
Journal of
Mathematical

Inequalities

Volume 11, Number 2 (2017), 335–343 doi:10.7153/jmi-11-29

ON THE RATE OF STRONG CONVERGENCE FOR A

RECURSIVE PROBABILITY DENSITY ESTIMATOR

OF END SAMPLES AND ITS APPLICATIONS

YONGMING LI

(Communicated by J. Pečarić)

Abstract. The purpose of this paper is to consider a kind of recursive density estimator of the
probability density function for a sequence of extended negatively dependent random variables.
Under some suitable conditions, we establish the strong convergence rate for the recursive den-
sity estimator. As application, we discuss the strong convergence rate for a kind of hazard rate
function estimator.

1. Introduction

A finite family of random variables {X1, · · · ,Xn} is said to be extended negatively
dependent (END) if there exists a constant M > 0 such that both inequalities

P(X1 > x1,X2 > x2, · · · ,Xn > xn) � M
n

∏
i=1

P(Xi > xi)

and

P(X1 � x1,X2 � x2, · · · ,Xn � xn) � M
n

∏
i=1

P(Xi � xi)

hold for all real numbers x1, · · · ,xn . An infinite sequence {Xn,n � 1} is said to be END
if every finite subcollection is END.

This definition of END random variables was proposed by Liu ([1], 2009), and
the notion of END received some attention recently. See, for example, Chen et al.
([2], 2010) gave more detailed discussion and some examples, Liu ([3], 2010) studied
the sufficient and necessary conditions of moderate deviations for dependent random
variables with heavy tails, Shen ([4], 2011) provided some probability inequalities, Wu
and Guan ([5], 2012) studied the convergence properties under uniform integrability,
Wang et al ([6], 2013) studied the complete convergence for weighted sums, Wang et al
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([7], 2015) obtained complete consistency for the estimator of nonparametric regression
models.

Throughout the paper, let X1, · · · ,Xn be a strictly stationary sequence of END ran-
dom variables with the unknown marginal probability density function f (x) , and dis-
tribution function F(x) . The hazard rate r(x) = f (x)/(1− F(x)) . We consider the
following recursive kernel estimator for f (x)

fn(x) =
1
n

n

∑
j=1

1
h j

K

(
x−Xj

h j

)
, (1.1)

and the hazard rate estimator for r(x)

rn(x) =
fn(x)

1−Fn(x)
, (1.2)

where 0 < hn → 0 are bandwidths, K(·) is some kernel function, and Fn(x) is the
empirical distribution function for F(x) . The recursive kernel estimator (1.1) was in-
troduced by Wolverton and Wagner ([8], 1969). Note that (1.1) can be computed recur-
sively by

fn(x) =
n−1

n
fn−1(x)+ (nhn)−1K

(
x−Xn

hn

)
. (1.3)

This property of (1.3) is particularly useful in large sample size since fn(x) can be
easily updated with each additional observation. Liang and Baek ([9], 2004) discussed
the point asymptotic normality for fn(x) under negatively associated random variables.
Li and Yang ([10], 2005) studied the strong convergence rate of recursive probability
density estimator based NA samples. Li et al ([11], 2010) discuss the asymptotic bias,
quadratic-mean convergence and establish the pointwise asymptotic normality of fn(x)
for a stationary sequence of negatively associated sequences.

Since END random variables are much weaker than independent random variables,
and NA random variables, studying the large sample character of the kernel density
estimate for END sequence is of interest. So in this article, we will discuss the strong
convergence rate for the recursive kernel estimator fn(x) based on a stationary and
END sequence. As application, we will discuss the strong convergence rate for the
hazard rate estimator rn(x) .

In the sequel, let C2( f ) stand for a point set in where the second-order derivative
f ′′ exists and is bounded and continuous, a+ = max{a,0} . All limits are taken as the
sample size n tends to ∞ , C1 , C2, · · · and k0 denote positive constants whose values
may change from one place to another, unless specified otherwise.

2. Main results

For easy reference, the assumptions used in this paper are listed below.

ASSUMPTIONS.
(A1)

∫+∞
−∞ K(u)du = 1,

∫ +∞
−∞ uK(u)du = 0,

∫+∞
−∞ u2K(u)du < ∞ , K(·) ∈ L1 ;
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(A2) The sequence of bandwidths {h j; j � 1} satisfies the requirements 0 < hn →
0 and nhn → ∞ .

Based on the assumptions above, we can get the following results.

THEOREM 2.1. Let {Xn;n � 1} be END sequence, and let assumptions (A1) and
(A2) hold true. Suppose that the kernel K(·) is a bounded variation function, and the
bandwidth hn = O(n−ν) where ν � 1/6 . Then, for l > 0 and x ∈C2( f ) ,

[nh2
n/(logn(loglogn)l)]1/2( fn(x)− f (x)) → 0, a.s.

THEOREM 2.2. Let {Xn;n � 1} be END sequence, and assumptions (A1) and
(A2) be satisfied. If the kernel K(·) is a bounded monotonic density function, and the
bandwidth hn = O(n−ν) where ν � 1/5 . Then, for l > 0 and x ∈C2( f ) ,

[nhn/(logn(loglogn)l)]1/2( fn(x)− f (x)) → 0, a.s.

THEOREM 2.3. Under the conditions of Theorem 2.1, if there exists a point x0

such that F(x0) < 1 , then for x � x0 and x ∈C2( f ) ,

[nh2
n/(logn(loglogn))]1/2(rn(x)− r(x)) → 0, a.s.

THEOREM 2.4. Under the conditions of Theorem 2.2, if there exists a point x0

such that F(x0) < 1 , then for x � x0 and x ∈C2( f ) ,

[nhn/(logn(loglogn))]1/2(rn(x)− r(x)) → 0, a.s.

3. Some auxiliary results

In this section, we will present some important lemmas which will be used to prove
the above main results.

LEMMA 3.1. (see [3]) Let {X1, · · · ,Xn} be END random variables.
(i) If f1, · · · , fn are all nondecreasing (or nonincreasing) functions, then random

variables f1(X1), · · · , fn(Xn) are END.
(ii) For each n � 1 , there exists a constant M > 0 such that

E

(
n

∏
j=1

X+
j

)
� M

n

∏
j=1

EX+
j .

LEMMA 3.2. (see [7]) Let {Xn,n � 1} be a sequence of END random variables
with EXn = 0 and |Xn| � dn a.s. for each n � 1 , where {dn,n � 1} is a sequence of
positive constants. Assume that t > 0 such that t ·max1�i�n di � 1 . Then for any ε > 0 ,
there exists a constant M > 0 such that

P(|
n

∑
i=1

Xi| > ε) � 2M exp{−tε + t2
n

∑
i=1

EX2
i }.
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LEMMA 3.3. (see [10]) Suppose the assumption (A1) hold for K(·) . Then for
x ∈C( f ) ,

lim
h→0

∫
R
K(u) f (x−hu)du = f (x).

LEMMA 3.4. (see [10]) Suppose the assumption (A1) hold. Then for x ∈C2( f ) ,(
1
n

n

∑
i=1

h2
i

)−1

|E fn(x)− f (x)| � C < ∞.

LEMMA 3.5. Let {X1, · · · ,Xn} be END random variables having unknown distri-
bution function F(x) and bounded probability density function f (x) , and let Fn(x) is
the empirical distribution function. If there exists a sequence of positive constants {τn}
such that τn → 0, and nτ2

n/ logn → ∞ , then

sup
x
|Fn(x)−F(x)| = o(τn), a.s.

Particularly, taking τn = n−1/2(logn)1/2 loglogn, then

sup
x
|Fn(x)−F(x)| = o(n−1/2(logn)1/2 loglogn), a.s.

Proof. By the Lemma 2 in Yang ([12], 2003), let {xn,k} satisfy F(xn,k) = k/n for
n � 3 and k = 1, · · · ,n−1, then we have

sup
−∞<x<+∞

|Fn(x)−F(x)| � max
1�k�n−1

|Fn(xn,k)−F(xn,k)|+ 2
n
. (3.1)

It is easily seen that nτn → ∞ . Then for ε > 0 and all n large enough, we have 2/n <
ετn/2. Thus, by (3.1), we get

P

(
sup

x
|Fn(x)−F(x)| > ετn

)
� P

(
max

1� j�n−1
|Fn(xn, j)−F(xn, j)| > ετn/2

)

�
n−1

∑
j=1

P(|Fn(xn, j)−F(xn, j)| > ετn/2) . (3.2)

Set ξi = I(Xi < xn, j)−EI(Xi < xn, j) . By Lemma 3.1, {ξi} is still END random vari-
ables with Eξi = 0 and |ξi| � 2. Taking t = ετn/4, and by Lemma 3.2, we have

P(|Fn(xn, j)−F(xn, j)| > ετn/2) = P

(∣∣∣∣∣
n

∑
i=1

ξi

∣∣∣∣∣> ετn/2

)

� 2M exp

{
−tεnτn/2+ t2

n

∑
i=1

Eξ 2
i

}

� 2M exp
{−tεnτn/2+nt2

}
� 2M exp

{
−ε2nτ2

n

16

}
� 2Mn−(2+k0), where k0 > 0. (3.3)
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Moreover, with relations (3.2) and (3.3), we get

P

(
sup

x
|Fn(x)−F(x)| > ετn

)
� 2Mn−(1+k0).

Therefore, we establish the lemma 3.5. �

4. Proofs of main results

Proof of Theorem 2.1. Since K(x) is a bounded variation function, then there
exists two monotone increasing functions K1(x) and K2(x) , such that K(x) = K1(x)−
K2(x) . Note that K1(x) and K2(x) are also bounded variation functions, then we get

n( fn(x)−E fn(x))

=
n

∑
j=1

1
h j

[
K

(
x−Xj

h j

)
−EK

(
x−Xj

h j

)]

=
n

∑
j=1

1
h j

[
K1

(
x−Xj

h j

)
−EK1

(
x−Xj

h j

)]
−

n

∑
j=1

1
h j

[
K2

(
x−Xj

h j

)
−EK2

(
x−Xj

h j

)]

=
n

∑
j=1

Yj −
n

∑
j=1

Zj =: Sn1−Sn2, (4.1)

where

Yj =
1
h j

[
K1

(
x−Xj

h j

)
−EK1

(
x−Xj

h j

)]
, Zj =

1
h j

[
K2

(
x−Xj

h j

)
−EK2

(
x−Xj

h j

)]
.

By Lemma 3.1, we see easily that {Y1, · · · ,Yn} and {Z1, · · · ,Zn} are still END random
variables with EYj = EZj = 0 for j = 1, · · · ,n . Since K1(x) and K2(x) are bounded
functions, which implies that

EY 2
j = E

1

h2
j

K1

(
x−Xj

h j

)2

� C1
1

h2
j

< ∞, EZ2
j � C2

1

h2
j

< ∞, j = 1, · · · ,n.

By hn ↓ 0, we can obtain

n

∑
j=1

Var(Yj) � C1

n

∑
j=1

1

h2
j

� C1
n
h2

n
,

n

∑
j=1

Var(Zj) � C2

n

∑
j=1

1

h2
j

� C2
n
h2

n
.

Set λ (n) = [nh2
n/(logn(loglogn)l)]1/2 , and taking t = εh2

n(2C1λ (n)) , then by
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Lemma 3.2 we get

P

(
λ (n)

∣∣∣∣1nSn1

∣∣∣∣> ε
)

= P

(
|Sn1| > nε

λ (n)

)

� 2M exp

{
− εnt

λ (n)
+

C1nt2

h2
n

}

= 2M exp

{
− ε2nh2

n

2C1λ 2(n)
+

ε2nh2
n

4C1λ 2(n)

}

= 2M exp

{
− ε2nh2

n

4C1λ 2(n)

}

= 2M exp

{
−ε2 logn(loglogn)l

4C1

}
.

� 2Mn−(1+k0).

Thus, by Borel-Cantelli lemma, we obtain

λ (n)
n

Sn1 → 0, a.s. (4.2)

Similarly to the proof of (4.2), we have

λ (n)
n

Sn2 → 0, a.s. (4.3)

Then, from (4.1), (4.2) and (4.3), it follows that

λ (n)( fn(x)−E fn(x)) → 0, a.s. (4.4)

On the other hand, by hn = O(n−ν) and ν � 1/6, we get

λ (n)
n

n

∑
j=1

h2
j =

hn√
n logn(loglogn)l

n

∑
j=1

h2
j

� C
n−ν√

n logn(loglogn)l

n

∑
j=1

j−2ν

� C
n−ν√

n logn(loglogn)l
n(1−2ν)+

−→ 0.

This, together with Lemma 3.3, we obtain

λ (n)(E fn(x)− f (x)) =
λ (n)

n

n

∑
j=1

h2
j ·
(

1
n

n

∑
i=1

h2
i

)−1

(E fn(x)− f (x)) → 0 a.s. (4.5)

Therefore, combining (4.4) and (4.5), we get the result. �
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Proof of Theorem 4.2. Set ξ j(x) = h−1
j

[
K
(

x−Xj
h j

)
−EK

(
x−Xj

h j

)]
, then we can

write

n( fn(x)−E fn(x)) =
n

∑
j=1

1
h j

[
K

(
x−Xj

h j

)
−EK

(
x−Xj

h j

)]
=: Sn.

By K(·) is monotone and bounded functions, and using Lemma 3.1, {ξ j(x)} are still
END random variables with Eξ j(x) = 0. Then, by Lemma 3.3, we obtain

EK2(
x−Xj

h j
) =

∫
R
K2(

x−u
h j

) f (u)du

= h j

∫
R
K2(u) f (x−h ju)du � Chj.

Hence

Eξ 2
j (x) = h−2

j E

[
K

(
x−Xj

h j

)
−EK

(
x−Xj

h j

)]2

� h−2
j EK2

(
x−Xj

h j

)
� C

hj
< ∞.

Note that hn ↓ 0, then we get

n

∑
j=1

Eξ 2
j (x) � C

n

∑
j=1

1
h j

� C3n
hn

.

Set γ(n) = [nhn/(logn(loglogn)l)]1/2 . Choosing t = εhn/(2C3γ(n)) , by Lemma 3.2,
then

P(γ(n) | fn(x)−E fn(x)| > ε) = P(|Sn| > nε/γ(n))

� 2M exp

{
− εnt

γ(n)
+

C3nt2

hn

}

= 2M exp

{
− ε2nhn

2C3γ2(n)
+

ε2nhn

4C3γ2(n)

}

= 2M exp

{
− ε2nhn

4C3γ2(n)

}

= 2M exp

{
−ε2 logn(loglogn)l

4C3

}
� 2Mn−(1+k0).

Hence, applying the Borel-Cantelli Lemma, we have

γ(n)( fn(x)−E fn(x)) → 0, a.s. (4.6)
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Therefore, from hn = O(n−ν) for ν � 1/5,

γ(n)
n

n

∑
j=1

h2
j =

√
hn

n logn(loglogn)l

n

∑
j=1

h2
j

� C

√
n−ν

n logn(loglogn)l

n

∑
j=1

j−2ν

� n(1−2ν)+√
n1+ν logn(loglogn)l

−→ 0.

Thus, from lemma 3.2 we obtain

γ(n)(E fn(x)− f (x)) =
γ(n)
n

n

∑
j=1

h2
j ·
(

1
n

n

∑
i=1

h2
i

)−1

(E fn(x)− f (x)) → 0 a.s. (4.7)

Therefore, the conclusion follows from (4.6) and (4.7). �

Proof of Theorem 2.3. Set F(x) = 1−F(x), Fn(x) = 1−Fn(x) , by (1.2), we get

|rn(x)− r(x)| � F(x)| fn(x)− f (x)|+ f (x)|Fn(x)−F(x)|
Fn(x)F(x)

. (4.8)

From 0 < F(x0) � F(x) � 1 for all x � x0 , supx f (x) � C < ∞ , by using Theorem 2.1
and Lemma 3.5, it is easy to see that

[nh2
n/(logn(loglogn)2)]1/2( fn(x)− f (x)) → 0, a.s., (4.9)

and

n1/2/((logn)1/2 loglogn) sup
x�x0

|Fn(x)−F(x)| → 0, a.s.. (4.10)

On the other hand, as n large enough, for x � x0 , we have

Fn(x) > F(x)− F(x0)
2

>
F(x0)

2
> 0.

Therefore, the conclusion follows from (4.8), (4.9) and (4.10). �

Proof of Theorem 2.4. Similarly to the proof of Theorem 2.3, one can verify the
conclusion. �
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