k−1
2n+1 < v � k

2n

.

Proof. We prove it by induction on n . The case n = 0 is obvious. Assume k−1
2n+1 �

v � k−1
2n+1 + 1

2n+2 . If k = 2m−1 is odd, then m−1
2n � v � m−1

2n + 1
2n+2 < 2m−1

2n+1 and rn(v) =
2nv−m+1 by induction. Since v � 2k−1

2n+2 ,

rn(v) = 2nv− k−1
2

� 2k−1
4

− k−1
2

=
1
4

and
rn+1(v) = min{2rn(v),1−2rn(v)} = 2rn(v) = 2n+1v− k+1.

If k = 2m is even, then 2m−1
2n+1 � v � m

2n − 1
2n+2 < m

2n and rn(v) = m−2nv by induction.

Since v � 2k−1
2n+2 ,

rn(v) =
k
2
−2nv � k

2
− 2k−1

4
=

1
4

and
rn+1(v) = 1−2rn(v) = 2n+1v− k+1.

Using the same argument, we can show that if k−1
2n+1 + 1

2n+2 < v � k
2n+1 , then rn+1(v) =

k−2n+1v . We omit the detailed proof. �
The functions rn can be used for linear interpolation as follows.

LEMMA 2. Let f be a function defined on [0,1] . For a nonnegative integer N ,
define ϕN(v) by

ϕN(v) = (1− v) f (0)+ v f (1)−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v),

where

Δ f (n,k) = f

(
k−1
2n

)
+ f

(
k
2n

)
−2 f

(
2k−1
2n+1

)
and the summation is assumed to be zero if N = 0 . Then, ϕN(v) is the linear interpo-
lation of f (v) at v = k/2N , k = 0,1, . . . ,2N .

Proof. First we note that since rn( k
2n ) = 0 for 0 � k � 2n , the interval of the

characteristic function may contain boundary points. For example, χ( k−1
2n , k

2n ) can be

replaced by χ( k−1
2n , k

2n ] or χ[ k−1
2n , k

2n ] . We will show that

ϕN(v) = (k−2Nv) f

(
k−1
2N

)
+(2Nv− k+1) f

(
k
2N

)
(2.1)
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for k−1
2N � v � k

2N and k = 1, . . . ,2N by induction on N . It is obvious for N = 0. Now,

assume that (2.1) holds and let m−1
2N+1 � v � m

2N+1 for m = 1, . . . ,2N+1 . If m = 2k− 1,

then k−1
2N � v � 2k−1

2N+1 < k
2N and

ϕN+1(v) = ϕN(v)− rN(v)Δ f (N,k)

= (k−2Nv) f

(
k−1
2N

)
+(2Nv− k+1) f

(
k
2N

)
− (2Nv− k+1)Δ f (N,k)

= (2k−2N+1v−1) f

(
k−1
2N

)
+(2N+1v−2k+2) f

(
2k−1
2N+1

)

= (m−2N+1v) f

(
m−1
2N+1

)
+(2N+1v−m+1) f

( m
2N+1

)
by Lemma 1. Similarly, if m = 2k , then k−1

2N < 2k−1
2N+1 � v � k

2N and

ϕN+1(v) = ϕN(v)− rN(v)Δ f (N,k)

= (k−2Nv) f

(
k−1
2N

)
+(2Nv− k+1) f

(
k
2N

)
− (k−2Nv)Δ f (N,k)

= (2k−2N+1v) f

(
2k−1
2N+1

)
+(2N+1v−2k+1) f

(
k
2N

)

= (m−2N+1v) f

(
m−1
2N+1

)
+(2N+1v−m+1) f

( m
2N+1

)
. �

From now on, any summation having ∑N−1
n=0 will be assumed to be zero for N = 0

and Δ f (n,k) defined in Lemma 2 will be used throughout the paper.
Now, we are ready to state and prove our main result. The following theorem is

based on a fact that a convex function can be estimated by using the linear interpola-
tions ϕN(v) in Lemma 2. In fact, such estimation provides a refinement of the Jensen
inequality for a convex function defined on the interval [0,1] .

THEOREM 3. Let N be a nonnegative integer. If f (v) is convex on [0,1] , then

(1− v) f (0)+ v f (1) � f (v)+
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v)

and

(1− v) f (0)+ v f (1) � f (0)+ f (1)− f (1− v) (2.2)

−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,2n− k+1)χ( k−1
2n , k

2n )(v).

Proof. By Lemma 2, we have ϕN(v) � f (v) which represents (2.2). Replacing v
by 1− v in (2.2) and noting that rn(v) = rn(1− v) , we have

(1− v) f (0)+ v f (1) � f (0)+ f (1)− f (1− v)−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(1− v).
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Now, replacing k by 2n− k+1 in the inner summation and noting that

k−1
2n < 1− v <

k
2n ⇐⇒ 1− k

2n < v < 1− k−1
2n ,

we obtain (2.2) and the proof is completed. �
It should be noticed here that Δ f � 0 in the previous theorem since f is convex.

Therefore the inequality (2.2) represents the refinement of the Jensen inequality for a
convex function defined on the interval [0,1] .

REMARK 1. It is important to emphasize that Theorem 3 can also be applied to
piecewise convex functions. For example, if f (v) is convex on intervals [0, 1

2 ] and
[ 1
2 ,1] , and f ( 1

2 ) � 1
2 ( f (0)+ f (1)) , then f (v) fulfills the inequalities as in the theorem.

More generally, if f (v) is convex on intervals of the form [ m−1
2N+1 ,

m
2N+1 ] , 1 � m � 2N+1 ,

and Δ f (N,k) � 0 for 1 � k � 2N , then the inequalities (2.2) and (2.2) are still valid for
f . To see this, note that ϕN(v) , v ∈ [ k−1

2N , k
2N ] is the line segment joining the two points

of f (v) at v = k−1
2N and v = k

2N . Thus, if Δ f (N,k) � 0 and f is convex on the intervals

of the form [ m−1
2N+1 ,

m
2N+1 ] , then the graph of f (v) is still below ϕN(v) for v ∈ [ k−1

2N , k
2N ] ,

1 � k � 2N , that is, we have ϕN(v) � f (v) , as in the proof of Theorem 3.

3. Improved versions of Young-type inequalities

In this section, we will see how the Jensen-type inequalities from Theorem 3 can
be used to improve Young-type inequalities. The most general forms of (1.2), (1.3),
(1.4), and (1.5) have been proved recently.

THEOREM 4. [5, 18] Let a,b > 0 , 0 � v � 1 , and N be a nonnegative integer.
Then,

(1− v)a+ vb � a1−vbv +
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(v), (3.1)

= a1−vbv + r0(v)(
√

a−
√

b)2 +
N−1

∑
n=1

rn(v)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(v),

and

(1− v)a+ vb � a+b−avb1−v−
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v) (3.2)

= 2
√

ab−avb1−v+R0(v)(
√

a−
√

b)2−
N−1

∑
n=1

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v)

� a1−vbv +R0(v)(
√

a−
√

b)2−
N−1

∑
n=1

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v),
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where gn,k(a,b) = Δ f (n,k) with f (v) = a1−vbv , i.e.,

gn,k(a,b) = a1−(k−1)/2n
b(k−1)/2n

+a1−k/2n
bk/2n −2a1−(2k−1)/2n+1

b(2k−1)/2n+1

=
(√

a1−(k−1)/2nb(k−1)/2n −
√

a1−k/2nbk/2n
)2

.

Note that the inequalities (1.2), (1.3), (1.4), and (1.5) follow directly from Theorem
4 for N = 1 and N = 2. The original proof of Theorem 4 was rather lengthy, here we
give a simple and elegant proof based on our Theorem 3.

Proof. Since f (v) = a1−vbv is convex on [0,1] , the inequality (3.1) follows from
(2.2), where we note that if n = 0, then

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v) = r0(v)(
√

a−
√

b)2.

Further, utilizing (2.2) we have

(1− v)a+ vb � a+b−avb1−v−
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v)

= 2
√

ab−avb1−v+R0(v)(
√

a−
√

b)2−
N−1

∑
n=1

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v).

Now, the second inequality in (3.2) follows by the arithmetic-geometricmean inequality
2
√

ab � avb1−v +a1−vbv. �
The inequalities (1.6) and (1.7) involving Kantorovich constants can also be gen-

eralized in the following way.

THEOREM 5. [5] Let a,b > 0 , 0 � v � 1 , and N be a nonnegative integer. Then

(1− v)a+ vb � KN(a,b)rN(v)a1−vbv +
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(v) (3.3)

= KN(a,b)rN(v)a1−vbv + r0(v)(
√

a−
√

b)2

+
N−1

∑
n=1

rn(v)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(v)

and

(1− v)a+ vb � a+b−KN(a,b)rN(v)avb1−v (3.4)

−
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v)

= 2
√

ab−KN(a,b)rN(v)avb1−v +R0(v)(
√

a−
√

b)2

−
N−1

∑
n=1

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v)
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� KN(a,b)−rN(v)a1−vbv +R0(v)(
√

a−
√

b)2

−
N−1

∑
n=1

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v),

where

KN(a,b) =

(
a1/2N

+b1/2N
)2

4(ab)1/2N

and gn,k is defined in Theorem 4.

The original proof of the above theorem can also be simplified by virtue of Theo-
rem 3.

Proof. Let f (v) = KN(a,b)rN(v)a1−vbv . Since KN(a,b) does not depend on vari-
able v and rN(v) is a line segment on each interval Im = [ m−1

2N+1 , m
2N+1 ] for 1 � m � 2N+1 ,

f (v) is of the form αβ v on Im for some α,β > 0. Thus f is convex on Im for
1 � m � 2N+1 . Moreover, since rN( k

2N ) = 0 for 0 � k � 2N , a direct computation
shows that

Δ f (n,k) =

{
gn,k(a,b), 0 � n < N

0, n = N
.

Although the function f is not convex on [0,1] , it is convex on intervals Im . Moreover,
since Δ f (N,k) = 0, Theorem 3 can be applied to function f . This yields the inequality
(3.3) and the first inequality in (3.4). Finally, the second inequality in (3.4) follows
simply from the arithmetic-geometric mean inequality:

2
√

ab � KN(a,b)rN(v)avb1−v +KN(a,b)−rN(v)a1−vbv. �

It should be noticed here that the inequalities (1.6) and (1.7) are the special cases
of Theorem 5 with N = 1 and N = 2. In order to conclude our discussion regarding
the previous theorem, we show that the Kantorovich constants KN(a,b) appearing in
Theorem 5 are the best possible.

PROPOSITION 6. Let N be a nonnegative integer. If ξ (a,b) is a nonnegative
function such that

(1− v)a+ vb � ξ (a,b)rN(v)a1−vbv +
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(v) (3.5)

for a,b > 0 and 0 � v � 1 , then ξ (a,b) � KN(a,b) .

Proof. Let f (v) = ξ (a,b)rN(v)a1−vbv . Similarly to the proof of Theorem 5, we
can show that Δ f (n,k) = gn,k(a,b) and that f is convex on Im = [ m−1

2N+1 ,
m

2N+1 ] , for 1 �
m � 2N+1 . Since

(1− v)a+ vb−
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(v)
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is the linear interpolation of f (v) at v = k/2N , for 0 � k � 2N , by Lemma 2, the
inequality (3.5) holds if and only if Δ f (N,k) � 0, for 0 � k � 2N .

Now, let vk = k
2N . Since rN(vk−1) = rN(vk) = 0 and rN( vk−1+vk

2 ) = 1
2 , the condi-

tion Δ f (N,k) � 0 is equivalent to

ξ (a,b)1/2a1−(vk−1+vk)/2b(vk−1+vk)/2 � 1
2

(
a1−vk−1bvk−1 +a1−vkbvk

)
,

that is,

ξ (a,b) �

(
a1/2N

+b1/2N
)2

4(ab)1/2N .

Therefore we have ξ (a,b) � KN(a,b) , a,b > 0. �
The inequalities in (1.8), due to Dragomir, can also be improved by virtue of The-

orem 3.

THEOREM 7. Let a,b > 0 , 0 � v � 1 , and let N be a nonnegative integer. Then,

(1− v)a+ vb � a1−vbv +
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(a,b)χ( k−1
2n , k

2n )(v) (3.6)

+

(
v(1− v)

2
−

N−1

∑
n=0

rn(v)
2n+2

)(
ln

b
a

)2

min{a,b}

and

(1− v)a+ vb � a+b−avb1−v−
N−1

∑
n=0

rn(v)
2n

∑
k=1

gn,k(b,a)χ( k−1
2n , k

2n )(v) (3.7)

−
(

v(1− v)
2

−
N−1

∑
n=0

rn(v)
2n+2

)(
ln

b
a

)2

min{a,b},

where the function gn,k is defined in Theorem 4.

Proof. Putting f (v) = a1−vbv + 1
2v(1− v)

(
ln b

a

)2
min{a,b} , we have

f ′′(v) = (ln
b
a
)2 (a1−vbv−min{a,b})� 0,

so the inequalities (3.6) and (3.7) follows directly from Theorem 3, since

Δ f (n,k) = gn,k(a,b)− 1
22n+2

(
ln

b
a

)2

min{a,b}. �

Note that the inequality (1.8) follows from the above theorem for N = 0. It is very
interesting to compare relations (3.1) and (3.6). It can be shown that if N � 2, then

v(1− v)
2

�
N−1

∑
n=0

rn(v)
2n+2 ,
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for 0 � v � 1. Thus, the inequality (3.6) is weaker than (3.1) for N � 2. On the other
hand, in the case when N = 1, the relation (3.6) is stronger than (3.1), since

1
2
v(1− v)− 1

4
r0(v) =

1
4
r0(v)|1−2v|� 0.

Similarly, the inequality (3.7) is stronger than the first inequality in (3.2) when N = 1,
and we have the following result.

COROLLARY 8. Let a,b > 0 and 0 � v � 1 . Then,

(1− v)a+ vb � a1−vbv + r0(v)(
√

a−
√

b)2 + α(v)ζ (a,b) (3.8)

and

(1− v)a+ vb � a+b−avb1−v− r0(v)(
√

a−
√

b)2−α(v)ζ (a,b) (3.9)

� a1−vbv +R0(v)(
√

a−
√

b)2 −α(v)ζ (a,b),

where

α(v) =
1
2
v(1− v)− 1

4
r0(v) =

1
4
r0(v)|1−2v|,

ζ (a,b) =
(

ln
b
a

)2

min{a,b}.

Moreover, (3.8) and the first inequality in (3.9) are stronger than the corresponding
ones in (1.9) for a,b � 1 .

Proof. The relations (3.8) and (3.9) follow from (3.6) and (3.7) with N = 1 re-
spectively, where the second inequality in (3.9) follows from the arithmetic-geometric
mean inequality 2

√
ab � avb1−v +a1−vbv .

Now, assume that a,b � 1. Since min{a,b}� 1, it is obvious that (3.8) is stronger
than the first inequality in (1.9). Moreover, from (3.9) we have

(1− v)a+ vb � a+b−avb1−v− r0(v)(
√

a−
√

b)2−α(v)
(

ln
b
a

)2

= 2
√

ab+R0(v)(
√

a−
√

b)2 −avb1−v−α(v)
(

ln
b
a

)2

= a1−vbv +R0(v)(
√

a−
√

b)2 + α(v)
(

ln
b
a

)2

+2
√

ab−avb1−v−a1−vbv −
(

v(1− v)− 1
4

)(
ln

b
a

)2

.

Thus, it suffices to show the relation

2
√

ab � a1−vbv +avb1−v +
(

v(1− v)− 1
4

)(
ln

b
a

)2
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for a,b � 1 and 0 � v � 1. Denoting the right-hand side of the above inequality by
f (v) , we have

f ′′(v) =
(

ln
b
a

)2 (
a1−vbv +avb1−v−2

)
.

Since a1−vbv+avb1−v � 2
√

ab� 2, it follows that f is convex. Moreover, since f (v) =
f (1− v) , f attains its minimum value at v = 1

2 , that is, f (v) � f ( 1
2 ) = 2

√
ab . �

Now, our aim is to improve the series of inequalities in (1.10) which includes the
Specht ratio. Note that the Specht ratio S(t) = t1/(t−1)/(e ln t1/(t−1)) has the following
properties (see e.g. [19]):

• S(1) = limt→1 S(t) = 1 and S(t) = S(t−1) for t > 0.

• S′(t) < 0 for 0 < t < 1 and S′(t) > 0 for t > 1.

Before the corresponding improvement, we first give an auxiliary result regarding the
Specht ratio.

LEMMA 9. Let S(t) be the Specht ratio and define D(t) by

D(t) =
1
2
(t + t−1),

for t > 0 . Then,

1. S(t) � D(t) for t > 0 ,

2. For any c > 0 , f (v) = D(cr0(v))cv is convex on [0, 1
2 ] and [ 1

2 ,1] . Moreover,
f ( 1

2 ) = 1
2 ( f (0)+ f (1)) .

Proof. Since S(t−1) = S(t) and D(t−1) = D(t) , for t > 0, we will show S(t) �
D(t) for t > 1. Taking a natural logarithm, we can show that S(t) � D(t) ⇐⇒ ψ(t) �
0, where

ψ(t) = ln(t2 +1)− ln(2t)− ln(t−1)− ln t
t −1

+1+ lnln t.

A direct computation yields

ψ ′(t) =
lnt

(t −1)2 +
1

t ln t
− 2(t +1)

(t2 +1)(t−1)

� 2√
t(t −1)

− 2(t +1)
(t2 +1)(t−1)

= 2
t
√

t−1

(t +
√

t)(t2 +1)
> 0,

for t > 1. Since limt→1+ ψ(t) = 0, it follows that ψ(t) � 0 for t � 1.
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The convexity of f is obvious, since

f (v) =

{
1
2 (c2v +1), 0 � v � 1

2
1
2 (c+ c2v−1), 1

2 < v � 1
.

Finally, f ( 1
2 ) = D(

√
c)
√

c = 1
2 (1+ c) = 1

2( f (0)+ f (1)) . �
Now, the following improvement of the series of inequalities in (1.10) is also based

on our Theorem 3.

THEOREM 10. Let a,b > 0 and 0 � v � 1 . If N is a nonnegative integer, then

(1− v)a+ vb � S(cr0(v))a1−vbv +
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v) (3.10)

and

(1− v)a+ vb � a+b−avb1−vS(cr0(v)) (3.11)

−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,2n− k+1)χ( k−1
2n , k

2n )(v),

where c = a−1b and f (v) = S(cr0(v))a1−vbv .

Proof. For c > 0, let fc(v) = cvS(cr0(v)) . We will show that fc is convex on [0, 1
2 ]

and [ 1
2 ,1] . Since

f−c(v) = c−vS(cr0(v)) = c−1c1−vS(cr0(1−v)) = c−1 fc(1− v),

we may assume c > 1 and show that g(v)≡ e(lnc) fc(v) is convex on [0, 1
2 ] and [ 1

2 ,1] .
From now on, we will write any function α(v) simply as α , for a convenience. Letting
x = r0/(cr0 −1) , h = cx/x , and g = cvh , a straightforward computation yields

h′ = x′
(

lnc− 1
x

)
h,

h′′ = x′′
(

lnc− 1
x

)
h+
(

x′

x

)2

h+ x′
(

lnc− 1
x

)
h′

= h

[
x′′
(

lnc− 1
x

)
+
(

x′

x

)2

+(x′)2
(

lnc− 1
x

)2
]

and

g′ = cv (h lnc+h′
)
,

g′′ = cv (h(lnc)2 +2h′ lnc+h′′
)

= cvh

([
lnc+ x′

(
lnc− 1

x

)]2

+
1
x2

[
xx′′ (x lnc−1)+ (x′)2]) .
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Thus, it suffices to show that

xx′′ (x lnc−1)+ (x′)2 � 0. (3.12)

Since

x′ = r′0

(
1

cr0 −1
− r0cr0 lnc

(cr0 −1)2

)
= ± x

r0
(1− xcr0 lnc) ,

x′′ = ±
[
x′ (1−2xcr0 lnc)− x2cr0r′0(lnc)2

]
r0 − x(1− xcr0 lnc) r′0

r2
0

=
x2

r2
0

((2xcr0 − r0) lnc−2)cr0 lnc,

the relation (3.12) can be rewritten as

((2xcr0 − r0) lnc−2)(x lnc−1)xcr0 lnc+(1− xcr0 lnc)2 � 0.

Replacing x by r0/(cr0 −1) and denoting cr0 by t , the above inequality reads(
t +1
t−1

ln t−2

)(
ln t

t−1
−1

)
t ln t
t−1

+
(

1− t ln t
t−1

)2

� 0

for t > 1. Multiplying by (t−1)3 and letting s = ln t , the above expression becomes

((t +1)s−2(t−1))(s− t +1)ts+(t−1)(t−1− ts)2 � 0,

or equivalently,

ξ (t) ≡ t3 +
(
s3 −3s2−3

)
t2 +(s3 +3s2 +3)t−1 � 0

for t > 1. A straightforward computation shows

ξ1 = ξ ′ = 3t2 +(2s3−3s2−6s−6)t + s3 +6s2 +6s+3,

ξ2 = tξ ′
1 = 6t2 +(2s3 +3s2−12s−12)t+3s2 +12s+6,

ξ3 = tξ ′
2 = 12t2 +(2s3 +9s2−6s−24)t +6s+12,

ξ4 = tξ ′
3 = 24t2 +(2s3 +15s2 +12s−30)t+6,

ξ5 = tξ ′
4 = 48t +2s3 +21s2 +42s−18.

Since t > 1 and s > 0, it follows that ξ5 > 0. Thus, ξ (t) � 0 results from

ξ4(1) = · · · = ξ1(1) = ξ (1) = 0.

We have shown that fc is convex on [0, 1
2 ] and [ 1

2 ,1] . Now, by Lemma 9 it follows

that 1
2(
√

c+
√

c−1) � S(
√

c) which is equivalent to f (0) + f (1) � 2 f ( 1
2 ) . Thus, fc

satisfies

1− v+ vc � cvS(cr0(v))−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ fc(n,k)χ( k−1
2n , k

2n )(v),
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1− v+ vc � 1+ c− c1−vS(cr0(v))−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ fc(n,2n− k+1)χ( k−1
2n , k

2n )(v),

by Theorem 3. Finally, letting c = a−1b , we obtain (3.10) and (3.11). �
In order to conclude this section, we give yet another improvement of the Young

inequality, based on Theorem 3 and Lemma 9.

THEOREM 11. Let a,b > 0 and let N be a nonnegative integer. Define ga,b(v) by
ga,b(v) = a1−2vb2v, 0 � v � 1 .

1. If 0 � v � 1
2 , then

(1− v)a+ vb � 1
2
(a1−2vb2v +a)+

1
2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δga,b(n,k)χ( k−1
2n , k

2n )(v),

(1− v)a+ vb � a+
1
2
b− 1

2
a2vb1−2v− 1

2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δgb,a(n,k)χ( k−1
2n , k

2n )(v).

2. If 1
2 < v � 1 , then

(1−v)a+vb � 1
2
(a2−2vb2v−1+b)+

1
2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δga,b(n,k)χ( k−1
2n , k

2n )

(
v−1

2

)
,

(1−v)a+vb � 1
2
a+b−1

2
a2v−1b2−2v−1

2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δgb,a(n,k)χ( k−1
2n , k

2n )

(
v−1

2

)
.

Proof. Utilizing Theorem 3 and Lemma 9 with

f (v) = D(cr0(v))a1−vbv

=
1
2
(a−r0(v)+1−vbr0(v)+v +ar0(v)+1−vb−r0(v)+v)

=

{
1
2 (a1−2vb2v +a), 0 � v � 1

2
1
2 (a2−2vb2v−1 +b), 1

2 < v � 1
,

we have

(1− v)a+ vb � f (v)+
N−1

∑
n=1

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v), (3.13)

(1− v)a+ vb � a+b− f (1− v)−
N−1

∑
n=1

rn(v)
2n

∑
k=1

Δ f (n,2n− k+1)χ( k−1
2n , k

2n )(v).

Note that the outer summation starts at n = 1, since Δ f (0,1) = 0.
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If 0 � v � 1
2 , then f (v) = 1

2 (a1−2vb2v +a) and f (1− v) = 1
2 (a2vb1−2v +b) . Fur-

ther, taking into account (3.13), we have

(1− v)a+ vb � 1
2
(a1−2vb2v +a)+

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v),

(1− v)a+ vb � a+
1
2
b− 1

2
a2vb1−2v−

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δ f (n,2n− k+1)χ( k−1
2n , k

2n )(v).

Finally, since 1 � k � 2n−1 , it follows that

Δ f (n,k) =
1
2

Δga,b(n,k),

Δ f (n,2n− k+1) = f

(
1− k

2n

)
+ f

(
1− k−1

2n

)
−2 f

(
1− 2k−1

2n+1

)

=
1
2

Δgb,a(n,k).

On the other hand, if 1
2 < v � 1, then f (v) = 1

2 (a2−2vb2v−1 + b) and f (1− v) =
1
2(a2v−1b2−2v +a) . Thus, utilizing (3.13) we have,

(1− v)a+ vb � 1
2
(a2−2vb2v−1 +b)+

N−1

∑
n=1

rn(v)
2n

∑
k=2n−1+1

Δ f (n,k)χ( k−1
2n , k

2n )(v)

=
1
2
(a2−2vb2v−1 +b)+

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δ f (n,k+2n−1)χ( k−1
2n , k

2n )

(
v− 1

2

)

and

(1−v)a+vb � 1
2
a+b−1

2
a2v−1b2−2v−

N−1

∑
n=1

rn(v)
2n

∑
k=2n−1+1

Δ f (n,2n−k+1)χ( k−1
2n , k

2n )(v)

=
1
2
a+b−1

2
a2v−1b2−2v−

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δ f (n,2n−1−k+1)χ( k−1
2n , k

2n )

(
v−1

2

)
.

Finally, if 1 � k � 2n−1 , we have

Δ f (n,k+2n−1) = f

(
1
2

+
k−1
2n

)
+ f

(
1
2

+
k
2n

)
−2 f

(
1
2

+
2k−1
2n+1

)

=
1
2

Δga,b(n,k)

and

Δ f (n,2n−1− k+1) = f

(
1
2
− k

2n

)
+ f

(
1
2
− k−1

2n

)
−2 f

(
1
2
− 2k−1

2n+1

)

=
1
2

Δgb,a(n,k),

which completes the proof. �
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4. Applications to some matrix inequalities

Our aim in this section is to discuss some matrix inequalities that correspond to
scalar inequalities derived in the previous section.

Throughout this section, we will use Mn for the set of n× n complex matrices,
M+

n for the subset of Mn consisting of positive definite matrices, and ||| · ||| for any
unitarily invariant norm. For A ∈ Mn , A > 0 (A � 0) means that A is positive definite
(semidefinite). For Hermitian matrices A,B ∈ Mn , A < B (A � B) implies that B−A
is positive definite (semidefinite). The absolute value of A ∈ Mn will be defined by
|A| = (A∗A)1/2 .

For A,B ∈ M+
n and 0 � v � 1, the v-weighted arithmetic mean and geometric

mean of A and B are defined, respectively, by

A∇vB = (1− v)A+ vB,

A�vB = A1/2(A−1/2BA−1/2)vA1/2.

For convenience of notation, we use A∇B for A∇ 1
2
B and A�B for A� 1

2
B .

In order to obtain matrix inequalities from the corresponding scalar inequalities,
we will use the operator monotonicity of continuous functions, that is, if f is a real
valued continuous function defined on the spectrum of a self-adjoint operator A , then
f (t) � 0 for every t in the spectrum of A implies that f (A) is a positive operator.

Matrix inequalities that correspond to Theorems 4 and 5 have been already es-
tablished in papers [5, 18]. Now, we are going to discuss matrix inequalities that cor-
respond to Corollary 8, closely connected to some recent matrix inequalities due to
Dragomir.

In order to do this, we will first generalize the definition of the geometric mean
A�vB = A1/2(A−1/2BA−1/2)vA1/2 . Let f be a continuous function defined on an interval
I containing the spectrum of A−1/2BA−1/2 . Then, using the functional calculus for
continuous functions, we define A� f B by

A� f B = A1/2 f (A−1/2BA−1/2)A1/2.

Utilizing the scalar relation (1.8), Dragomir [6], established the following series of
inequalities

1
2
v(1− v)A� fminB � A∇vB−A�vB � 1

2
v(1− v)A� fmaxB, (4.1)

where A,B ∈ M+
n , 0 � v � 1, and

fmin(x) = min{1,x}(lnx)2,

fmax(x) = max{1,x}(lnx)2,

where x > 0. Now, by virtue of our Corollary 8 we can obtain more accurate relations
than those in (4.1).
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THEOREM 12. Let A,B ∈ M+
n and 0 � v � 1 . Then,

A∇vB � A�vB+ r0(v)(A+B−2A�B)+ α(v)A� fminB

and

A∇vB � A+B−A�1−vB− r0(v)(A+B−2A�B)−α(v)A� fminB,

= A�B−A�1−vB+R0(v)(A+B−2A�B)−α(v)A� fminB,

where α(v) = 1
2v(1− v)− 1

4 r0(v) and fmin(x) = min{1,x}(lnx)2 .

Proof. By Corollary 8, we have

1− v+ vc � cv + r0(v)(c+1−2
√

c)+ α(v) fmin(c),
1− v+ vc � 1+ c− c1−v− r0(v)(c+1−2

√
c)−α(v) fmin(c)

= 2
√

c− c1−v +R0(v)(c+1−2
√

c)−α(v) fmin(c)

for c > 0 and 0 � v � 1. Now, substituting c by A−1/2BA−1/2 and multiplying each
inequality by A1/2 both-sidedly, which preserves operator order, we obtain desired re-
lations. �

Next, we give the matrix interpretation of Theorem 11.

THEOREM 13. Let A,B ∈ M+
n and 0 � v � 1 . Define Gn,k(A,B) by

Gn,k(A,B) = A�(k−1)/2n−1B+A�k/2n−1B−2A�(2k−1)/2nB.

1. If 0 � v � 1
2 , then

(1− v)A+ vB � 1
2
(A�2vB+A)+

1
2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Gn,k(A,B)χ( k−1
2n , k

2n )(v),

(1− v)A+ vB � A+
1
2
B− 1

2
A�1−2vB− 1

2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Gn,k(B,A)χ( k−1
2n , k

2n )(v).

2. If 1
2 < v � 1 , then

(1−v)A+vB � 1
2
(A�2v−1B+B)+

1
2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Gn,k(A,B)χ( k−1
2n , k

2n )

(
v−1

2

)
,

(1−v)A+vB � 1
2
A+B−1

2
A�2−2vB−1

2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Gn,k(B,A)χ( k−1
2n , k

2n )

(
v−1

2

)
.

Proof. Let c > 0. Taking into account Theorem 11 with 0 � v � 1
2 , we have

(1− v)+ vc � 1
2
(c2v +1)+

1
2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δg1,c(n,k)χ( k−1
2n , k

2n )(v),
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(1− v)+ vc � 1+
1
2
c− 1

2
c1−2v− 1

2

N−1

∑
n=1

rn(v)
2n−1

∑
k=1

Δgc,1(n,k)χ( k−1
2n , k

2n )(v),

where

Δg1,c(n,k) = c(k−1)/2n−1
+ ck/2n−1 −2c(2k−1)/2n

,

Δgc,1(n,k) = c1−(k−1)/2n−1
+ c1−k/2n−1 −2c1−(2k−1)/2n

.

Now, the desired inequalities follow by substituting c by A−1/2BA−1/2 and multiplying
each inequality by A1/2 both-sidedly. The same conclusion can be drawn for the case
1
2 < v � 1. We omit the detailed proof. �

The rest of this section will be dedicated to improving some important matrix
inequalities known from the literature. First, we deal with Heinz-type inequalities. For
0 � v � 1, the Heinz mean in parameter v is defined by

Hv(a,b) =
a1−vbv +avb1−v

2
, a,b > 0.

The Heinz mean is convex on [0,1] , as a function of variable v and attains its minimum
value at v = 1/2. Thus, the Heinz mean interpolates between the geometric mean and
the arithmetic mean, that is,

√
ab � Hv(a,b) � a+b

2
.

Similarly, it is easy to see that for any A,B ∈ M+
n holds relation

A�B � Hv(A,B) � A∇B, (4.2)

where

Hv(A,B) =
A�vB+A�1−vB

2
.

Now, by virtue of Theorem 3, we can improve the second inequality in (4.2).

THEOREM 14. Let A,B ∈ M+
n . If N is a nonnegative integer, then

Hv(A,B)� A∇B−
N−1

∑
n=0

rn(v)
2n

∑
k=1

(
Hk−1

2n
(A,B)+H k

2n
(A,B)−2H 2k−1

2n+1
(A,B)

)
χ( k−1

2n , k
2n )(v).

Proof. Let c > 0. Since f (v) = Hv(1,c) = (cv + c1−v)/2 is convex on [0,1] , we
have

f (v) � f (0)−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v)

by Theorem 3. By the functional calculus, we can replace c by A−1/2BA−1/2 . Then,
multiplying the obtained inequality by A1/2 both-sidedly, we obtain the desired in-
equality. �
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Note that the second inequality in (4.2) follows from the above theorem with N =
0. Moreover, if N = 1, we have

Hv(A,B) � (1−2r0(v))A∇B+2r0(v)A�B

for all 0 � v � 1, which was proved in [12].
Kittaneh [11], showed that if A,B ∈ M+

n , X ∈ Mn , and 0 � v � 1, then

|||A1−vXBv +AvXB1−v||| � 4r0(v)|||A1/2XB1/2|||+(1−2r0(v))|||AX +XB|||. (4.3)

This Heinz-type inequality for unitarily invariant norms can be improved as follows.

THEOREM 15. Let A,B ∈ M+
n and X ∈ Mn . If 0 � v � 1 , then

|||A1−vXBv +AvXB1−v||| � |||AX +XB|||−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v),

where f (v) = |||A1−vXBv +AvXB1−v||| .

Proof. It follows from Theorem 3 since the function f (v)=|||A1−vXBv+AvXB1−v|||
is convex on [0,1] (for more details, see [3, Corollary IX.4.10]). �

Considering the above theorem for N = 0, we obtain the well-known Heinz in-
equality

|||A1−vXBv +AvXB1−v||| � |||AX +XB|||,
while for N = 1, we have

|||A1−vXBv +AvXB1−v||| � |||AX +XB|||−2r0(v)
(|||AX +XB|||−2|||A1/2XB1/2|||)

which is simply (4.3).
Now, consider the following relation that interpolates the matrix Cauchy-Schwarz

inequality [21, Corollary 4.31]:

||| |A1/2XB1/2|t |||2 � ||| |A1−vXBv|t ||| · ||| |AvXB1−v|t |||
� ||| |AX |t ||| · ||| |XB|t |||,

where A,B ∈ M+
n , X ∈ Mn , and t > 0. This series of inequalities can be improved as

follows.

THEOREM 16. Let A,B ∈ M+
n , X ∈ Mn , and N be a nonnegative integer. If t > 0

and 0 � v � 1 , then

||| |A1−vXBv|t ||| · ||| |AvXB1−v|t ||| � ||| |AX |t ||| · ||| |XB|t|||

−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v),

where f (v) = ||| |A1−vXBv|t ||| · ||| |AvXB1−v|t ||| .
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Proof. It follows from Theorem 3 since f (v) = ||| |A1−vXBv|t ||| · ||| |AvXB1−v|t |||
is convex on [0,1] (see [21, Theorem 4.30]). �

In particular, if N = 1 the above theorem reduces to

||| |A1−vXBv|t ||| · ||| |AvXB1−v|t ||| � (1−2r0(v))||| |AX |t ||| · ||| |XB|t |||
+2r0(v)||| |A1/2XB1/2|t |||2,

where 0 � v � 1.
Similarly to the previous theorem, we can also utilize convexity of a function

f (v) = ||| |AvXBv|t ||| · ||| |A−vXB−v|t ||| on the interval [−1,1] (for more details, see
[21, Corollary 4.32]).

THEOREM 17. Let A,B ∈ M+
n , X ∈ Mn , and N be a nonnegative integer. If t > 0

and −1 � v � 1 , then

||| |AvXBv|t ||| · ||| |A−vXB−v|t ||| � ||| |AXB|t ||| · ||| |A−1XB−1|t |||

−
N−1

∑
n=0

sn(v)
2n−1

∑
k=1−2n−1

Δ f (n,k)χ( k−1
2n−1 , k

2n−1 )(v),

where f (v) = ||| |AvXBv|t ||| · ||| |A−vXB−v|t ||| and sn(v) = rn( v+1
2 ) .

Proof. Applying Theorem 3 to g(v) = f (2v−1) , 0 � v � 1, we have

f (2v−1) � (1− v) f (−1)+ v f (1)−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δg(n,k)χ( k−1
2n , k

2n )(v). (4.4)

Now, since

Δg(n,k) = f

(
k−1
2n−1 −1

)
+ f

(
k

2n−1 −1

)
−2 f

(
2k−1

2n −1

)
,

replacing v by v+1
2 and k by 2n−1− k in (4.4), we obtain

f (v) � 1− v
2

f (−1)+
1+ v

2
f (1)−

N−1

∑
n=0

sn(v)
2n−1

∑
k=1−2n−1

Δ f (n,k)χ( k−1
2n−1 , k

2n−1 )(v),

which represents the desired inequality. �
In particular, if N = 1 the above result reduces to

||| |AvXBv|t ||| · ||| |A−vXB−v|t ||| � (1−2s0(v))||| |A−1XB−1|t ||| · ||| |AXB|t|||
+2s0(v)||| |X |t |||2,

where −1 � v � 1.
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To conclude the paper, we will improve the following inequality involving positive
definite matrices and arithmetic mean (see [9, pp. 554–555]):

(A∇vB)−1 � A−1∇vB
−1, (4.5)

where A,B ∈ M+
n and 0 � v � 1. This inequality can also be refined by virtue of

Theorem 3.

THEOREM 18. If A,B ∈ M+
n and 0 � v � 1 , then

(A∇vB)−1 � A−1∇vB
−1−

N−1

∑
n=0

rn(v)
2n

∑
k=1

Fn,k(A,B)χ( k−1
2n , k

2n )(v),

where
Fn,k(A,B) = (A∇ k−1

2n
B)−1 +(A∇ k

2n
B)−1−2(A∇ 2k−1

2n+1
B)−1.

Proof. Let c > 0. Applying Theorem 3 to the convex function f (v) = (1− v +
vc)−1 , we have

(1− v+ vc)−1 � 1− v+ vc−1−
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v).

Now, the result follows by the functional calculus as in Theorems 12, 13, and 14. �
If N = 0, the above theorem reduces to inequality (4.5), while for N = 1 we obtain

relation
(A∇vB)−1 � A−1∇vB

−1−2r0(v)
(
A−1∇B−1− (A∇B)−1) ,

where 0 � v � 1.
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