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THE INEQUALITIES OF RANDOMLY WEIGHTED SUMS OF PAIRWISE

NQD SEQUENCES AND ITS APPLICATION TO LIMIT THEORY

XIAOQIN LI, ZHANGRUI ZHAO, WENZHI YANG ∗ AND SHUHE HU

(Communicated by X. Wang)

Abstract. By using some inequalities of randomly weighted sums of pairwise NQD random
variables, we investigate the single-indexed randomly weighted and double-indexed randomly
weighted sums of these dependence structure. Some almost sure convergence and complete
convergence results are obtained, which extend the corresponding results for the nonweighted
and constant weighted cases to the case of randomly weighted. Last, some simulations are also
illustrated in this paper.

1. Introduction

DEFINITION 1.1. Two random variables X and Y are said to be negative quadrant
dependent (NQD) if for all real numbers x and y ,

P(X � x,Y � y) � P(X � x)P(Y � y).

A sequence of random variables {Xn,n � 1} is said to be pairwise NQD if Xi and
Xj are NQD for any i , j ∈ N+ and i �= j .

An array of random variables {Xni,1 � i � n,n � 1} is called rowwise pairwise
NQD random variables if for every n � 1, {Xni,1 � i � n} are pairwise NQD if Xn j

and Xnk are NQD for any 1 � j,k � n and j �= k .
The concept of pairwise NQD was introduced in Lehmann [13]. Pairwise NQD

random variables are weak dependent random variables. The related concepts to pair-
wise NQD are negatively associated (NA), negatively superadditive dependent (NSD)
and negatively orthant dependent (NOD). It can be found that NA and NSD random
variables are NOD random variables, but the converse statement cannot always be true.
For the counter-examples, one can refer to Joag-Dev and Proschan [12] and Wu [22].
Meanwhile, associated concept is closely related to negatively associated. For the ex-
amples and limit theorems of this random fields and related systems, one can refer to
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Bulinski and Shaskin [3]. It can be seen that NA, NSD and NOD sequences are pair-
wise NQD sequences. Thus, it is important to investigate the limit theory of pairwise
NQD sequences. For more results of pairwise NQD sequences and related dependent
sequences, we can refer to the references [4–7, 10, 11, 14–19, 21, 23–28] and so on.

Let C be some positive constant. Recall that a sequence {Xn,n � 1} is stochasti-
cally dominated by a random variable Y if

sup
n�1

P(|Xn| > x) � CP(|Y | > x), ∀ x � 0. (1.1)

Similarly, an array of random variables {Xni,1 � i � n,n � 1} is stochastically domi-
nated by a random variable Y if

sup
1�i�n,n�1

P(|Xni| > x) � CP(|Y | > x), ∀ x � 0. (1.2)

An array of random variables {Xni,1 � i � n,n � 1} is stochastically dominated by
random variable {Yi, i � 1} if

sup
n�i

P(|Xni| > x) � CP(|Yi| > x), ∀ x � 0, ∀ i � 1. (1.3)

For more details of stochastically dominated, one can refer to Adler and Rosalsky [1],
Adler et al. [2], Ghosal and Chandra [8], Hanson et al. [9], Wright [20], etc. As far
as we know, there is no result of randomly weighted sums of pairwise NQD sequences.
In this paper, by using some inequalities of randomly weighted sums of pairwise NQD
sequences, we investigate the limit theorems of these dependent sequences, including
single-indexed randomly weighted and double-indexed randomly weighted, and obtain
the results of almost sure convergenceand complete convergence. For the details, please
see our results in Section 2. We extend the results of Hu et al. [10], Wang et al. [18]
and Wu and Guo [26] for nonweighted and constant weighted cases to the case of
randomly weighted. Some simulations are also illustrated in Section 2. The proofs of
main results are presented in Section 3. Through out the paper, let C,C1,C2,C3, · · · ,
denote some positive constants not depending on n , which may be different in various
places, x+ = max(x,0) , x− = max(−x,0) and logx = lnmax(x,e) .

2. Limit theorems of randomly weighted sums of pairwise NQD sequences

First, we investigate the almost sure convergenceof single-indexed randomlyweig-
hted sums of pairwise NQD sequences.

THEOREM 2.1. For some 1 � r < 2 and α > 3r/2 , let {Xn,n � 1} be a mean
zero sequence of pairwise NQD random variables, which is stochastically dominated
by a random variable X with E(|X |r logα |X |) < ∞ . Suppose that {An,n � 1} is a
sequence of independent random variables, which is also independent of {Xn,n � 1} .
Let

n

∑
i=1

EA2
i = O(n). (2.1)
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Then
1

n1/r

n

∑
i=1

AiXi → 0, almost sure, as n → ∞. (2.2)

Taking An ≡ 1, n � 1 in Theorem 2.1, we have the following result.

COROLLARY 2.1. For some 1 � r < 2 and α > 3r/2 , let {Xn,n � 1} be a mean
zero sequence of pairwise NQD random variables, which is stochastically dominated
by a random variable X with E(|X |r logα |X |) < ∞ . Then

1

n1/r

n

∑
i=1

Xi → 0, almost sure, as n → ∞. (2.3)

Second, we investigate the complete convergence of double-indexed randomly
weighted sums of rowwise pairwise NQD sequences.

THEOREM 2.2. Let {Xni,1 � i � n,n � 1} be a mean zero array of rowwise pair-
wise NQD random variables. For each n � 1 , we assume that {Ani,1 � i � n} are
independent random variables, which is also independent of {Xni,1 � i � n} . Let
{bn,n � 1} be a sequence of positive numbers satisfying

∞

∑
n=1

log2 n
b2

n

n

∑
i=1

EA2
niEX2

ni < ∞. (2.4)

Then,
1
bn

max
1�k�n

∣∣∣ k

∑
i=1

AniXni

∣∣∣→ 0, completely, as n → ∞, (2.5)

which yields
1
bn

n

∑
i=1

AniXni → 0, completely, as n → ∞. (2.6)

As applications of Theorem 2.2, we have the following results.

COROLLARY 2.2. Let {Xni,1 � i � n,n � 1} be a mean zero array of rowwise
pairwise NQD random variables. For every n � 1 , we assume that {Ani,1 � i � n}
are independent random variables, which is also independent of the sequence {Xni,1 �
i � n} . Suppose that {Ani,1 � i � n,n � 1} is stochastically dominated by a random
variable A with EA2 < ∞ . For some r > 0 , let

∞

∑
n=1

log2 n
n2r

n

∑
i=1

EX2
ni < ∞. (2.7)

Then,
1
nr max

1�k�n

∣∣∣ k

∑
i=1

AniXni

∣∣∣→ 0, completely, as n → ∞, (2.8)

which yields
1
nr

n

∑
i=1

AniXni → 0, completely, as n → ∞. (2.9)
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COROLLARY 2.3. Assume that {Xni,1 � i � n,n � 1} is a mean zero array of
rowwise pairwise NQD random variables. For every n � 1 , let {Ani,1 � i � n} be
independent random variables, which is also independent of the sequence {Xni,1 � i �
n} . Let {Ani,1 � i � n,n � 1} be stochastically dominated by a sequence of random
variable {Bi, i � 1} , {Xni,1 � i � n,n � 1} be stochastically dominated by a sequence
of random variable {Yi, i � 1} . For some r > 1

2 , suppose that

∞

∑
n=1

log2 nEB2
nEY 2

n

n2r−1 < ∞. (2.10)

Then, it has (2.8), which implies (2.9).

COROLLARY 2.4. Assume that {Xni,1 � i � n,n � 1} is a mean zero array of
rowwise pairwise NQD random variables, which is stochastically dominated by a se-
quence of random variable X with EX2 < ∞ . For every n � 1 , let {Ani,1 � i � n} be
independent random variables, which is also independent of the sequence {Xn,1 � i �
n} . For some δ > 0 , suppose that

n

∑
i=1

EA2
ni = O(nδ ). (2.11)

Then for all r > 1+δ
2 , it has (2.8), which yields (2.9).

REMARK 2.1. For some 1 � r < 2 and α > 1+ r , by the moment condition such
as E(|X |r logα |X |) < ∞ , Hu et al. [10] obtained the almost sure convergence (2.3) for
the nonweighted sums of pairwise NQD sequences. For some 1� r < 2, by the moment
condition E(|X |r log2 |X |) < ∞ , Wu and Guo [26] obtained the result (2.3) for the non-
weighted case too. In our Theorem 2.1, by the moment condition E(|X |r logα |X |) < ∞
with 1 � r < 2 and α > 3r/2, we obtain the almost sure convergence (2.2) for the
randomly weighted sums of pairwise NQD sequences, which yields the result of (2.3)
in Corollary 2.1. On the one hand, in view of 1 � r < 2, it has 1+ r > 3/2r , which
implies that our condition E(|X |r logα |X |) < ∞ is weaker than the one of Hu et al. [10].
On the other hand, it can can be checked that 3r/2 < 2 if r ∈ [1,4/3) , and 3r/2 � 2
if r ∈ [4/3,2) . So we improve the result of Hu et al. [10] and extend the result of
Wu and Guo [26] to the randomly weighted case. Moreover, Wang et al. [18] inves-
tigated the complete convergence for double-indexed constant weighted sums of END
random variables, and obtained some results such as 1

bn
∑n

i=1 aniXni → 0, completely,
as n → ∞ (see Theorem 4.1 of Wang et al. [18]). Inspired by Wang et al. [18], in
this paper, we studied the double-indexed and randomly weighted sums of pairwise
NQD sequences and get some similar results such as 1

bn
max1�k�n |∑k

i=1 AniXni| → 0,
completely, as n → ∞ , in Theorem 2.2. With the method of stochastically dominated,
we obtain some complete convergence results such as 1

nr max1�k�n |∑k
i=1 AniXni| → 0

and 1
nr ∑n

i=1 AniXni → 0, completely, as n → ∞ , in Corollaries 2.2-2.4. So we extend
the result of Wang et al. [18] for constant weighted sums of END random variables
to the case of randomly weighted sums of pairwise NQD random variables. Since that
pairwise NQD sequences contain many dependent sequences such as NA sequences,



THE INEQUALITIES OF WEIGHTED SUMS OF PAIRWISE NQD SEQUENCES 327

NSD sequences and NOD sequences, the results obtained in this paper also hold true
for these dependent sequences.

SIMULATION 2.1. In the following, we do some simulations for the convergence
of (2.2) in Theorem 2.1. Let (X1,X2, . . . ,Xn) be a normal random vector such as
(X1,X2, . . . ,Xn) ∼ Nn(0,Σ) , where 0 is zero vector,

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ ρ2 −ρ −ρ2 0 · · · 0 0 0 0
−ρ 1+ ρ2 −ρ −ρ2 · · · 0 0 0 0
−ρ2 −ρ 1+ ρ2 −ρ · · · 0 0 0 0

0 −ρ2 −ρ 1+ ρ2 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1+ ρ2 −ρ −ρ2 0
0 0 0 0 · · · −ρ 1+ ρ2 −ρ −ρ2

0 0 0 0 · · · −ρ2 −ρ 1+ ρ2 −ρ
0 0 0 0 · · · 0 −ρ2 −ρ 1+ ρ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

,

and 0 < ρ < 1. By Joag-Dev and Proschan [12], it can be seen that (X1,X2, . . . ,Xn) is
a NA vector. So, (X1,X2, . . . ,Xn) is also a pairwise NQD vector. Let {An,n � 1} be
a i.i.d. random variables A1 ∼U(−a,b) with a > 0 and b > 0 (or A1 ∼ Γ(d,λ ) with
d > 0 and λ > 0), which is also independent of {Xn,n � 1} . Then we use MATLAB
software to plot the Box plot to illustrate

1

n1/r

n

∑
i=1

AiXi → 0. (2.12)

For r = 1.5 (or r = 1), ρ = 0.2 (or ρ = 0.3), the distribution A1 ∼ U(−1,1) (or
A1 ∼ Γ(3,1)) and sample size n = 100,200, . . . ,1000, we repeat the experiments 10000
times and obtain the Box plots such as Fig 1 and Fig 2.
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Fig 1: Box plots with r=1.5, ρ=0.2 and U(−1,1)
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Fig 2: Box plots with r=1, ρ=0.3 and Γ(3,1)

In Fig 1 and Fig 2, the label of y-axis is the value of (2.12) and the label of x-axis is the
number of sample n , by repeatting the experiments 10000 times. In Fig 1, for r = 1.5,
ρ = 0.2 and A1 ∼U(−1,1) , it can be seen that the median of (2.12) is close to 0 and
the variation range becomes smaller as the sample n increases by 100,200, . . . ,1000.
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Likewise, in Fig 2, with r = 1, ρ = 0.3 and A1 ∼ Γ(3,1) , the median of (2.12) is close
to 0 and the variation range becomes smaller too as the sample n increases. For the
different ρ and distribution A1 , we also obtain some similar Box plots and omit them
in this paper.

3. Some lemmas and the proofs of main results

LEMMA 3.1. (Lehmann [13]) If random variables X and Y are NQD, then
(i) EXY � EXEY ;
(ii) P(X > x,Y > y) � P(X > x)P(Y > y), ∀ x, y ∈ R;
(iii) If f and g are both nondecreasing (or nonincreasing) functions, then f (X)

and g(Y ) are NQD.

REMARK 3.1. Let {Xn,n � 1} be a pairwise NQD sequence and {Yn,n � 1} be a
sequence of nonnegative and independent random variables, which is also independent
of {Xn,n � 1} . Let Zn = XnYn . Then, for all i �= j and all real numbers x and y , we
have

P(Zi � x,Zj � y) = P(XiYi � x,XjYj � y)

=
∫ ∞

0

∫ ∞

0
P(Xiu � x,Xjv � y)dFYi(u)dFYj(v)

�
∫ ∞

0

∫ ∞

0
P(Xiu � x)P(Xjv � y)dFYi(u)dFYj(v)

= P(XiYi � x)P(XjYj � y)
= P(Zi � x)P(Zj � y)

which yields that {Zn,n � 1} is also a pairwise NQD sequence.

LEMMA 3.2. (Wu [21, Lemma 2]) Let {Xn,n � 1} be a pairwise NQD sequence
with EXn = 0 and EX2

n < ∞ for all n � 1 . Then for all n � 1 , it has

E
(

max
1�k�n

( k

∑
i=1

Xi

)2)
� C log2 n

n

∑
i=1

EX2
i ,

where C is a positive constant not dependent on n.

LEMMA 3.3. (Adler and Rosalsky [1, Lemma 1] and Adler et al. [2, Lemma 3])
Let {Xn,n � 1} be a sequence of random variables, which is stochastically dominated
by a random variable X . Then, for any α > 0 and b > 0 , the following two statements
hold:

E[|Xn|α I(|Xn| � b)] � C1{E[|X |αI(|X | � b)]+bαP(|X | > b)},
E[|Xn|α I(|Xn| > b)] � C2E[|X |αI(|X | > b)].

Consequently, it has E[|Xn|α ] � C3E|X |α for all n � 1 . Here C1 , C2 and C3 are
positive constants not depending on n.
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LEMMA 3.4. For every positive constant α > 0 and integer m � 1 , it has that

∞

∑
n=m

n(n+1)
2αn � C

m2

2αm ,

where C is a positive constant not depending on m.

Proof. With the techniques of mathematical analysis, it is easy to establish the
result of Lemma 3.4. �

Proof of Theorem 2.1. Combining Lemma 3.1 with Remark 3.1, for all fixed n ,
we obtain that {A+

i Xi,1 � i � n} , {A−
i Xi,1 � i � n} are also pairwise NQD random

variables. In view of AiXi = A+
i Xi −A−

i Xi , without loss of generality, we assume that
Ai � 0 in the proof. Denote Sn = ∑n

i=1 AiXi , n � 1. For any integer n , there exists some
integer k = k(n) such that 2k � n < 2k+1 . Therefore, it follows

1

n1/r
|Sn| � max

2k�n<2k+1

1

2k/r
|Sn|.

Consequently, to prove (2.2), it is suffices to show that

lim
k→∞

max
2k�n<2k+1

1

2k/r
|Sn| = 0, a.s. (3.1)

Take r < μ < 3r/2. Denote ak = 2
k+1
r /(k+1)

μ
r and

X (k)
i = −akI(Xi < −ak)+XiI(|Xi| � ak)+akI(Xi > ak),

X̃ (k)
i = Xi −X (k)

i = akI(Xi < −ak)+XiI(|Xi| > ak)−akI(Xi > ak),

S(k)
n =

n

∑
i=1

AiX
(k)
i , S̃(k)

n =
n

∑
i=1

AiX̃
(k)
i , k � 1, n � 1.

Making use of Hölder inequality and (2.1), one has

n

∑
i=1

E|Ai| � (
n

∑
i=1

EA2
i )

1/2(
n

∑
i=1

1)1/2 = O(n). (3.2)

It is easy to see that E(AiXi) = EAiEXi = 0, i � 1. Then, for the k lager enough such
that ((k+1) log2−μ ln(k+1))α > 0, we have by (1.1), Lemma 3.3, E(|X |r logα |X |) <
∞ and (3.2) that

2−k/r max
2k�n<2k+1

∣∣∣ n

∑
i=1

E[AiXiI(|Xi| � ak)]
∣∣∣= 2−k/r max

2k�n<2k+1

∣∣∣ n

∑
i=1

E[AiXiI(|Xi| > ak)]
∣∣∣

� 2−k/r
2k+1

∑
i=1

E|Ai|E[|Xi|I(|Xi| > ak)] � C12
−k/r2k+1E

[
|X |I

(
|X | > 2

k+1
r

(k+1)
μ
r

)]

� C2
2k+1(k+1)μ(r−1)/rE(|X |r logα |X |)

2k/r2(k+1)(r−1)/r((k+1) log2− μ log(1+ k))α

� C3
1

kα−μ+μ/r
→ 0, as k → ∞. (3.3)
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In view of (3.3), it has

2−k/r max
2k�n<2k+1

∣∣∣ n

∑
i=1

E[Ai(−ak)I(Xi < −ak)]
∣∣∣

� 2−k/r
2k+1

∑
i=1

E|Ai|E[|Xi|I(|Xi| > ak)] � C
1

kα−μ+μ/r
→ 0, as k → ∞ (3.4)

and

2−k/r max
2k�n<2k+1

∣∣∣ n

∑
i=1

E[AiakI(Xi > ak)]
∣∣∣

� 2−k/r
2k+1

∑
i=1

E|Ai|E[|Xi|I(|Xi| > ak)] � C
1

kα−μ+μ/r
→ 0, as k → ∞. (3.5)

Hence, there exists a k0 such that for all ε > 0,

2−k/r max
2k�n<2k+1

∣∣∣ n

∑
i=1

E[AiX
(k)
i ]
∣∣∣< ε

4
, k � k0.

Since Sn = S(k)
n + S̃(k)

n , k � 1, n � 1, it can be argued that for all ε > 0,

∞

∑
k=1

P
(

max
2k�n<2k+1

|Sn| > ε2k/r
)

�
∞

∑
k=1

P
(

max
2k�n<2k+1

|S(k)
n | > ε2k/r

2

)
+

∞

∑
k=1

P
(

max
2k�n<2k+1

|S̃(k)
n | > ε2k/r

2

)

�
∞

∑
k=1

P
(

max
2k�n<2k+1

|S(k)
n −ES(k)

n | > ε2k/r

4

)
+

∞

∑
k=1

P
(

max
2k�n<2k+1

|S̃(k)
n | > ε2k/r

2

)

+C+
∞

∑
k=k0

P
(

max
2k�n<2k+1

|ES(k)
n | > ε2k/r

4

)

� C+
∞

∑
k=1

P
(

max
2k�n<2k+1

|S(k)
n −ES(k)

n | > ε2k/r

4

)
+

∞

∑
k=1

P
(

max
2k�n<2k+1

|S̃(k)
n | > ε2k/r

2

)
:= C+ I + J. (3.6)

On the one hand, it follows from r < μ < α that α − μ + μ/r > 1. Combining
with the proofs of (3.3), (3.4), (3.5), we check by Markov inequality, (1.1), Lemma 3.3
and E(|X |r logα |X |) < ∞ that

J �
∞

∑
k=1

2

ε2k/r
E
(

max
2k�n<2k+1

|S̃(k)
n |
)

�
∞

∑
k=1

2

ε2k/r

2k+1

∑
i=1

E|Ai|E[|Xi|I(|Xi| > ak)]

� C1 +C2

∞

∑
k=k0

1

kα−μ+μ/r
< ∞. (3.7)
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On the other hand, by Lemma 3.1, {X (k)
i , i � 1} is also a pairwise NQD sequence

with
E(X (k)

i )2 = E[X2
i I(|Xi| � ak)]+a2

kE[I(|Xi| > ak)], i � 1.

Combining with Lemma 3.1 and Remark 3.1, the sequence {AiX
(k)
i , i � 1} is also a

pairwise NQD sequence. So, it follows from Markov inequality, (1.1), (2.1), Lemma
3.2 and Lemma 3.3 that

I � 42

ε2

∞

∑
k=1

2−2k/rE
(

max
2k�n<2k+1

|S(k)
n −ES(k)

n |2
)

� 42

ε2

∞

∑
k=1

2−2k/rE
(

max
1�n�2k+1

∣∣∣ n

∑
i=1

[AiX
(k)
i −E(AiX

(k)
i )]

∣∣∣2)

� C1

∞

∑
k=1

(log2k+1)2

22k/r

2k+1

∑
i=1

EA2
i E(X (k)

i )2

�
∞

∑
k=1

C2k2

22k/r

2k+1

∑
i=1

EA2
i

{
E[X2

i I(|Xi| � ak)]+a2
kE[I(|Xi| > ak)]

}

� C3

∞

∑
k=1

k2

22k/r
2k+1E

[
X2I

(
|X | � 2

k+1
r

(k+1)
μ
r

)]

+C4

∞

∑
k=1

k2

22k/r
2k+1 22(k+1)/r

(k+1)2μ/r
E

[
I

(
|X | > 2

k+1
r

(k+1)
μ
r

)]

:= C3I1 +C4I2. (3.8)

It can be argued the fact that there exists a m0 > 0 such that 2m

mμ < 2m+1

(m+1)μ , m > m0 .

Let Bm := { 2m

mμ < |X |r � 2m+1

(m+1)μ } , m � m0 +1. Thus, by 1 � r < 2, r < μ < 3r/2 and

α > 3r/2, one makes use of Lemma 3.4 and establish that

I1 =
m0

∑
k=1

k22k+1− 2k
r E

[
X2I

(
|X | � 2

k+1
r

(k+1)
μ
r

)]

+
∞

∑
k=m0+1

k22k+1− 2k
r

(
EX2I

(
|X |r � 2m0+1

(m0 +1)μ

)
+

k

∑
m=m0+1

E[X2I(Bm)]

)

� C1 +
∞

∑
m=m0+1

E[X2I(Bm)]
∞

∑
k=m

k22k+1− 2k
r

� C1 +C2

∞

∑
m=m0+1

m22m− 2m
r E

[
|X |r logα |X | |X |2−r

logα |X | I(Bm)
]

� C1 +C3

∞

∑
m=m0+1

m22m− 2m
r

2(m+1) 2−r
r

(m+1)μ 2−r
r

1

logα 2m

mμ
E[|X |r logα |X |I(Bm)]

� C1 +C4

∞

∑
m=m0+1

m2+μ− 2μ
r −αE[|X |r logα |X |I(Bm)].
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In view of α > r , we take μ such as α > 2+ μ − 2μ
r . Combining the above inequality

with E(|X |r logα |X |) < ∞ , we obtain

I1 � C1 +C5E(|X |r logα |X |) < ∞. (3.9)

By μ < 3r/2 < 3r
2−r , it has 2+ μ − 2μ/r > −1. Then, for I2 , we have by α > 3r/2

and E(|X |r logα |X |) < ∞ that

I2 � C1

∞

∑
k=1

k2− 2μ
r 2k+1E

[
I

(
|X |r >

2k+1

(k+1)μ

)]
(3.10)

� C2

∞

∑
k=1

k2+μ− 2μ
r E

[
|X |rI

(
|X |r >

2k+1

(k+1)μ

)]

= C2

∞

∑
k=1

k2−μ( 2
r −1)

∞

∑
m=k

E[|X |rI(Bm+1)] = C2

∞

∑
m=1

E[|X |rI(Bm+1)]
m

∑
k=1

k2+μ− 2μ
r

� C3

∞

∑
m=1

m3−μ( 2
r −1)E[|X |rI(Bm+1)] � C4

∞

∑
m=1

m3r/2E[|X |rI(Bm+1)]

� C5 +C6

∞

∑
m=m0

m3r/2

((m+1) log2− μ log(m+1))α E[|X |r logα |X |I(Bm+1)]

� C5 +C6

∞

∑
m=1

E[|X |r logα |X |I(Bm+1)] � C5 +C6E(|X |r logα |X |) < ∞. (3.11)

Consequently, (3.1) follows from (3.6)–(3.11). �

Proof of Theorem 2.2. The proof is inspired by the Theorem 4.1 of Wang et al.
[18]. For every fixed n , by Lemma 3.1 and Remark 3.1, one has that {A+

niXni,1 �
i � n} and {A−

niXni,1 � i � n} are also pairwise NQD random variables. In view of
AniXni = A+

niXni −A−
niXni , we also assume that Ani � 0 in the proof. Then, it follows

from Lemma 3.2 that

E
(

max
1�k�n

∣∣∣ k

∑
i=1

AniXni

∣∣∣)2
� C1 log2(n)

n

∑
i=1

EA2
niEX2

ni, (3.12)

where C1 is a positive constants. Therefore, by Markov inequality, (2.4) and (3.12), we
have that for all ε > 0,

∞

∑
n=1

P
( 1

bn
max

1�k�n

∣∣∣ k

∑
i=1

AniXni

∣∣∣> ε
)

�
∞

∑
n=1

1
b2

nε2 E
(

max
1�k�n

∣∣∣ k

∑
i=1

AniXni

∣∣∣2)

�
∞

∑
n=1

C1 log2 n
b2

nε2

n

∑
i=1

EA2
niEX2

ni < ∞.

So (2.5) holds. Consequently, (2.6) follows from (2.5) immediately. �

Proof of Corollary 2.2. Combining (1.2) with Lemma 3.3, it can be checked that
EA2

ni � CEA2 < ∞ for all n � 1 and 1 � i � n . By taking bn = n1/r in (2.7), we apply
Theorem 2.2 and obtain the results of (2.8) and (2.9) immediately. �
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Proof of Corollary 2.3. In view of (1.3) and Lemma 3.3, we establish that for all
n � 1,

EA2
ni � C1EB2

i , EX2
ni � C2EY 2

i , 1 � i � n.

Consequently, by (2.10), it follows

∞

∑
n=1

log2 n

n2/r

n

∑
i=1

EA2
niEX2

ni � C1

∞

∑
n=1

log2 n
n2r

n

∑
i=1

EB2
i EY 2

i = C1

∞

∑
i=1

EB2
i EY 2

i

∞

∑
n=i

log2 n
n2r

� C2

∞

∑
i=1

EB2
i EY 2

i log2 i
i2r−1 < ∞.

Therefore, by (2.10) and Theorem 2.2 with bn = nr , (2.8) and (2.9) hold true. �

Proof of Corollary 2.4. In view of (1.2) and Lemma 3.3, we establish that EX2
ni �

CEX2 < ∞ for all n � 1 and 1 � i � n . Then, by (2.11), it can be argued that for some
0 < δ < 1 and r > 1+δ

2 ,

∞

∑
n=1

log2 n

n2/r

n

∑
i=1

EA2
niEX2

ni � C1

∞

∑
n=1

log2 n
n2r

n

∑
i=1

EA2
ni � C2

∞

∑
n=1

log2 n

n2r−δ < ∞.

Thus, by Theorem 2.2 with bn = n1/r , one has (2.8) and (2.9) immediately. �
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