
Journal of
Mathematical

Inequalities

Volume 11, Number 2 (2017), 361–381 doi:10.7153/jmi-11-32

ON THE ROLE OF ULTRAMODULARITY AND SCHUR

CONCAVITY IN THE CONSTRUCTION OF BINARY COPULAS

ERICH PETER KLEMENT, ANNA KOLESÁROVÁ, RADKO MESIAR
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Abstract. We discuss and stress the role of ultramodularity and Schur concavity in special types
of constructions of copulas. After recalling some known ultamodularity-based results, we focus
on the so-called D -product of a copula and its dual. We show that for each copula D which is
ultramodular and Schur concave on the left upper triangle of the unit square, this D -product of
an arbitrary copula and its dual is again a copula. Several examples and counterexamples are
given. Finally, some of our results are generalized to the case of semicopulas and quasi-copulas.

1. Introduction

Quasi-copulas [2, 24] and copulas [64, 59] are special binary aggregation func-
tions. Copulas play a significant role in probability theory [30, 49], in particular in
dependence modeling, as a consequence of Sklar’s Theorem [19, 64]. Other related
areas are generalized integration theory [36], decision theory [69], finance [9, 26], pref-
erence modeling [12, 15], but also fuzzy logics and the theory of fuzzy sets [13, 29, 56].

Several construction methods for (quasi-)copulas based on some a priori given
(quasi-)copulas can be found in the literature, some of which are:

(i) Archimedean copulas which are isomorphic transformations of the product cop-
ula Π (strict Archimedean copulas) or the Fréchet-Hoeffding lower bound W
(non-strict Archimedean copulas) [1, 29, 41, 47, 49, 59];

(ii) several types of ordinal sums, such as M-ordinal sums, W-ordinal sums and Π-
ordinal sums [1, 20, 32, 46, 49, 58, 59];

(iii) the product of distorted copulas [31, 40].

We start here with a construction where a copula and its dual are combined by means of
another copula D (the so-called D-product, see Definition 3.1 below) which recently
was shown to yield always a copula if, e.g., for D we take the product copula Π [16,
38].
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Our main aim is to identify copulas D such that, for an arbitrary copula, the D-
product is again a copula. It turns out that in these investigations two distinguished
inequalities for real functions play a key role: ultramodularity [42, 43] and Schur con-
cavity [57] (see also [45, 55]).

Ultramodular real functions are applied in several areas, and they are also known
under different names. In the case of an n -dimensional real domain, ultramodularity
can be seen as a version of convexity. Under mild regularity assumptions, the set of
ultramodular functions equals the intersection of the set of all supermodular functions
and the set of all functions which are convex in each variable. Ultramodular functions
have been used in economics, in particular in game theory when dealing with convex
measure games [3], but they also have applications in multicriteria decision support
systems [6]. In mathematical analysis, to the best of our knowledge ultramodular func-
tions first appeared in [68] where they just were called convex functions, and some au-
thors use the term Wright convexity for them [54]. In statistics, ultramodular functions
play an important role in modelling stochastic orders and positive dependence among
random vectors (see [48, 60]), and they are known there also as directional convex
functions. For more details about ultramodular real functions we recommend [42]. Ul-
tramodular binary copulas, characterized by the convexity of all of their horizontal and
vertical sections, were studied recently in [33, 34]. An ultramodular copula describes
the dependence structure of stochastically decreasing random vectors (see [49]), and
thus each ultramodular copula is negative quadrant dependent (NQD).

The concepts of Schur convex functions (and Schur concave functions as their du-
als) were introduced in [57] as variants of convexity and concavity of real functions (see
also [55]). In fact, each symmetric convex function is Schur convex (and each symmet-
ric concave function is Schur concave). Within the class of binary copulas, each Schur
concave copula is necessarily symmetric, and each associative copula is Schur concave
[21] Schur convex functions are used in the study of majorization [44], a preorder on
vectors of real numbers, and inequalities related to it [61]. One of the early origins
of majorization is in comparisons of income inequality, and it has applications also in
physics, chemistry, political science, engineering, and economics [45]. An example of
a Schur convex function is the maximum. The minimum and the product (the latter
only in the case of strictly positive factors) are Schur concave, as well as all elementary
symmetric functions (again only if all components are strictly positive) [62, 63]. In the
framework of stochastics and aggregation functions [28], the variance and the standard
deviation are Schur convex, whereas the Shannon entropy function, the Rényi entropy
function and the Gini coefficient are Schur concave [4, 27, 39, 52, 53].

The paper is organized as follows. In the following section, some basic notions
from the theory of aggregation, quasi-copulas and copulas are given, including ultra-
modularity and Schur concavity. Moreover, a copula construction method based on
ultramodular copulas as introduced in [34] is recalled. Our main results in Section 3
are devoted to the so-called D-product of a copula and its dual, where D is a copula
which is ultramodular and Schur concave on a suitable subset of the unit square. In
Section 4 several examples and counterexamples are collected. Some generalizations
of our results to the case of semicopulas and quasi-copulas are given in Section 5.
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2. Binary aggregation functions, quasi-copulas and copulas

A (binary) aggregation function [28] is a function A : [0,1]2 → [0,1] which is
monotone non-decreasing (in each component) and satisfies A(0,0) = 0 and A(1,1) =
1.

We often require an aggregation function A to be 1 -Lipschitz, i.e., for all numbers
x1,x2,y1,y2 ∈ [0,1]

|A(x1,y1)−A(x2,y2)| � |x1− x2|+ |y1− y2|.

Given a binary 1-Lipschitz aggregation function A : [0,1]2 → [0,1] , its dual func-
tion [28] A∗ : [0,1]2 → [0,1] is defined by

A∗(x,y) = x+ y−A(x,y).

Each 1-Lipschitz aggregation function A satisfies

W � A � W ∗, (2.1)

where the Fréchet-Hoeffding lower bound W is given by W (x,y) = max(x+ y−1,0) ,
and its dual W ∗ by W ∗(x,y) = min(x+ y,1) .

A (binary) semicopula (see [5, 22]) is an aggregation function S : [0,1]2 → [0,1]
which satisfies S(0,x) = S(x,0) = 0 and S(1,x) = S(x,1) = x for all x ∈ [0,1] .

A (binary) quasi-copula (see [2, 24]) Q : [0,1]2 → [0,1] is a 1-Lipschitz semicop-
ula.

A 1-Lipschitz aggregation function A : [0,1]2 → [0,1] is a quasi-copula if and
only if A(0,1) = A(1,0) = 0 (see [37]) or, equivalently, if and only if A � M , where
the Fréchet-Hoeffding upper bound M is given by M(x,y) = min(x,y) .

To simplify some formulas, we shall also use the infix notations x∧y for min(x,y)
and x∨ y for max(x,y) .

A (binary) copula C : [0,1]2 → [0,1] (see [64, 49, 30]) is a supermodular semi-
copula, i.e., for all x,y ∈ [0,1]2

C(x∨y)+C(x∧y) � C(x)+C(y). (2.2)

Equivalently, a function C : [0,1]2 → [0,1] is a binary copula if and only if we
have C(0,x) = C(x,0) = 0 and C(1,x) = C(x,1) = x for all x ∈ [0,1] , and if C is 2-
increasing, i.e., for all x1,x2,y1,y2 ∈ [0,1] with x1 � x2 and y1 � y2 for the volume VC

of the rectangle [x1,x2]× [y1,y2]

VC([x1,x2]× [y1,y2]) = C(x1,y1)−C(x1,y2)+C(x2,y2)−C(x2,y1) � 0. (2.3)

Obviously, each copula is a quasi-copula but not vice versa. Each quasi-copula Q
satisfies

W � Q � M, (2.4)

and the same holds for copulas.
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Observe that, for each quasi-copula Q , 1 is not a neutral element of Q∗ , so the
dual of a quasi-copula is never a quasi-copula (nor is the dual of a copula a copula).

For a copula C , also the co-copula [1, 59] C : [0,1]2 → [0,1] given by

C(x,y) = 1−C(1− x,1− y)

is considered. Note that C is never a copula.
The well-known Frank functional equation [23, 7] can be formulated as follows:

find all associative copulas F and G such that F = (G)∗ . Observe that a related prob-
lem in the framework of triangular norms and conorms (see [35]) can be formulated as
follows: find all 1-Lipschitz triangular norms (i.e., associative copulas) F and G such
that F = (G)∗ .

A copula C : [0,1]2 → [0,1] is called Archimedean if there is a continuous, strictly
decreasing convex function t : [0,1] → [0,∞] with t(1) = 0 such that for all (x,y) ∈
[0,1]2 (see [47])

C(x,y) = t−1(min(t(x)+ t(y),t(0))). (2.5)

The function t is called an additive generator of C , and it is unique up to a positive
multiplicative constant. Note that an Archimedean copula is necessarily associative and
satisfies C(x,x) < x for all x ∈ ]0,1[ .

2.1. Ultramodular functions and ultramodular copulas

Given A ⊆ Rn , a function f : A → R is called ultramodular [42] if its increments
are monotone non-decreasing, i.e., if for all x,y∈ A with x � y and all h � 0 such that
x+h,y+h∈ A we have

f (x+h)− f (x) � f (y+h)− f (y). (2.6)

If n = 2 and A = [0,1]2 , then a copula C[0,1]2 → [0,1] is ultramodular [33, 34] if
and only if for all x,y,z ∈ [0,1]2 satisfying x+y+ z∈ [0,1]2 we have

C(x+y+ z)+C(x)� C(x+y)+C(x+ z). (2.7)

Note that ultramodular copulas are just copulas with convex horizontal and vertical
sections.

Out of the three basic copulas W , M and the product copula Π given by Π(x,y) =
x ·y , only W and Π are ultramodular. However, the upper Fréchet-Hoeffding bound M
is ultramodular on the upper left triangle

Δ = {(x,y) ∈ [0,1]2 | x � y},
so Theorem 3.1 in Section 3 will apply to M as well. The following result is a conse-
quence of [34, Theorem 3.1] (see also [8]).

THEOREM 2.1. Let C : [0,1]2 → [0,1] be an Archimedean copula with a two
times differentiable additive generator t : [0,1] → [0,∞] . Then C is ultramodular if
and only if t ′ is constant or 1

t′ is a convex function.
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If (Ci)i∈I is a family of copulas and (]ai,ei[)i∈I a family of non-empty, pairwise
disjoint open subintervals of [0,1] , the ordinal sum M-(〈ai,ei,Ci〉)i∈I of the summands
〈ai,ei,Ci〉 , i ∈ I (which we shall call here M-ordinal sum) is well-known from the
literature [58, 41, 23, 35]), and it is based on a result in the theory of abstract semi-
groups [11]. In this construction, the “gaps” between the squares [ai,ei]

2 are filled by
the upper Fréchet-Hoeffding bound M , and the result is always a copula. Another ordi-
nal sum construction based on the lower Fréchet-Hoeffding bound W was considered
more recently in [14, 20, 32, 46].

Let (Ci)i∈I be a family of copulas and (]ai,ei[)i∈I be a family of non-empty,
pairwise disjoint open subintervals of [0,1] . The W-ordinal sum of the summands
〈ai,ei,Ci〉 , i ∈ I , is the copula C = W-(〈ai,ei,Ci〉)i∈I defined by

C(x,y) =

⎧⎪⎨
⎪⎩

ai +(ei−ai) ·Ci
( x−ai

ei−ai
, y−1+ei

ei−ai

)
if (x,y) ∈ [ai,ei[× [1− ei,1−ai[ ,

W (x,y) otherwise.

(2.8)

PROPOSITION 2.2. Let (Ci)i∈I be a family of copulas and (]ai,ei[)i∈I be a fam-
ily of non-empty, pairwise disjoint open subintervals of [0,1] . The W -ordinal sum
W-(〈ai,ei,Ci〉)i∈I is ultramodular if and only if, for each i ∈ I , the copula Ci is ultra-
modular.

As a consequence of [18, Theorem 2] and [34, Theorem 4.1] we get:

THEOREM 2.3. Let C1,C2,D : [0,1]2 → [0,1] be copulas and assume that D is
ultramodular. Then, for all monotone non-decreasing functions f1, f2,g1,g2 : [0,1] →
[0,1] satisfying

D( f1(x), f2(x)) = D(g1(x),g2(x)) = x

for all x ∈ [0,1] , also the function E : [0,1]2 → [0,1] given by

E(x,y) = D
(
C1( f1(x),g1(y)),C2( f2(x),g2(y))

)
(2.9)

is a copula.

EXAMPLE 2.4. Here are two examples of the construction in Theorem 2.3:

(a) For each copula C and all α,β ∈ [0,1] the function E : [0,1]2 → [0,1] given
by E(x,y) = C(xα ,yβ ) ·C(x1−α ,y1−β ) is a copula (this result was obtained in-
dependently in [31], see also [40]). Putting C = W and α = β = 0.5, we
obtain the Clayton copula with parameter −0.5 (see [10, 25, 49]) given by
C−0.5(x,y) = (max(

√
x+

√
y−1,0))2 .

(b) If f ,g : [0,1] → [0,1] are monotone non-decreasing 1-Lipschitz functions satis-
fying f ,g � id[0,1] and if C1,C2 are copulas, then also the function E : [0,1]2 →
[0,1] given by

E(x,y) = W
(
C1(( f (x),g(y)),C2((1+ x− f (x),1+ y−g(y))

)
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is a copula. In particular, if we put C1 =C2 = Π and f (x) = g(x) = x+1
2 then we

obtain the Sugeno-Weber copula with parameter 0.5 (see [66, 67, 35]) given by
E(x,y) = max( x·y+x+y−1

2 ,0) .

However, if the copula D in Theorem 2.3 fails to be ultramodular, then the function
constructed via (2.9) may not even be a quasi-copula:

EXAMPLE 2.5. Put C = Π and D = M and recall that M is not ultramodular.
Define the functions f1, f2 : [0,1] → [0,1] by

f1(x) =

⎧⎪⎨
⎪⎩

x if x ∈ [
0, 1

2

]
,

5x−2 if x ∈ ]
1
2 , 3

5

]
,

1 otherwise,

f2(x) = max(x, 1
2 ),

and put g1 = f1 and g2 = f2 . Clearly, M( f1(x), f2(x)) = M(g1(x),g2(x)) = x for all
x ∈ [0,1] . But for the function E : [0,1]2 → [0,1] given by

E(x,y) = M
(
Π( f1(x),g1(y)),Π( f2(x),g2(y))

)
we have |E( 3

5 , 3
10 )−E( 1

2 , 3
10)|= 3

20 > 1
10 = | 35 − 1

2 |+ | 3
10− 3

10 | , i.e., E is not 1-Lipschitz
and, therefore neither a copula nor a quasi-copula. Note, however, that E is a semicop-
ula (see Corollary 5.1).

Figure 1: The function E in Example 2.5

2.2. Schur concave functions and Schur concave copulas

The third property of real functions we need in this paper is a special type of
monotonicity, namely, the Schur concavity which reverses majorization [44].

Given a vector x = (x1,x2, . . . ,xn) ∈ Rn , we denote by x↓ = (x↓1,x
↓
2, . . . ,x

↓
n) ∈ Rn

the vector with the same components, but sorted in descending order.
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Then a vector y = (y1,y2, . . . ,yn)∈Rn majorizes a vector x = (x1,x2, . . . ,xn)∈Rn

(in symbols y 
 x ) if ∑n
i=1 xi = ∑n

i=1 yi and, for all k ∈ {1,2, . . . ,n} , we have

n

∑
i=k

x↓i �
n

∑
i=k

y↓i . (2.10)

Note that 
 is not a partial order on Rn : from y 
 x and x 
 y we only can conclude
that x and y have the same components, but not necessarily in the same order.

If A ⊆ Rn then a function f : A → R is said to be Schur convex [57] if for all
x,y ∈ A with y 
 x we have f (y) � f (x) . A function f : A → R is said to be Schur
concave if its negation − f is Schur convex.

In the case n = 2 and A = [0,1]2 , a function f : [0,1]2 → [0,1] is Schur concave
if and only if, for all (x,y),(u,v) ∈ [0,1]2 with x+y = u+v and min(x,y) � min(u,v) ,
we have f (x,y) � f (u,v) .

Equivalently, the Schur concavity of f means that, for all (x,y) ∈ [0,1]2 and all
λ ∈ [0,1] ,

f (x,y) � f (λ · x+(1−λ ) · y,(1−λ ) ·x+λ · y).
We will need the Schur concavity of a copula D : [0,1]2 → [0,1] on the upper left
triangle Δ = {(x,y) ∈ [0,1]2 | x � y} only, which means that for all (x,y) ∈ Δ and for
all ε > 0 with (x+ ε,y− ε) ∈ Δ we have

D(x,y) � D(x+ ε,y− ε).

Observe that each Schur concave copula is symmetric, and that symmetric copulas
which are Schur concave on Δ are just Schur concave copulas. However, in general, a
copula which is Schur concave on Δ need not be symmetric. Clearly, each of the three
basic copulas W , Π and M is Schur concave, as well as each associative copula.

3. D-Product of a copula and its dual

Observe that the dual of a copula C can be characterized as a binary aggregation
function C∗ : [0,1]2 → [0,1] having 0 as neutral element, 1 as annihilator and being
submodular, i.e., for all x,y ∈ [0,1]2 we have C∗(x∨y)+C∗(x∧y) � C∗(x)+C∗(y) .

Given an aggregation function D and a 1-Lipschitz aggregation function A , con-
sider the function D(A,A∗) : [0,1]2 → [0,1] defined by

D(A,A∗)(x,y) = D(A(x,y),A∗(x,y)) (3.1)

and call it the D-product of A and its dual A∗ .
In many cases involving the three basic copulas W , Π and M this construction

always yields a copula:

(i) for each copula C we trivially get W (C,C∗) = W and M(C,C∗) = C , and for
each copula D we have D(W,W ∗) = W ;
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(ii) D(M,M∗) is a copula if and only if, for the copula CδD
: [0,1]2 → [0,1] given by

CδD
(x,y) = min

(
x,y, D(x,x)+D(y,y)

2

)
and for the restriction D �Δ of D to Δ we have D �Δ� CδD

�Δ — this condition
is always satisfied for a symmetric and, a fortiori, for an associative copula D
in which case we have D(M,M∗) = D (note that the copula CδD

is the diagonal
copula (see [50]) whose diagonal section coincides with the diagonal section δD

of D);

(iii) in a recent paper [38] it was shown that, for each copula C , also Π(C,C∗) is a
copula.

In Example 4.1 we will show that there are copulas C and D such that the D-
product D(C,C∗) is not a copula.

Looking at the result of [38], a natural question is therefore under which conditions
for a copula D the D-product D(C,C∗) is a copula for each copula C . To answer this
question, we need a special type of monotonicity of the copula D .

In our main result below it suffices to require the ultramodularity (2.7) and the
Schur concavity of copulas to hold on the upper left triangle Δ ⊆ [0,1]2 only, i.e., only
for arguments in Δ rather than in [0,1]2 .

THEOREM 3.1. Let C be a binary copula and let D be a binary copula which
is ultramodular and Schur concave on the upper left triangle Δ . Then the function
D(C,C∗) is a copula.

Proof. For the sake of brevity, put DC = D(C,C∗) . Obviously, we have DC(x,0) =
DC(0,x) = 0 and DC(x,1) = DC(1,x) = x for all x∈ [0,1] and for all copulas C and D ,
so only the supermodularity (2.2) of DC remains to be shown. Observe that, for a
function defined on [0,1]2 , the validity of (2.2) is equivalent to its 2-increasingness,
i.e., we have to show that

DC(x1,y1)+DC(x2,y2)−DC(x1,y2)−DC(x2,y1) � 0 (3.2)

for all (x1,x2),(y1,y2) ∈ [0,1]2 with x1 � x2 and y1 � y2 .
Now fix an arbitrary copula C , a copula D which is ultramodular and Schur con-

cave on Δ and points (x1,x2),(y1,y2) ∈ [0,1]2 with x1 � x2 and y1 � y2 . Put

C(x1,y1) = u, C(x2,y1) = u+ α,

C(x1,y2) = u+ β , C(x2,y2) = u+ γ.

Evidently, α ∈ [0,x2− x1] , β ∈ [0,y2− y1] and γ ∈ [α + β ,x2− x1 + y2− y1] . Identi-
fying two-dimensional vectors in [0,1]2 with points in [0,1]2 , we see that

P1 = (C(x1,y1),C∗(x1,y1)) = (u,x1 + y1−u) ∈ Δ.
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Similarly, the points P2 = (u+ α,x2 + y1− u−α) , P3 = (u+ β ,x1 + y2 − u−β ) and
P4 = (u+ γ,x1 + y2−u− γ) belong to Δ . Put

P5 = P2 +P3−P1 = (u+ α + β ,x2 + y2−u−α −β ).

If P5 ∈ Δ , then because of the Schur concavity of D on Δ we obtain DC(x2,y2) =
D(P4) � D(P5) , and the ultramodularity of D on Δ implies D(P5)+D(P1) � D(P2)+
D(P3) , i.e., DC is 2-increasing in this case.

If P5 /∈Δ , we define the points P6 –P10 as follows: P6 is the intersection of the lines
l1 , passing through (0,1) and (1,1) , and l2 connecting P2 and P5 ; P7 is the common
point of the lines l1 and l3 , passing through P3 and P5 ; P8 = P6− (P5−P7) ; P9 is the
intersection of the lines l1 and l4 , passing through P4 and P5 , and P10 = P1 +P6 −P2

(for an illustration of this case see Figure 2).

P1

P2

P3

P4

P5

P6 P7

P8

P9

P10

1

1

Figure 2: The case P5 /∈ Δ

Then the inequality (3.2) turns into

(D(P1)+D(P4)−D(P2)−D(P3)

=
(
D(P1)+D(P6)−D(P2)−D(P10)

)
+

(
D(P10)+D(P7)−D(P3)−D(P8)

)
+

(
D(P4)−D(P9)

)
+

(
D(P9)−D(P7)−D(P6)+D(P8)

)
� 0.

This inequality can be verified by the combination of the following four arguments:

(a) D(P1)+D(P6)−D(P2)−D(P10) � 0 holds because of the ultramodularity of D
on Δ ;

(b) D(P10)+D(P7)−D(P3)−D(P8) � 0 holds because of the ultramodularity of D
on Δ ;
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(c) D(P4)−D(P9) � 0 holds because of the Schur concavity of D on Δ ;

(d) if we write P8 = (v,w) , P6 = (v + δ ,1) and P7 = (v + ε,1) then this implies
P5 = (v+δ +ε,2−w) and P9 = (v+δ +ε +1−w,1) . Then, because of D �W ,
we obtain

D(P9)−D(P7)−D(P6)+D(P8)
= v+ δ + ε +1−w− (v+ ε)− (v+δ )+D(v,w)
� 1− v−w+max(v+w−1,0)
� 0.

Summarizing, DC is a copula. �

Clearly, if the copula C in Theorem 3.1 is also symmetric, so is D(C,C∗) .
It is remarkable that D(C,C∗) in Theorem 3.1 preserves the ultramodularity and

the Schur concavity on Δ of the copulas C and D :

PROPOSITION 3.2. Let C,D be binary copulas which are ultramodular and Schur
concave on the upper left triangle Δ . Then also the copula D(C,C∗) is ultramodular
and Schur concave on Δ .

Proof. For all (x,y)∈Δ and for all α ∈ [
0,min(1− x,y, y−x

2 )
]

the Schur concavity
of C implies C(x,y) � C(x + α,y−α) , i.e., C(x + α,y−α) = C(x,y)+ β for some
β � 0. Then, by the Schur concavity of D , we obtain (writing again DC = D(C,C∗))

DC(x+ α,y−α) = D(C(x,y)+ β ,x+ y−C(x,y)−β )
� D(C(x,y),x+ y−C(x,y))
= DC(x,y),

i.e., DC is Schur concave on Δ .
To show the ultramodularity of DC on Δ , it suffices to prove that all horizontal and

vertical sections of DC are convex in Δ (see [34]). Fix y0 ∈ [0,1] . The convexity of
DC(·,y0) on [0,y0] , i.e., its ultramodularity as a function in one variable, is equivalent
to the validity of the inequality

DC(x+ α + β ,y0)+DC(x,y0) � DC(x+ α,y0)+DC(x+ β ,y0)

for all α,β � 0 and all x ∈ [0,y0−α −β ] . Let us write briefly C(x,y0) = u and
C∗(x,y0) = v . Then we have

C(x+ α,y0) = u+ γ, C∗(x+ α,y0) = v+ α − γ,

C(x+ β ,y0) = u+ δ , C∗(x+ β ,y0) = v+ β − δ ,

C(x+ α + β ,y0) = u+ ε, C∗(x+ α + β ,y0) = v+ α + β − ε
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for some γ ∈ [0,α] , some δ ∈ [0,β ] and some ε ∈ [0,α + β ] . Note that the ultramod-
ularity of C on Δ implies ε � γ + δ . Now we have

DC(x+ α + β ,y0)+DC(x,y0) = D(u+ ε,v+ α + β − ε)+D(u,v)
� D(u+ γ + δ ,v+ α − γ + β − δ )+D(u,v)
� D(u+ γ,v+ α − γ)+D(u+ δ ,v+ β − δ )
= DC(x+ α,y0)+DC(x+ β ,y0),

where the first inequality follows from the Schur concavity of D on Δ , and the second
inequality from the ultramodularity of D on Δ . Therefore, DC(·,y0) is convex on
[0,y0] .

In complete analogy, the convexity of DC(x0, ·) on [x0,1] can be shown for each
fixed x0 ∈ [0,1] .

Summarizing, the copula DC is Schur concave and ultramodular on Δ . �

It turns out that the ultramodularity of D is a necessary condition if we want
D(C,C∗) to be a copula for each copula C :

THEOREM 3.3. Let D be a binary copula such that for each binary copula C the
function D(C,C∗) is a copula. Then D is ultramodular on the upper left triangle Δ .

Proof. Let D be a copula such that for each copula C the function D(C,C∗) is a
copula. Based on [34, 42], the ultramodularity of D on Δ is equivalent to the convexity
of the restrictions of all horizontal and vertical sections of D to Δ . Fix v ∈ ]0,1[ and
consider the function fv : [0,v] → [0,1] given by fv(u) = D(u,v) (observe that f0 is
defined on a single point and thus convex, and that f1 = id[0,1] is also convex). The
convexity of fv is equivalent to its Jensen convexity, i.e., for all (u,w) ∈ [0,1]2 with
w ∈ ]u,v]

fv(u)+ fv(w) � 2 · fv( u+w
2 ). (3.3)

Consider the M -ordinal sum Cv = M-(〈0,v,W 〉) given by

Cv(x,y) =

{
max(x+ y− v,0) if (x,y) ∈ [0,v]2 ,

M(x,y) otherwise.

Fix the points x = ( u+v
2 , w+v

2 ) and y = (w+v
2 , u+v

2 ) in [0,v]2 . Observe that then Cv(x) =
Cv(y) = u+w

2 , Cv(x∨y) = w and Cv(x∧y) = u , while (Cv)∗ in all these points has the
value v . Since D(Cv,(Cv)∗) is a copula, it is supermodular which implies (3.3).

Similarly, the convexity of the restrictions of the vertical sections gu of D to Δ
for all u ∈ ]0,1[ is shown, considering the M -ordinal sum Cu = M-(〈u,1,W 〉) . As a
consequence, D is a copula which is ultramodular on Δ . �
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REMARK 3.4.

(i) Observe that for a copula D �= M which is ultramodular on Δ we necessarily have
D(x,y) < x for all (x,y) ∈ Δ∩ ]0,1[2 . Therefore, if the copula D is ultramodular
and Schur concave on Δ then for each copula C we have D(C,C∗) < C , and we
can define a sequence of copulas (Cn)n∈N putting

(a) C1 = C ,

(b) Cn+1 = D(Cn,(Cn)∗) for each n ∈ N .

Then, if D �= M , we obtain lim
n→∞

Cn = W for each copula C .

(ii) Keeping the notations of (i), define the ternary function f : {(x,y,z) ∈ [0,1]3 |
x+y−z∈ [0,1]}→ [0,1] by f (x,y,z) = D(z,x+y−z) . For an arbitrary but fixed
point (x,y) ∈ [0,1]2 , denote zn =Cn(x,y) . This means that z1 =C(x,y) , and, for
n ∈ N , zn+1 = f (x,y,zn) . As a consequence of (i), lim

n→∞
zn = max(x+ y−1,0) .

(iii) Observe that Theorem 3.1 cannot be modified replacing the dual copula C∗ by
the co-copula C . Indeed, for the M -ordinal sum C = M-(〈0, 1

2 ,Π〉) given by

C(x,y) =

{
2xy if (x,y) ∈ [

0, 1
2

]2
,

M(x,y) otherwise

we obtain
VΠ(C,C)(

[ 3
10 , 2

5

]2) = − 1
100 < 0,

i.e., Π(C,C) is not a copula.

Taking into account the flipping method for constructing new copulas [49] which
transforms ultramodular copulas into copulas with concave horizontal and vertical sec-
tions [43], Theorem 3.1 can be modified as follows:

COROLLARY 3.5. If E : [0,1]2 → [0,1] is a binary copula

(i) which is concave on the horizontal and vertical sections which are contained in
the triangle Δ∗ determined by the points (0,0) , (0,1) and (1,0) ,

(ii) and which is 1 -Lipschitz with respect to the Chebyshev norm on the affine sec-
tions which are parallel to the main diagonal and contained in Δ∗ , i.e., we have
E(x+ ε,y+ ε)−E(x,y) � ε for all x,y � 0 and all ε > 0 with x+ y+2ε � 1 ,

then, for each binary copula C : [0,1]2 → [0,1] , the function EC : [0,1]2 → [0,1] given
by

EC(x,y) = C(x,y)−E(C(x,y),1−C∗(x,y))
is a copula.

Since the product copula Π is invariant under flipping, the constructions in Theo-
rem 3.1 and Corollary 3.5 yield the same result in the case D = E = Π , i.e., Π(C,C∗) =
ΠC for each copula C . For the extremal cases E = W (which vanishes on Δ∗ ) and
E = M we obtain WC = C and MC = W for each copula C .
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4. Examples and counterexamples

EXAMPLE 4.1. These examples illustrate the importance of the hypotheses in
Theorem 3.1:

(i) Consider the M -ordinal sum C = M-(〈 1
4 , 13

24 ,W 〉) (see Figure 3 left) and the W -
ordinal sum D = W-(〈0, 1

2 ,Π〉) (see Example 3.4(ii) in [34] and Figure 3 right)
given by, respectively,

C(x,y) =

{
max(x+ y− 13

24 , 1
4) if (x,y) ∈ [

1
4 , 13

24

]2
,

M(x,y) otherwise,

D(x,y) =

{
x(2y−1) if (x,y) ∈ [

0, 1
2

]× [ 1
2 ,1

]
,

W (x,y) otherwise.

Note that D is ultramodular, but not Schur concave on the upper left triangle Δ .
Then we have

VD(C,C∗)(
[ 3

8 , 1
2

]2) = − 5
288 < 0,

i.e., D(C,C∗) is not a copula.

x

y

1

4

x �
y � 13
24

1

4

13

24
1

1

4

13

24

1

0

x � y � 1

x�2 y � 1�

1

2
1

1

2

1

Figure 3: The copulas C (left) and D considered in Example 4.1 (i)

(ii) Consider the M -ordinal sum D = M-(〈 1
2 ,1,W 〉) (see Figure 4 left) given by

D(x,y) =

{
max(x+ y−1, 1

2) if (x,y) ∈ [
1
2 ,1

]2
,

M(x,y) otherwise.

Note that D is Schur concave, but not ultramodular on the upper left triangle Δ .
Then we have

VD(Π,Π∗)(
[

2
3 , 3

4

]2
) = − 1

18 < 0,

i.e., D(Π,Π∗) is not a copula.
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(iii) If D is a symmetric copula then we know that D(M,M∗) = D . Consider the
(non-symmetric) copula D =W-(〈0, 1

2 ,Π〉) as in (i). Then D(M,M∗) is a copula
different from D — more precisely

D(M,M∗) =W-(〈0, 1
2 ,Π〉,〈 1

2 ,1,Π〉) �= D.

(iv) Consider the W -ordinal sum D = W-(〈0, 4
5 ,M〉) (see Figure 4 right) given by

D(x,y) =

{
min(x,y− 1

5 ) if (x,y) ∈ [
0, 4

5

]× [
1
5 ,1

]
,

W (x,y) otherwise.

Note that D is neither Schur concave nor ultramodular on the upper left triangle
Δ nor symmetric. Then we have

VD(M,M∗)(
[ 2

5 , 3
5

]2) = − 1
5 < 0,

i.e., D(M,M∗) is not a copula.

x

y

1

2

x �
y �

1

1

2
1

1

2

1

x

0

y �
1

5
x
�

y
�

1

4

5
1

1

5

1

Figure 4: The copulas considered in Example 4.1 (ii) left and Example 4.1 (iv)

5. Generalization to quasi-copulas and semicopulas

Observe first that the construction (2.9) given in Theorem 2.3 can be applied also
to the case of semicopulas.

COROLLARY 5.1. Let S1,S2,T : [0,1]2 → [0,1] be semicopulas. Then, for all
monotone non-decreasing functions f1, f2,g1,g2 : [0,1] → [0,1] satisfying

T ( f1(x), f2(x)) = T (g1(x),g2(x)) = x
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for all x ∈ [0,1] , also the function U : [0,1]2 → [0,1] given by

U(x,y) = T
(
S1( f1(x),g1(y)),S2( f2(x),g2(y))

)
(5.1)

is a semicopula.

Proof. The monotonicity of U follows from the monotonicity of the semicopu-
las S1 , S2 and T and of each of the functions f1 , f2 , g1 , and g2 involved in (5.1).
Moreover, T ( f1(1), f2(1)) = 1 implies f1(1) = f2(1) = 1, and in analogy we get
g1(1) = g2(1) = 1. Then for all x,y ∈ [0,1]

U(x,1) = T
(
S1( f1(x),1),S2( f2(x),1)

)
= T ( f1(x), f2(x)) = x,

and, similarly, U(1,y) = y , showing that U is a semicopula. �
This shows that the function E considered in Example 2.5 is indeed a semicopula.

COROLLARY 5.2. Let Q1,Q2,R : [0,1]2 → [0,1] be quasi-copulas and assume
that R : [0,1]2 → [0,1] is ultramodular. Then, for all continuous, monotone non-de-
creasing functions f1, f2,g1,g2 : [0,1] → [0,1] satisfying

R( f1(x), f2(x)) = R(g1(x),g2(x)) = x

for all x ∈ [0,1] , also the function L : [0,1]2 → [0,1] given by

L(x,y) = R
(
Q1( f1(x),g1(y)),Q2( f2(x),g2(y))

)
(5.2)

is a quasi-copula.

Proof. As a consequence of Corollary 5.1, the function L in (5.2) is a semicopula,
so only the 1-Lipschitz continuity of L remains to be shown. Because of [49, 51] there
are two families of copulas (Cα )α∈A and (Cβ )β∈B such that Q1 = sup{Cα | α ∈ A}
and Q2 = sup{Cβ | β ∈ B} . Since each ultramodular quasi-copula is necessarily an
ultramodular copula, Theorem 2.3 implies that, for each (α,β ) ∈ A×B , the function
Dα ,β : [0,1]2 → [0,1] given by

Dα ,β (x,y) = R
(
Cα( f1(x),g1(y)),Cβ ( f2(x),g2(y))

)
is a copula. The uniform continuity of R yields L = sup{Dα ,β | (α,β ) ∈ A×B} , which
is a quasi-copula because of [49, 51]. �

Example 2.5 shows that Corollary 5.2 does no longer hold if the quasi-copula R
fails to be ultramodular.

When looking for a version of Theorem 3.1 in the context of quasi-copulas, it turns
out that the situation is much simpler:

PROPOSITION 5.3. Let Q and R be two binary quasi-copulas. Then R(Q,Q∗) is
a quasi-copula.
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Proof. Obviously, R(Q,Q∗) satisfies the boundary conditions. Since Q and R are
1-Lipschitz, for each (x,y) ∈ [0,1]2 and for all ε ∈ ]0,1− x] there is a δ > 0 such that

R(Q,Q∗)(x+ ε,y) = R(Q(x+ ε,y),x+ ε + y−Q(x+ ε,y))
= R(Q(x,y)+ δ ,x+ y−Q(x,y)+ ε− δ )
� R(Q,Q∗)(x,y)+ δ + ε − δ
= R(Q,Q∗)(x,y)+ ε.

Therefore, R(Q,Q∗) is 1-Lipschitz in the first component. In complete analogy it is
shown that R(Q,Q∗) is 1-Lipschitz in the second component, i.e., R(Q,Q∗) is a quasi-
copula. �

In particular, the three functions D(C,C∗) , D(Π,Π∗) , and D(M,M∗) considered
in Example 4.1(i), (ii) and (iv), respectively, which were shown not to be copulas, are
indeed quasi-copulas.

If we try to apply a construction à la Theorem 3.1 and Proposition 5.3 to semi-
copulas S and T , we see that T (S,S∗) is not well-defined if S � W , in which case
there are arguments (x,y) ∈ [0,1]2 such that x+ y−S(x,y) > 1. However, taking into
account that the product Π is defined on R2 , then, for each semicopula S , the range of
the function ΠS : [0,1]2 → R defined by

ΠS(x,y) = Π(S(x,y),x+ y−S(x,y))

is a subset of [0,1] .

PROPOSITION 5.4. If S is a binary semicopula then also ΠS is a semicopula.

Proof. Obviously, ΠS satisfies the boundary conditions of semicopulas. In order
to show the monotonicity of ΠS in its first component, fix ε > 0, (x0,y0) ∈ [0,1]2 such
that x0 + ε � 1, and put δ = S(x0 + ε,y0)−S(x0,y0) � 0. Then we get

ΠS(x0 + ε,y0) = S(x0 + ε,y0) · (x0 + ε + y0−S(x0 + ε,y0))
= (S(x0,y0)+ δ ) · (x0 + ε + y0− (S(x0,y0)+ δ ))
= ΠS(x0,y0)+ δ · (x0 + ε + y0−2S(x0,y0)− δ )+ ε ·S(x0,y0)
� ΠS(x0,y0),

where the inequality is a consequence of S � M , implying S(x0,y0)� y0 and S(x0,y0)+
δ = S(x0 + ε,y0) � x0 + ε , i.e., x0 + ε + y0−2S(x0,y0)− δ � 0. In complete analogy,
the monotonicity of ΠS in its second component is shown, thus ΠS is a semicop-
ula. �

PROPOSITION 5.5. Let T be a binary semicopula which is Schur concave on the
upper left triangle Δ . Then for each binary semicopula S the function TS : [0,1]2 →
[0,1] given by

TS(x,y) = T (S(x,y),min(x+ y−S(x,y),1)) (5.3)

is a semicopula.
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Proof. First of all, S � M implies S(x,y) � x + y for all (x,y) ∈ [0,1]2 , so TS

is well-defined. Also, TS(x,0) = TS(0,x) = 0 and TS(x,1) = TS(1,x) = x for each
x ∈ [0,1] . Therefore, it suffices to show the monotonicity of TS in the first coordinate
(the proof of the monotonicity in the second coordinate being completely analogous).
We fix an arbitrary point (x,y) ∈ ]0,1[2 and ε > 0 with x + ε � 1 and consider the
following four cases:

(i) x+ y−S(x,y) � 1 and x+ ε + y−S(x+ ε,y) � 1: then

TS(x,y) = T (S(x,y),x+ y−S(x,y))
� T (S(x+ ε,y),x+ y−S(x+ ε,y))
� T (S(x+ ε,y),x+ ε + y−S(x+ ε,y))
= TS(x+ ε,y),

where the first inequality holds because of the Schur concavity of T on Δ , and
the second inequality because of the monotonicity of T in the second coordinate.

(ii) x+ y−S(x,y) � 1 and x+ ε + y−S(x+ ε,y) > 1: then

TS(x,y) = T (S(x,y),x+ y−S(x,y))
� S(x,y)
� S(x+ ε,y)
= T (S(x+ ε,y),min(x+ ε + y−S(x+ ε,y),1))
= TS(x+ ε,y),

where the first inequality follows from T � M , and the second inequality because
of the monotonicity of S in the first coordinate.

(iii) x+ y−S(x,y) > 1 and x+ ε + y−S(x+ ε,y) � 1: then

TS(x,y) = S(x,y)
< x+ y−1

< x+ ε + y−1

= T (1,x+ ε + y−1)
� T (S(x+ ε,y),x+ ε + y−S(x+ ε,y))
= TS(x+ ε,y),

where the last inequality holds because of the Schur concavity of T on Δ .

(iv) x+ y−S(x,y) > 1 and x+ ε + y−S(x+ ε,y) > 1: then we have

TS(x,y) = S(x,y) � S(x+ ε,y) = TS(x+ ε,y),

because of the monotonicity of S in the first coordinate.
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Thus TS(x,y) � TS(x+ ε,y) for all (x,y) ∈ [0,1]2 and all ε > 0 with x+ ε � 1. �
Note that the dual S∗ of a semicopula S is monotone if and only if S is 1-Lip-

schitz, i.e., a quasi-copula. Observe that the range of the dual S∗ of a semicopula S
defined by S∗(x,y) = x+ y−S(x,y) is a subset of [0,1] (in fact, equal to [0,1]) only if
S � W . Therefore we have as an immediate consequence of Proposition 5.5:

COROLLARY 5.6. Let T be a binary semicopula which is Schur concave on the
upper left triangle Δ and S be a semicopula with S � W . Then the function T (S,S∗)
is a semicopula.

6. Concluding remarks

The main result of this paper is a new construction method for copulas: for each
copula D which is ultramodular and Schur concave on the left upper triangle Δ , the
D-product D(C,C∗) yields a copula for an arbitrary copula C . We have shown that the
ultramodularity of D on Δ cannot be relaxed. However, it is an open question whether
the Schur concavity on Δ can be replaced by some weaker condition.

In all our considerations we restricted ourselves to two-dimensional copulas. In
a next step we will consider similar problems for copulas of higher dimensions. Ob-
serve that if an n -dimensional copula C has a probabilistic representation in the form
C(x1, . . . ,xn) = P({X1 � x1, . . . ,Xn � xn}) , then its n -dimensional dual C∗ can be rep-
resented in the form C∗(x1, . . . ,xn) = 1−P({X1 > x1, . . . ,Xn > xn}) .
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tributions with Given Marginals and Moment Problems, pp. 121–127. Kluwer Academic Publishers,
Dordrecht, 1997.
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