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ON TWO BIVARIATE ELLIPTIC MEANS

EDWARD NEUMAN

(Communicated by J. Pečarić)

Abstract. This paper deals with the inequalities involving the Schwab-Borchardt mean SB and
a new mean N introduced recently by this author. In particular optimal bounds, for SB are
obtained. Inequalities involving quotients N/SB , for the data satisfying certain monotonicity
conditions, are derived.

1. Introduction

In recent years means of two variables and their inequalities have attracted atten-
tion of several researchers. A complete list of research papers which deal with this
subject is too long to be included here. A portion of this list is included in References
of this work. In this paper we study two particular bivariate means whose definitions
are included below.

In what follows the letters a and b will always stand for positive and unequal
numbers.

The first mean investigated in this paper is called the Schwab-Borchardt mean and
is defined as follows:

SB(a,b)≡ SB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
b2−a2

cos−1(a/b)
if a < b,

√
a2−b2

cosh−1(a/b)
if b < a

(1)

(see, e.g., [2], [3]). This mean has been studied extensively in [18], [19], and in [8].
It is well known that the mean SB is strict, nonsymmetric and homogeneous of degree
one in its variables.

Mean SB can also be represented in terms of the degenerated completely symmet-
ric elliptic integral of the first kind (see, e.g., [15]). It has been pointed out in [18] that
some well known bivariate means such as logarithmic mean and two Seiffert means
(see [24, 25]) can be represented by the Schwab Borchardt mean of two simpler means
such as geometric and arithmetic means or as the Schwab-Borchardt mean of arithmetic
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and the square – mean root mean. This idea was used lately by this author and other
researchers as well. For more details see [8, 10, 11, 13, 14, 27, 5, 7, 28, 22, 23]

Another bivariate mean studied in this paper is defined as follows:

N(a,b) ≡ N =
1
2

(
a+

b2

SB(a,b)

)
(2)

(see [15]). It’s easy to see that mean N is also strict, nonsymmetric and homogeneousof
degree one in its variables. Some authors call this mean, Neuman mean of the second
kind (see, e.g., [27, 5, 6, 7, 28, 22, 23, 4]). Mean N can be represented in terms of
the degenerated completely symmetric elliptic integral of the second kind (see, e.g.,
[15]). By taking the N mean of two other means one can generate several new bivariate
means. This idea was partially explored in [15].

This paper can be regarded as continuation of investigations initiated in author’s
earlier papers [8, 10, 12, 11, 15, 13, 14, 16, 17] and is organized as follows. Some
preliminary results are given in Section 2. Optimal bounds for the Schwab-Borchardt
mean are derived in Section 3. Inequalities involving quotients of means SB and N are
established in Section 4.

2. Preliminaries

First of all we will give new formulas for means SB and N . It follows from (1)
that

SB(a,b)≡ SB =

⎧⎪⎪⎨
⎪⎪⎩

b
sinr
r

= a
tanr

r
if a < b,

b
sinhs

s
= a

tanhs
s

if b < a,

(3)

where

cosr = a/b if a < b and coshs = a/b if a > b. (4)

Clearly

0 < r � r0, where r0 = max{cos−1(a/b) : 0 < a < b} (5)

and
0 < s � s0, where s0 = max{cosh−1(a/b) : a > b > 0} (6)

For the later use let us record similar formulas for the mean N . Using (2) and (3)
we get

N(a,b) ≡ N =
1
2
b
(

cosr+
r

sinr

)
=

1
2
a
(
1+

r
sinrcosr

)
(7)

provided a < b . Similarly, if a > b , then

N(a,b) ≡ N =
1
2
b
(

coshs+
s

sinhs

)
=

1
2
a
(
1+

s
sinhscoshs

)
. (8)
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Here the domains for r and s are the same as these in (5) and (6).
To this end the letters a and b will stand for positive and unequal numbers. Also,

the symbols G , A , and Q will be used to denote, respectively, the geometric, arithmetic,
and the root-square means of a and b . Recall that

G =
√

ab, A =
a+b

2
, Q =

√
a2 +b2

2
.

For the sake of presentation let us recall definitions of certain means of a and b .
Two Seiffert means P and T are defined as follows:

P = A
v

sin−1 v
, T = A

v
tan−1 v

(9)

(see [24] and ) and [25]), where v =
a−b
a+b

. Clearly 0 < |v| < 1. We shall also use the

logarithmic mean L and the Neuman-Sándor mean M , introduced in [18] and studied
in [21, 10, 12], and [11]. The last two means are defined as follows

L =
a−b

loga− logb
= A

v

tanh−1 v
, M = A

v

sinh−1 v
. (10)

It is known (see [18]) that

G < L < P < A < M < T < Q. (11)

Thus the means listed in the last chain are comparable. Moreover, four means which
appear in (8) and (9) are generated by the Schwab-Borchardt mean. The following
result

L = SB(A,G), P = SB(G,A),
M = SB(Q,A), T = SB(A,Q)

(12)

has been established in [18].
We will apply, on several occasions, the l ′Hopital Monotonicity Rule [1]:
Let c,d ∈ R (c < d) and let f ,g : [c,d] → R be continuous functions that are

differentiable on (c,d) . Assume that g′(x) �= 0 for each x∈ (c,d). If f ′/g′ is increasing

(decreasing) on (c,d) , then so are
f (x)− f (c)
g(x)−g(c)

and
f (x)− f (d)
g(x)−g(d)

.

If monotonicity of f ′/g′ is strict, then so is monotonicity of two functions repre-
sented by the above quotients.

3. Optimal bounds for mean SB

The first problem discussed in this paper is formulated as follows:

PROBLEM 1. Find all numbers α and β such that the two-sided inequality

b
1+ αv
1−αv

< SB(a,b) < b
1+ βv
1−βv

(13)
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is satisfied for all numbers a and b . Here

v =
a−b
a+b

. (14)

In order to prove the first result of this section we need two auxiliary functions

f1(r) =
(r− sin r)(1+ cosr)
(r+ sin r)(1− cosr)

=:
n1(r)
d1(r)

(
0 < r <

π
2

)
(15)

and

f2(s) =
(sinhs− s)(coshs+1)
(sinhs+ s)(coshs−1)

=:
n2(s)
d2(s)

(s > 0). (16)

We have the following:

THEOREM 1. If a < b, then the optimal values α and β must to satisfy

α >
1
3

and β < λ := f1(r−0 ), (17)

where r0 is defined in (5). Otherwise, if a > b, then

α <
1
3

and β > μ := f2(s−0 ), (18)

where s0 is defined in (6).

Proof. Utilizing (3) we rewrite the inequality (13) as follows

1+ αv
1−αv

<
sinr
r

<
1+ βv
1−βv

. (19)

Since a = bcosr (see (4)),

v =
cosr−1
cosr+1

.

This in conjunction with (19) gives

(1+ cosr)−α(1− cosr)
(1+ cosr)+ α(1− cosr)

<
sin r
r

<
(1+ cosr)−β (1− cosr)
(1+ cosr)+ β (1− cosr)

or what is the same that
β < f1(r) < α. (20)

Making use of (15) we obtain

n′1(r)
d′

1(r)
=

2sinr− r
2sinr+ r

=: g1(r). (21)

Differentiation gives

g′1(r) = 4cost
r− tanr

(2sinr+ r)2 .
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Using the well-known inequality [26, 4.18.2]: x < tanx (0 < x < π/2) we conclude

that g′1(r) < 0. Thus the function
n′1(r)
d′

1(r)
is strictly decreasing on its domain. We invoke

now l ′ lHopital Monotonicity Rule to conclude that the function

n1(r)
d1(r)

= f1(r)

is also strictly decreasing. It is easy to verify that f1(0+) = 1
3 . This in conjunction with

(20) gives

β < λ � f1(r) � 1
3

< α.

Hence (17) follows.
Assume now that a > b . It follows from (13) using (3) that

(1+ coshs)−α(1− coshs)
(1+ coshs)+ α(1− coshs)

<
sinhs

s
<

(1+ coshs)−β (1− coshs)
(1+ coshs)+ β (1− coshs)

.

A simple algebra yields
α < f2(s) < β , (22)

where f2(s) is defined in (16). Differentiation gives

n′2(s)
d′

2(s)
=

2sinhs− s
2sinhs+ s

=: g2(s).

Differentiating again we obtain

g′2(s) = 4coshs
s− tanhs

(2sinhs+ s)2 > 0,

where the last inequality is immediate consequence of the well-known one x > tanhx ,
(x > 0) . See, e.g., [26, 4.32.2]. Thus the function g2(s) is strictly increasing. This in

turn implies that the functions
n′2(s)
d′2(s)

and f2(s) are also strictly increasing for all s > 0.

Taking into account that f2(0+) = 1
3 we obtain

α <
1
3

� f2(s) � μ < β .

The proof is complete. �
Applying Theorem 1 to (2) we obtain

1
2

(
a+b

1−βv
1+ βv

)
< N(a,b) <

1
2

(
a+b

1−αv
1+ αv

)
, (23)

where α and β must to satisfy either conditions (17) or (18).
The following corollaries involving double inequalities for bivariate means follow

easily from Theorem 1.
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COROLLARY 1. Let G, A, P, Q, and T be the bivariate means of two positive
and unequal numbers. (See Section 2). Then the following two-sided inequalities

A+2G
2A+G

<
P
A

<
2A+ πA
πA+2G

(24)

and
Q+2A
2Q+A

<
T
Q

<
(1+ λ )Q+(1−λ )A
(1−λ )Q+(1+ λ )A

(25)

hold true. Here

λ = f1(
π
4

) =
(π −2

√
2)(2+

√
2)

(π +2
√

2)(2−√
2)

= 0.3057 . . . . (26)

Proof. For the proof of (24) we apply Theorem 1 with a := G and b := A . Taking
into account that G = A

√
1− v2 we have cosr = G/A =

√
1− v2 . Since 0 < |v| < 1,

0 < cosr < 1. This yields 0 < r < π/2. Thus r0 = π/2. Taking into account that
f1(0+) = 1/3 = α and also that f1(π/2) = (π−2)/(π +2) = β we obtain the asserted
result utilizing formulas (13) and (14) and SB(G,A) = P , where the first Seiffert mean
P satisfies a second equation of (12). In the proof of (25) we follow the lines introduced
above. We let a := A and b := Q . Making use of Q = A

√
1+ v2 we see that 1/

√
2 <

cosr < 1 which yields 0 < r < π/4. Thus r0 = π/4. Making use of (13) and (14) with
α = 1/3, β = λ we obtain the desired result utilizing a formula SB(A,Q) = T (see
(12)). �

COROLLARY 2. Let G L, A, M , Q be the bivariate means of two positive and
unequal numbers. (See Section 2). Then the following two-sided inequalities

A+2G
2A+G

<
L
G

<
A
G

(27)

and
2Q+A
Q+2A

<
M
A

<
(1+ μ)Q+(1− μ)A
(1− μ)Q+(1+ μ)A

(28)

hold true. Here

μ =
(1− sinh−1(1))(

√
2+1)

(1+ sinh−1(1))(
√

2−1)
= 0.3675 . . . . (29)

Proof. We provide only a sketchy proof of inequalities (27) and (28). In the first
case we let a := A and b := G . Then cosh(s) = a/b = A/G = 1/

√
1− v2 . This implies

that 0 < s < ∞ . Thus α = f2(0+) = 1/3 and β = f2(∞−) = 1. We leave the completion
of this proof to the interested reader. Finally for the proof of (28) we let a := Q and
b := A . Then cosh(s) = Q/A =

√
1+ v2 . This yields 0 < s < cosh−1(

√
2) = sinh−1(1) .

Easy computations yield α = f2(0+) = 1/3 and β = μ = f2(sinh−1(1)) where μ is
defined in (29). We omit further details. �
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4. Inequalities involving quotients of means SB and N

In order to formulate problem discussed in this section let us introduce more no-
tation. Let Φ and Ψ be bivariate means which are homogeneous of degree 1 in both
variables. Further let a = (a1,a2) and b = (b1,b2) be ordered vectors of positive num-
bers. Assuming that

a1

a2
>

b1

b2
> 1 (30)

we ask for which pairs (Φ,Ψ) the following inequality

Φ(a)
Φ(b)

>
Ψ(a)
Ψ(b)

(31)

holds true for all vectors a and b?
It is known that this monotonicity property is satisfied by pairs of Stolarsky means,

Gini means and other pairs of means. For more details see [20] and the references
therein.

The goal of this section to demonstrate that the means SB and N satisfy (31). In
the proof of the main result of this section the following result plays a crucial role. We
have

PROPOSITION 1. If 0 < x < 1 , then the function

f (x) =
N(x,1)
SB(x,1)

(32)

is strictly decreasing on its domain and is strictly increasing for all x > 1 .

Proof. Let 0 < x < 1. Using (2) we obtain

f (x) =

1
2

(
x+

1
SB(x,1)

)
SB(x,1)

=
1
2

xSB(x,1)+1
SB2(x,1)

.

Making use of (3) we write an expression for f as

f =
1
2

r(sin rcosr+ r)
sin2 r

=:
1
2
g(r) =:

1
2

n(r)
d(r)

, (33)

where cosr = x . Differentiation yields

(sin2r)2
(n′(r)

d′(r)

)′
= 2r[

sin2r
2r

(2+ cos2r)− (1+2cos2r)] =: h(r). (34)

Using the inequality
sin2r
2r

>
(1+2cos2r

3

)1/2
(see [21, 9]) we obtain

h(r) > 2r(1+2cos2r)λ (r), (35)
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where

λ (r) =
2+ cos2r√

3(1+2cos2r)
−1. (36)

To prove that λ (r) > 0 it suffices to show that

(2+ cos2r)2 > 3(1+2cos2r).

It is easy to see that the last inequality can be written as (1− cos2r)2 > 0. Using (36)
and (35) we obtain h(r) > 0. This and (34) implies that h(r) > 0. This in turn implies
that the function n′(r)/d′(r) is strictly increasing. Utilizing l ′Hopital Monotonicity
Rule and (33) we arrive at the conclusion that the function g(r) is strictly increasing.
To obtain the asserted result we use (33) and the fact that g′(r) > 0 to obtain f ′(x) =
1
2g′(r)(−sin r) < 0. Thus the function f (x) is strictly decreasing if 0 < x < 1.

Assume now that x > 1. With f (x) as defined in (32) we have

f (x) =
1
2

xSB(x,1)+1
SB2(x,1)

.

Application of (3) gives

f =
1
2

s(sinh scoshs+ s)
sinh2 s

=:
1
2
g(s) =:

n(s)
d(s)

. (37)

Differentiation yields (n′(s)
d′(s)

)′
=

μ(s)
2(sinhscoshs)2 , (38)

where
μ(s) = 2sinhscosh3 s−4scosh2 s+ sinhscoshs+ s.

Hence

μ ′(s) = 8(scoshs)2
[( sinhs

s

)2 − tanhs
s

]
.

Using the well known inequality

tanhs
s

< 1 <
sinhs

s

(s �= 0) we conclude that μ ′(s) > 0. Taking into account that μ(0) = 0 and also using
the fact that μ(s) is strictly increasing we obtain μ(s) > 0 on its domain. This in

turn implies (see (38)) that the function n′(s)
d′(s) is also strictly increasing. Making use

of l ′Hopital Monotonicity Rule and (37) we see that the function g(s) is also strictly
increasing. Utilizing (37) we obtain

f ′(x) =
1
2
g′(s)sinh s > 0

(s > 0) . This completes the proof. �
We are in a position to prove the main result of this section.
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THEOREM 2. Let

a = (a1,a2) and b = (b1,b2)

satisfy inequalities (30). Then
N(a)
SB(a)

>
N(b)
SB(b)

. (39)

Proof. Let

x =
a1

a2
and y =

b1

b2
. (40)

It follows from (30) that x > y > 1. Monotonicity of the function N/SB yields

N(x,1)
SB(x,1)

>
N(y,1)
SB(y,1)

.

Using x and y as defined in (40) and next multiplying numerator and denominator of
the first quotient by a2 and also multiplying numerator and denominator of the second
quotient by b2 , we obtain the assertion utilizing the fact that all means are homogeneous
of degree 1. �

It is worth mentioning that inequality (39) is also satisfied if components of a and
b are permuted, i.e., if a = (a2,a1) and b = (b2,b1) . We omit further details.
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