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CLASSES OF ANALYTIC FUNCTIONS RELATED TO

A COMBINATION OF TWO CONVEX FUNCTIONS

J. DZIOK AND K. I. NOOR

(Communicated by J. Pečarić)

Abstract. In the paper we introduce classes of functions related to a class of linear combinations
of two convex functions. By using properties of multivalent prestarlike functions we obtain
various inclusion relationships between defined classes of functions. Some applications of the
main results are also considered.

Let A denote the class of functions which are analytic in U := {z ∈ C : |z| < 1}
and let Ap (p ∈ N0 := {0,1,2, . . .}) denote the class of functions f ∈ A of the form

f (z) = zp +
∞

∑
n=p+1

anz
n (z ∈ U ) . (1)

By S c
0 we denote the class of functions f ∈ A0 which are univalent in U and

f (U ) is the convex domain.
We say that f ∈A is subordinate to F ∈A , and we write f (z)≺ F(z) (or simply

f ≺ F ), if there exists a function

ω ∈ Ω := {ω ∈ A : |ω(z)| � |z| (z ∈ U )} ,

such that f (z) = F(ω(z)) (z ∈ U ) . In particular, if F is univalent in U , we have the
following equivalence

f (z) ≺ F(z) ⇐⇒ [ f (0) = F(0) and f ( U ) ⊂ F( U )] .

Let α,δ ,μ ,ν,k be real parameters, α < 1, μ � 0, k � 2, and let Φ = (φ ,ϕ) ∈
Ap×Ap , ξ ∈ Ap , H = (h1,h2) , G = (g1,g2) ∈ S c

0 ×S c
0 . Then, we denote

K (h1) := {q ∈ A0 : q ≺ h1} ,

Kμ (H) := μK (h1)+ (1− μ)K (h2)
= {μq1 +(1− μ)q2 : q1 ∈ K (h1) , q2 ∈ K (h2)} ,

Kμ (h) := Kμ ((h,h)) , Pk (h) := Kμ (h) , (μ = k/4+1/2).
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In particular, the classes Pk (ρ) := Pk

(
1+(1−2ρ)z

1−z

)
(0 � ρ < 1) and Pk := Pk

( 1+z
1−z

)
were investigated by Padmanabhan and Parvatham [20] and Pinchuk [22], respectively.
The class P := P2 is the well-known class of Caratheodory functions.

We denote by M δ
μ (Φ,ξ ,H) the class of functions f ∈ Ap such that

Jδ ( f ) (z) := (1− δ )
(ξ ∗φ)∗ f
(ξ ∗ϕ)∗ f

+ δ
φ ∗ f
ϕ ∗ f

∈ Kμ (H) ,

where ∗ denote the Hadamard product (or convolution). Moreover, let us denote

M δ (Φ,ξ ,h) := M δ
1 (Φ,ξ ,(h,h)) , M δ

μ (Φ,H) := M δ
μ (Φ,ξ1,H) ,

M δ
μ (ϕ ,H) := M δ

μ ((ϕ̃1, ϕ̃2) ,H) , M δ (ϕ ,h) := M δ
1 (ϕ ,(h,h)) ,

Wμ (Φ,H) := M 1
μ (Φ,ξ ,H) , Wμ (ϕ ,H) := Wμ

((
p−1zϕ ′,ϕ

)
,H
)
,

Wμ (H) := Wμ (zp/(1− z) ,H) , W (ϕ ,h) := W1 (ϕ ,(h,h)) ,

S ∗
p (ϕ ,α) := W

(
ϕ , [1+(1−2α/p)z] (1− z)−1

)
,

where

ξ1 (z) = zp +
∞

∑
n=p+1

p
n
zn, ϕ̃1 (z) =

z
p

ϕ ′ (z) , ϕ̃2 (z) =
z
p

ϕ ′
1 (z) (z ∈ U ) .

It is clear that
f ∈ Wμ (ϕ ,H) ⇔ ϕ ∗ f ∈ Wμ (H) . (2)

We say that a function f ∈ Ap belongs to the class CM δ
μ,ν (Φ,ξ ,G,H) , if there

exists a function g ∈ Wν (ϕ ,G) such that

(1− δ )
(ξ ∗φ)∗ f
(ξ ∗ϕ)∗ g

+ δ
φ ∗ f
ϕ ∗ g

∈ Kμ (H) .

Moreover, let us denote

CM δ
ν (Φ,ξ ,G,h) := C M δ

1,ν (Φ,ξ ,G,(h,h)) ,

CW μ,ν (Φ,G,H) := CM 1
μ,ν (Φ,ξ ,G,H) ,

CW μ,ν (Φ,G,H) := CW μ,ν (Φ,G,H) .

We note that (2) defines the linear operator J : Wν (ϕ ,G) → Wν (G) , J ( f ) = ϕ ∗
f . If ϕ(k) (0) �= 0 (k = p, p+1, . . .) , then the operator J is one-to-one and the class
CM δ

μ,ν (Φ,ξ ,G,H) contains the functions f ∈ Ap for which there exists a function
g ∈ Wν (G) such that

(1− δ )
(ξ ∗φ)∗ f

ξ ∗ g
+ δ

φ ∗ f
g

∈ Kμ (H) .
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Then, we can omit the function ϕ as the parameter of the class and we can denote it by
CM δ

μ,ν (φ ,ξ ,G,H) i.e.

CM δ
μ,ν (φ ,ξ ,G,H) := CM δ

μ,ν

((
φ ,

zp

1− z

)
,ξ ,G,H

)
. (3)

These general classes reduced to well-known subclasses by judicious choices of
the parameters, see for example [2]–[12], [14]–[23] and [26]–[27]. In particular, the
class M δ

μ (ϕ ,H) contains the functions f ∈ Ap such that

δ
(

1+
z(ϕ ∗ f )′′ (z)
(ϕ ∗ f )′ (z)

)
+(1− δ )

z(ϕ ∗ f )′ (z)
(ϕ ∗ f )(z)

∈ Kμ (H) .

It is related to the class of functions with the bounded Mocanu variation defined by
Coonce and Ziegler [4] and investigated by Dziok [5, 6] and Noor et al. [15, 16, 17,
18] and others. Choosig paremeters ϕ (z) = z

(1−z)2
, h(z) = 1+z

1−z , p = 1 in the class

Wμ (ϕ ,(h,h)) we obtain the well-known class of functions of bounded boundary rota-
tion (see [7, 12, 20, 22, 23]).

The classes

S ∗
p (α) := S ∗

p

(
zp

1− z
,α
)

, S c
p := S ∗

p

(
zp [1+(1− p)z]

(1− z)2
,0

)

are the classes of multivalent starlike functions of order α (p > 0) and multivalent
convex functions, respectively. If we put

Φ(z) =

(
z

(1− z)2
,

z
1− z

)
, H (z) =

(
1+ z
1− z

,
1+ z
1− z

)
(z ∈ U ) ,

then CC := CW 1,1 (Φ,z,H,H) is the well-known class of close-to-convex functions
with parameter β = 0.

It is clear that

M δ
μ ((φ ,z) ,ξ ,H) = CM δ

μ,ν ((φ ,z) ,ξ ,G,H) (4)

⊂ CM δ
μ,ν (Φ,ξ ,G,H) ⊂ CM δ

μ,ν (φ ,ξ ,G,H) .

The main object of this paper is to investigate convolution properties related to
the prestarlike functions and various inclusion relationships between defined classes of
functions. Some characterizations of the class Kμ (h) are also given.
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1. Preliminary results

THEOREM 1. The class Kμ (H) is convex.

Proof. Let q,r ∈ Kμ (H) , α ∈ [0,1]. Then there exist q j,r j ∈ K (h j) ( j = 1,2)
such that

q = μq1 +(1− μ)q2, r = μr1 +(1− μ)r2.

It follows that

αq+(1−α)r = μ [αq1 +(1−α)r1]+ (1− μ)[αq2 +(1−α)r2] .

Since αq j +(1−α)r j ∈K (h j) ( j = 1,2) , we conclude that αq+(1−α)r∈ Kμ (H) .
Hence, the class Kμ (H) is convex. �

THEOREM 2.

Kμ (H) ⊂ Kλ (H) (h2 ≺ h1, 0 � μ < λ � 1) , (5)

Kμ (H) ⊂ Kλ (H) (h1 ≺ h2, 1 � μ < λ ) , (6)

Kμ (h) ⊂ Kλ (h) , Pk (h) ⊂ Pλ (h) (k < λ , 0 � μ < λ ) . (7)

Proof. Let q ∈ Kμ (H) . Then there exist q1 ∈ K (h1) , q2 ∈ K (h2) such that
q = μq1 +(1− μ)q2. Thus, we have

q = λq1 +(1−λ ) q̃2

(
q̃2 =

λ − μ
λ −1

q1 +
μ −1
λ −1

q2,λ �= 1

)
.

If h2 ≺ h1, 0 � μ < λ � 1, then K (h2) ⊂ K (h1) and

q = λ q̃1 +(1−λ )q2

(
q̃1 =

μ
λ

q1 +
λ − μ

λ
q2

)
Thus, by Theorem 1 q̃1 ∈ K (h1) and consequently q ∈ Kλ (H) . If h1 ≺ h2, 1 � μ <
λ , then K (h1) ⊂ K (h2) and

q = λq1 +(1−λ ) q̃2

(
q̃2 =

λ − μ
λ −1

q1 +
μ −1
λ −1

q2

)
.

Hence, by Theorem 1 q̃2 ∈ K (h2) and, in consequence, q ∈ Kλ (H) . From (5) and
(6) we get (7). �

The class Pk (h) is related to the class Mk of real-valued functions m of bounded
variation on [0,2π ] which satisfy the conditions

2π∫
0

dm(t) = 2,

2π∫
0

|dm(t)| � k. (8)

It is clear that M2 = is the class of nondecreasing functions on [0,2π ] satisfying (8) or

equivalently
2π∫
0

dm(t) = 2.
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LEMMA 1. [7] Let |2a−1| � 1 , a �= 1, h(z) = 1+(1−2a)z
1−z (z ∈ U ) . Then q ∈

Pk (h) if and only if there exists m ∈ Mk such that

q(z) =
1
2

2π∫
0

h
(
ze−it)dm(t) (z ∈ U ) . (9)

LEMMA 2. [5] Let |2a−1| � 1 , a �= 1, h(z) = 1+(1−2a)z
1−z (z ∈ U ) . Then q ∈

Pk (h) if and only if q ∈ A0 and

2π∫
0

∣∣∣∣∣Re
q
(
reit
)−a

1−a

∣∣∣∣∣dt � kπ (0 < r < 1) . (10)

REMARK 1. If we put a = 0 in Lemma 1, then we obtain the definition of the class
Pk := Pk

( 1+z
1−z

)
introduced by Pinchuk [22]. Putting a = ρ (0 � ρ < 1) in Lemma 2,

we obtain the definition of the class Pk (ρ) := Pk

(
1+(1−2ρ)z

1−z

)
introduced by Padman-

abhan and Parvatham [20].

Let p,h ∈ A0 . The first-order differential subordination

p(z)+
zp′(z)

β p(z)+ γ
≺ h(z) (11)

is called the Briot-Bouquet differential subordination. This particular differential sub-
ordination has a surprising number of important applications in the theory of analytic
functions (for details see [13]). In particular, Eenigenburg, Miller, Mocanu and Reade
[9] proved the following result.

LEMMA 3. [9] Let h ∈S c
0 , Re (βh(z)+ γ) � 0 (z ∈ U ). If p ∈A0 satisfies the

Briot-Bouquet differential subordination (11), then p ≺ h.

For β = 0 we can extend this result.

THEOREM 3. Let h1,h2 ∈ S c
0 , Reγ � 0. If p ∈ A0 satisfies

p(z)+ γzp′(z) ∈ Kμ (H) , (12)

then p ∈ Kμ (H) .

Proof. From (12) there exist q1 ≺ h1 , q2 ≺ h2 such that

p(z)+ γzp′(z) = μq1 (z)+ (1− μ)q2 (z) (z ∈ U ) . (13)

Let p1, p2 be the solutions of the Cauchy problems

p(z)+ γzp′(z) = q1 (z) , p(0) = 1,

p(z)+ γzp′(z) = q2 (z) , p(0) = 1.
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respectively. Then the function p = μ p1 +(1− μ) p2 is the solution of the first-order
differential equation (13). Moreover, by (13) and Lemma 3 we have p1 ≺ h1 and
p2 ≺ h2 . Therefore, p ∈ Kμ (H) and the proof is completed. �

A more general problem can be formulated as the following problem.

PROBLEM 1. Let h1,h2 ∈ S c
0 , Re(βh j (z)+ γ) � 0 (z ∈ U , j = 1,2). To verify

the following result: if q ∈ A0 satisfies

q(z)+
zq′(z)

βq(z)+ γ
∈ Kμ (H) ,

then q ∈ Kμ (H) .

REMARK 2. By Theorem 3 the result is true for β = 0. For β �= 0 the problem is
open, but it seems to be false.

The class

Rp (α) :=

⎧⎪⎨⎪⎩
W

(
zp

(1−z)2(p−α) ,
1+(1−2α/p)z

1−z

)
for α < p

W
((

zp

1−z ,z
p
)

, 1
1−z

)
for α = p

will be called the class of multivalent prestarlike functions of order α . The class
R (α) := R1 (α) is the well-know class of prestarlike functions of order α introduced
by Ruscheweyh [25]. Simple calculations show that f ∈ Rp (α) if and only if⎧⎨⎩

f (z)∗ zp

(1−z)2(p−α) ∈ S ∗
p (α) for α < p

Re
(

f (z)
zp

)
> 1

2 for α = p
.

LEMMA 4. [5] If f ,g ∈ Rp (α) , then f ∗ g ∈ Rp (α) .

LEMMA 5. [5] If either

Rea � Rec, Im a = Im c and (2p+1−a− c)/2 � α < p (14)

or
0 < a � c and

(
p− c

2

)
� α < p, (15)

then the multivalent incomplete Beta function

lp(a,c)(z) := z p
2F1(a,1;c;z) =

∞

∑
n=p

(a)n−p

(c)n−p
zn (z ∈ U ) (16)

belongs to the class Rp (α) .

LEMMA 6. [5] Let f ∈ Rp (α) , g ∈ S ∗
p (α) , h ∈ A . Then

f ∗ (hg)
f ∗ g

(U ) ⊆ co{h(U )} , (17)

where co{h(U )} denotes the closed convex hull of h( U ) .
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2. The main results

From now on we make the assumptions: h j,g j ∈ S c
0 ( j = 1,2) and

Re{μh1 (z)+ (1− μ)h2 (z)} > α, Re{νg1 (z)+ (1−ν)g2 (z)} > α (z ∈ U ) . (18)

Then we have

Wμ (H) ⊂ S ∗
p (α) and Wμ (ϕ ,H) ⊂ S ∗

p (ϕ ,α) . (19)

THEOREM 4. If ψ ∈ Rp (α) , then[
Wμ (Φ,H)∩S ∗

p (ϕ ,α)
]⊂ Wμ (ψ ∗Φ,H) , (20)[

Wμ (Φ,H)∩Wμ (ϕ ,H)
]⊂ Wμ (ψ ∗Φ,H) , (21)

Wμ (ϕ ,H) ⊂ Wμ (ψ ∗ϕ ,H) . (22)

Proof. Let f ∈ [Wμ (Φ,H)∩S ∗
p (ϕ ,α)

]
. Thus there exist ω1,ω2 ∈ Ω such that

φ ∗ f
ϕ ∗ f

= μh1 ◦ω1 +(1− μ)h2 ◦ω2

and F = ϕ ∗ f ∈ S ∗
p (α) . Thus, applying properties of the convolution, we get

(ψ ∗φ)∗ f
(ψ ∗ϕ)∗ f

= μ
ψ ∗ [(h1 ◦ω1)F ]

ψ ∗F
+(1− μ)

ψ ∗ [(h2 ◦ω2)F]
ψ ∗F

. (23)

By Lemma 6 we conclude that

q j (z) :=
ψ ∗ [(h j ◦ω j)F]

ψ ∗F
(z) ∈ co

{
h j (ω (U ))

}⊂ h j (U ) (z ∈ U , j = 1,2).

Therefore, q j ∈ Kμ (h j) and by (23) we have that f ∈ W μ
p (ψ ∗Φ,H) , which proves

the inclusion (20). If we apply the relationship (19) in (20), then we obtain (21).
Let now f ∈Wμ (ϕ ,H) . Then f ∈Wμ ((φ ,ϕ) ,H) , where φ (z)= z

p ϕ ′ (z) (z ∈ U ) .

Thus, by (21) we obtain that f ∈ Wμ ((ψ ∗φ ,ψ ∗ϕ) ,H) . Since

(ψ ∗φ)(z) =
z
p

(ψ ∗ϕ)′ (z) (z ∈ U ) ,

by (18) we have f ∈ Wμ (ψ ∗ϕ ,H) , which proves (22) and completes the proof. �

THEOREM 5. Let ψ ,ξ ∈ Rp (α) , 0 � δ � 1. Then

M δ
μ (Φ,ξ ,H)∩Wμ (Φ,H) ⊂ M δ

μ (ψ ∗Φ,ξ ,H) . (24)
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Proof. Let f ∈ M δ
μ (Φ,ξ ,H)∩Wμ (Φ,H) . Then, applying Lemma 4 and Theo-

rem 4, we obtain f ∈ Wμ (ψ ∗Φ,H) and f ∈ Wμ ((ξ ∗ψ)∗Φ,H) or equivalently

q1 :=
φ ∗ψ ∗ f
ϕ ∗ψ ∗ f

∈ Kμ (H) , q2 :=
ξ ∗φ ∗ψ ∗ f
ξ ∗ϕ ∗ψ ∗ f

∈ Kμ (H) .

Since the class Kμ (H) is convex by Theorem 1, we conclude that

(1− δ )
ξ ∗ψ ∗φ ∗ f
ξ ∗ψ ∗ϕ ∗ f

+ δ
ψ ∗φ ∗ f
ψ ∗ϕ ∗ f

∈ Kμ (H) .

Thus, we have f ∈ M δ (ψ ∗Φ,ξ ,h) and, in consequence, we get (24). �

LEMMA 7. [5] If 0 � λ < δ , then

M δ (ϕ ,h) ⊂ M λ (ϕ ,h) ⊂ W (ϕ ,h) .

From Theorem 5 and Lemma 7 we have the following corollary.

COROLLARY 1. Let ψ ∈ Rp (α) , 0 � δ � 1. Then

M δ (ϕ ,h) ⊂ M δ (ψ ∗ϕ ,h) .

THEOREM 6. Let ψ ,ξ ∈ Rp (α) , 0 � δ � 1 . Then

C W μ,ν (Φ,G,H) ⊂ CW μ,ν (ψ ∗Φ,G,H) , CW μ (Φ,H) ⊂ CW μ (ψ ∗Φ,H) , (25)

C M δ
μ,ν (Φ,ξ ,G,H)∩CW μ,ν (Φ,G,H) ⊂ CM δ

μ,ν (ψ ∗Φ,ξ ,G,H) . (26)

Proof. Let f ∈ CW μ,ν (Φ,G,H) . Then there exists g ∈ Wν (ϕ ,G) and ω1,ω2 ∈
Ω such that

φ ∗ f
ϕ ∗ g

= μh1 ◦ω1 +(1− μ)h2 ◦ω2

Since F = ϕ ∗g∈Wν (G)⊂ S∗p (α) by (19), applying properties of the convolution, we
obtain

(ψ ∗φ)∗ f
(ψ ∗ϕ)∗ g

= μ
ψ ∗ [(h1 ◦ω1)F ]

ψ ∗F
+(1− μ)

ψ ∗ [(h2 ◦ω2)F]
ψ ∗F

. (27)

Analysis similarly to that in the proof of Theorem 4 gives

(ψ ∗φ)∗ f
(ψ ∗ϕ)∗ g

∈ Kμ (H) .

Moreover, by Theorem 4 we have g ∈ Wν (ψ ∗ϕ ,G) and, in consequence, f ∈
CW μ,ν (ψ ∗Φ,G,H) . This proves the first inclusion in (25). Puting e.g.

ϕ (z) =
zp

1− z
(z ∈ U )
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in (25), by (3) and (4) we obtain the second inclusion in (25).
Let now f ∈ CM δ

μ,ν (Φ,ξ ,G,H)∩CW μ,ν (Φ,G,H) . Thus, applying (25) and
Theorem 4, we obtain f ∈ CW μ (ψ ∗Φ,H) and f ∈ CW μ ((ξ ∗ψ)∗Φ,H) or equiv-
alently

q1 :=
ψ ∗φ ∗ f
ψ ∗ϕ ∗ g

∈ Kμ (H) , q2 :=
ξ ∗ψ ∗φ ∗ f
ξ ∗ψ ∗ϕ ∗ g

∈ Kμ (H) .

Since the class Kμ (H) is convex by Theorem 1, we conclude that

(1− δ )
ξ ∗ψ ∗φ ∗ f
ξ ∗ψ ∗ϕ ∗ g

+ δ
ψ ∗φ ∗ f
ψ ∗ϕ ∗ g

∈ Kμ (H) .

This gives (26) and completes the proof. �
Combining Theorems 4-6 with Lemma 5 we obtain the following theorem.

THEOREM 7. If either (14) or (15), then[
Wμ (Φ,H)∩S ∗

p (ϕ ,α)
]⊂ Wμ (lp(a,c,z)∗Φ,H) ,[

Wμ (Φ,H)∩Wμ (ϕ ,H)
]⊂ Wμ (lp(a,c,z)∗Φ,H) ,

Wμ (ϕ ,H) ⊂ Wμ (lp(a,c)∗ϕ ,H) .

Moreover, if ξ ∈ Rp (α) and 0 � δ � 1, then

M δ
μ (Φ,ξ ,H)∩Wμ (Φ,H) ⊂ M δ

μ (lp(a,c)∗Φ,ξ ,H) ,

CW μ,ν (Φ,G,H) ⊂ CW μ,ν (lp(a,c)∗Φ,G,H) ,

M δ (ϕ ,h) ⊂ M δ (lp(a,c)∗ϕ ,h) , CW μ (Φ,H) ⊂ CW μ (lp(a,c)∗Φ,H) ,

CM δ
μ,ν (Φ,ξ ,G,H)∩CW μ,ν (Φ,G,H) ⊂ C M δ

μ,ν (lp(a,c)∗Φ,ξ ,G,H) .

Since lp(a,c)∗ lp(c,a)∗φ = φ , by Theorem 7 we obtain the next result.

THEOREM 8. If either (14) or (15), then[
Wμ (lp(c,a)∗Φ,H)∩S ∗

p (lp(c,a)∗ϕ ,α)
]⊂ Wμ (Φ,H) ,[

Wμ (lp(c,a)∗Φ,H)∩Wμ (lp(c,a)∗ϕ ,H)
]⊂ Wμ (Φ,H) ,

Wμ (lp(c,a)∗ϕ ,H)⊂ Wμ (ϕ ,H) .

Moreover, if ξ ∈ Rp (α) and 0 � δ � 1, then

M δ
μ (lp(c,a)∗Φ,ξ ,H)∩Wμ (lp(c,a)∗Φ,H) ⊂ M δ

μ (Φ,ξ ,H) ,

C W μ,ν (lp(c,a)∗Φ,G,H)⊂ CW μ,ν (Φ,G,H) ,

M δ (lp(c,a)∗ϕ ,h)⊂ M δ (ϕ ,h) , CW μ (lp(c,a)∗Φ,H)⊂ CW μ (Φ,H) ,

C M δ
μ,ν (lp(c,a)∗Φ,ξ ,G,H)∩CW μ,ν (lp(c,a)∗Φ,G,H) ⊂ CM δ

μ,ν (Φ,ξ ,G,H) .
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Let us define the linear operators Jλ : Ap −→ Ap , J×λ : Ap×Ap −→ Ap×Ap,

Jλ ( f ) (z) := λ
z f ′ (z)

p
+(1−λ ) f (z) , (28)

J×λ ( f ,g) := (Jλ ( f ) ,Jλ (g)) (z ∈ U , Reλ ) > 0) .

Since Jλ (φ) = lp( p
λ , p

λ +1)∗φ , putting a = p
λ , c = p

λ +1 in Theorem 8, we have the
following theorem.

THEOREM 9. If p−Re p
λ � α < p, then

[
Wμ
(
J×λ (Φ) ,H

)∩S ∗
p (Jλ (ϕ) ,α)

]⊂ Wμ (Φ,H) ,[
Wμ
(
J×λ (Φ) ,H

)∩Wμ (Jλ (ϕ) ,H)
]⊂ Wμ (Φ,H) ,

Wμ (Jλ (ϕ) ,H) ⊂ Wμ (ϕ ,H) .

Moreover, if ξ ∈ Rp (α) and 0 � δ � 1, then

M δ
μ
(
J×λ (Φ) ,ξ ,H

)∩Wμ
(
J×λ (Φ) ,H

)⊂ M δ
μ (Φ,ξ ,H) ,

C W μ,ν
(
J×λ (Φ) ,G,H

)⊂ CW μ,ν (Φ,G,H) ,

M δ (J×λ (Φ) ,h
)⊂ M δ (ϕ ,h) , CW μ

(
J×λ (Φ) ,H

)⊂ CW μ (Φ,H) ,

C M δ
μ,ν
(
J×λ (Φ) ,ξ ,G,H

)∩CW μ,ν
(
J×λ (Φ) ,G,H

)⊂ CM δ
μ,ν (Φ,ξ ,G,H) .

In particular, for λ = 1 we get the following theorem.

THEOREM 10. If 0 � α < p, then[
Wμ
(
p−1zΦ′ (z) ,H

)∩S ∗
p

(
p−1zϕ ′ (z) ,α

)]⊂ Wμ (Φ,H) ,[
Wμ
(
p−1zΦ′ (z) ,H

)∩Wμ
(
p−1zϕ ′ (z) ,H

)]⊂ Wμ (Φ,H) ,

Wμ
(
p−1zϕ ′ (z) ,H

)⊂ Wμ (ϕ ,H) .

Moreover, if ξ ∈ Rp (α) and 0 � δ � 1, then

M δ
μ
(
p−1zΦ′ (z) ,ξ ,H

)∩Wμ
(
p−1zΦ′ (z) ,H

)⊂ M δ
μ (Φ,ξ ,H) ,

CW μ,ν
(
p−1zΦ′ (z) ,G,H

)⊂ C W μ,ν (Φ,G,H) ,

M δ (J×λ (Φ) ,h
)⊂ M δ (ϕ ,h) , CW μ

(
p−1zΦ′ (z) ,H

)⊂ CW μ (Φ,H) ,

M δ
μ,ν
(
p−1zΦ′ (z) ,ξ ,G,H

)∩CW μ,ν
(
p−1zΦ′ (z) ,G,H

)⊂ CM δ
μ,ν (Φ,ξ ,G,H) .
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3. Applications and concluding remarks

The classes M δ
μ (Φ,ξ ,H) and CM δ

μ,ν (Φ,ξ ,G,H) generalize well-known im-
portant classes, which were investigated in earlier works. Most of these classes were
defined by using linear operators and special functions.

Suppose A1, . . . ,Aq and B1, . . . ,Bs (q,s ∈ N) be positive real numbers such that

1+
s

∑
k=1

Bk −
q

∑
k=1

Ak � 0.

For complex parameters a1, . . . ,aq and b1, . . . ,bs (q,s ∈ N ) such that

ak

Ak
,
bk

Bk
�= 0,1,2, . . .

we define the Fox-Wright generalization of the hypergeometric qFs function by

qΨs

[
(a1,A1), . . . ,(aq,Aq);
(b1,B1), . . . ,(bs,Bs);

z

]
:=

∞

∑
n=0

Γ(a1 +A1n) · · ·Γ(aq +Aqn)
Γ(b1 +B1n) · · ·Γ(bs +Bsn)

zn

n!
. (29)

If An = 1 (n = 1, . . . ,q) and Bn = 1 (n = 1, . . . ,s) , we have the obvious relationship:

ω qΨs

[
(a1,1), . . . ,(aq,1);
(b1,1), . . . ,(bs,1); z

]
= qFs(a1, . . . ,aq; b1, . . . ,bs;z) (z ∈ U ).

where

ω =
Γ(β1) · · ·Γ(βs)
Γ(α1) · · ·Γ(αq)

. (30)

Moreover, in terms of Fox’s H -function, we have

qΨs

[
(a1,A1), . . . ,(aq,Aq);
(b1,B1), . . . ,(bs,Bs);

z

]
= H1,q

q,s+1

[
−z

∣∣∣∣ (1−a1,A1), . . . ,(1−aq,Aq)
(0,1)(1−b1,B1), . . . ,(1−bs,Bs)

]
.

It should be remarked in passing that a further generalization of Fox’s H -function is
provided by the H -function which was encountered in the physics literature while
investigating and illustrating the use of certain Feynman integrals that arise naturally
in perturbation calculations of the equilibrium properties of a magnetic model of phase
transitions. Other interesting and useful special cases of the Fox-Wright generalized
hypergeometric qΨs function defined by (29) include (for example) the generalized
Bessel function Jμ

ν defined by

Jμ
ν (z) :=

∞

∑
n=0

(−z)n

n! Γ(1+ ν + μn)
(z ∈ U ).

which, for μ = 1, corresponds essentially to the classical Bessel function Jν , and the
generalized Mittag-Leffler function Eλ ,μ defined by

Eλ ,μ (z) :=
∞

∑
n=0

zn

Γ(ν + λn)
(z ∈ U ).
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For real numbers λ , t (λ > −p) , we define the function

Φ(a1,b1, t)(z)=
(

ωzp
qΨs

[
(a1,A1), . . . ,(aq,Aq)
(b1,B1), . . . ,(bs,Bs)

;z

])
∗ fλ ,t (z) , (31)

where ω is defined by (30) and

fλ ,t (z) =
∞

∑
n=p

(
n+ λ
p+ λ

)t

zn (z ∈ U ).

It is easy to verify that

aΦ(a+1,b,t) = AzΦ′(a;b,t)+ (a− pA)Φ(a,b,t), (32)

bΦ(a,b,t) = BzΦ′(a,b+1,t)+ (b− pB)Φ(a,b+1,t),
(p+ λ )Φ(a,b,t +1) = zΦ′(a,b,t)+ λ Φ(a,b,t),
Φ(a,b,t) = lp(a,c)∗Φ(c,b,t) (A = 1) , (33)

Φ(a,c,t) = lp(b,c)∗Φ(a,b,t) (B = 1) ,

where lp(a,c) is the multivalent incomplete Beta function (16).
Corresponding to the function Φ(a,b,t) we consider the following classes of func-

tions:

V (a,b, t) := Wμ (Φ(a,b,t);H) , CV (a,b,t) := CW μ,ν (Φ(a,b,t),G,H) .

By using the linear operator

Θp [a,b,t] f = Φ(a,b,t)∗ f ( f ∈ Ap) (34)

we can define the class V (a,b,t) alternatively in the following way:

f ∈ V (a,b,t) ⇐⇒ a
A

Θp [a+1,b,t] f (z)
Θp [a,b,t] f (z)

+ p− a
A
∈ Kμ (H) .

COROLLARY 2. If p−Rea � α < p, m ∈ N , then

V (a+m,b,t)⊂ V (a,b,t) , CV (a+m,b,t)⊂ CV (a,b, t) . (35)

Proof. It is clear that it is sufficient to prove the corollary for m = 1. Let Jλ and
Φ(a,b, t) be defined by (28) and (31), respectively. Then, by (32) we have Φ(a+1,b,t)=
J p

a
(Φ(a,b, t)) . Hence, by using Theorem 9 we conclude that

Wμ (Φ(a+1,b,t),H) ⊂ Wμ (Φ(a,b,t),H) ,
CW μ,ν (Φ(a+1,b,t),G,H) ⊂ CW μ,ν (Φ(a,b,t),G,H) .

This clearly forces the inclusion relations (35) for m = 1. �
Analogously to Corollary 2, we prove the following corollary.
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COROLLARY 3. Let m ∈ N . If p−Reb � α < p, then

V (a,b, t) ⊂ V (a,b+m,t) , CV (a,b,t) ⊂ CV (a,b+m,t) .

If −Reλ �α < p, then

V (a,b, t +m) ⊂ V (a,b,t) , CV (a,b,t +m) ⊂ CV (a,b, t) .

It is natural to ask about the inclusion relations in Corollaries 2 and 3 when m is
positive real. Using Theorems 4 and 6, we shall give a partial answer to this question.

COROLLARY 4. If the multivalent incomplete Beta function lp(a,c) defined by
(16) belongs to the class Rp (α) , then

V (c,b, t) ⊂ V (a,b,t) , CV (c,b,t) ⊂ C V (a,b,t) (A = 1) , (36)

V (b,a, t) ⊂ V (b,c,t) , CV (b,a,t) ⊂ C V (b,c,t) (B = 1) . (37)

Proof. Let us put ψ = lp(a,c) , ϕ = Φ(c,b,t), where Φ(a,b,t) is defined by (31).
Then, by using Theorems 4, 6 and relationship (33) we obtain

Wμ (Φ(c,b,t),H) ⊂ Wμ (Φ(a,b,t),H) ,
C W μ,ν (Φ(c,b,t),G,H) ⊂ CW μ,ν (Φ(a,b,t),G,H) .

Thus, we get the inclusion relations (36). Analogously, we prove the inclusions (37). �

Combining Corollary 4 with Lemma 5 we obtain the following result.

COROLLARY 5. If either (14) or (15), then the inclusion relations (36) and (37)
hold true.

The linear operator Θp [a,b,t] defined by (34) includes (as its special cases) other
linear operators of Geometric Function Theory which were considered in earlier works.
It contains, as its further special cases, such other linear operators as the Dziok-Sri-
vastava operator, the Hohlov operator, the Carlson-Shaffer operator, the Ruscheweyh
derivative operator, the generalized Bernardi-Libera-Livingston operator, the fractional
derivative operator, and so on (see, for the precise relationships, Dziok and Srivastava
([8], p. 3–4). Moreover, the linear operator Θp [a,b,t] includes also the Salagean opera-
tor, the Noor operator, the Choi-Saigo-Srivastava operator, the Kim-Srivastava operator,
and others (see, for the precise relationships, Cho et al. [3]). By using these linear oper-
ators we can consider several subclasses of the classes V (a,b,t) , CV (a,b,t) , see for
example [1]–[7], [10, 21, 26, 27]. Also, the obtained results generalize several results
obtained in these classes of functions.
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