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CLASSES OF ANALYTIC FUNCTIONS RELATED TO
A COMBINATION OF TWO CONVEX FUNCTIONS

J. Dz10K AND K. I. NOOR

(Communicated by J. Pecari¢)

Abstract. In the paper we introduce classes of functions related to a class of linear combinations
of two convex functions. By using properties of multivalent prestarlike functions we obtain
various inclusion relationships between defined classes of functions. Some applications of the
main results are also considered.

Let o7 denote the class of functions which are analyticin % :={z€ C: |z] < 1}
and let <7, (p € A5:={0,1,2,...}) denote the class of functions f € < of the form

fle)=2"+ i ad' (z€U). (1)
n=p+1

By .75 we denote the class of functions f € % which are univalent in %/ and
f() is the convex domain.

We say that f € o is subordinate to F € o7 , and we write f(z) < F(z) (or simply
f < F), if there exists a function

weQ={ved: |0iz)|<]|z (ze¥)},

such that f(z) = F(w(z)) (z € % ). In particular, if F is univalent in % , we have the
following equivalence

f(2) <F(2) <= [f(0) = F(0) and f( %) C F(%)]-

Let o, 0,1, V,k be real parameters, o < 1, £ >0, k> 2, and let ® = (¢, 0) €
oy x dy, &€y, H=(h,hy), G=(g1,8) € 75 x 7§ . Then, we denote

A (h):={q€ :q=<h},
Hy (H) = p i (hy) + (1 —p) 2 (ha)
={ug+(1-w)qr:q1 € H (), g2 € X ()},
H (h) =2 ((h,h), P (h) =2 (h), (L=k/4+1/2).
" Mathematics subject classification (2010): 30C45, 30C50, 30C55.
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In particular, the classes Py (p) := 2 (%) (0<p<1) and P := Z (1)
were investigated by Padmanabhan and Parvatham [20] and Pinchuk [22], respectively.
The class & := P, is the well-known class of Caratheodory functions.

We denote by //;? (®,&,H) the class of functions f € .7, such that

I () @)= (1-8) UL 588 gy ),

where * denote the Hadamard product (or convolution). Moreover, let us denote

MO (D, h) = MY (®,E, (h)), M (,H) = ] (D61, H),
ML (. H) =AM (91, 92) H), A0 (,h) := 47 (9. (h,D)).
W (®.H) = My (0.5.H), Wyu(o.H) =Wy ((p7'29,0) H),
W H) =Wy () (1 =2),H), W (@,h):=1(@,(hh)),

5 (9.0) =7 (9.[1+(1=2a/p)d (1-2) "),

where
EQ=2+ Y P E@ =290, BE =106 ).
n=p+1 p p

It is clear that
FeWu(o.H) < oxfeWy(H). (2)

We say that a function f € .47, belongs to the class ‘5///27\, (®,&,G,H), if there
exists a function g € %, (¢,G) such that

5 (Ex0)ef | soxf

1=0) Erpyes T Pone

Ay (H).

Moreover, let us denote

CMY(D.EGh):=C M (D.,G, (),
CH v (®,GH) :=C. My, (9.8,GH),
%W'u’v (‘D7 G7H) = %W[LV ((I),G,H) .
We note that (2) defines the linear operator J : %, (¢,G) — #, (G), J(f) = ¢ *
f. I M (0)#£0 (k=p,p+1,...), then the operator J is one-to-one and the class

/A 27\, (®,£,G,H) contains the functions f € .27, for which there exists a function
g € #, (G) such that

(1-8) (€Zi3g*f+6¢;f € Ky (H).
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Then, we can omit the function ¢ as the parameter of the class and we can denote it by
Cg%ﬁ,v ((Pvé,G,H) i.e.

5 s i
%%[JN((D’&’G’H) ::%%u,v<<¢7l—_z>7€7G7H>- (3)

These general classes reduced to well-known subclasses by judicious choices of
the parameters, see for example [2]-[12], [14]-[23] and [26]-[27]. In particular, the
class ///lf (¢,H) contains the functions f € .27, such that

(@@, _gex) @
1+ ) -9 i e .

It is related to the class of functions with the bounded Mocanu variation defined by

Coonce and Ziegler [4] and investigated by Dziok [5, 6] and Noor et al. [15, 16, 17,

18] and others. Choosig paremeters ¢ (z) = ﬁ, h(z) = i—f;, p =1 in the class
—Z

Wy (@, (h,h)) we obtain the well-known class of functions of bounded boundary rota-

tion (see [7, 12, 20, 22, 23]).

The classes

are the classes of multivalent starlike functions of order oo (p > 0) and multivalent
convex functions, respectively. If we put

z z 1+z 14z
q’@:(W’l—_z)’ Ho= (1) e,

then CC := 6% 1 (®,z,H,H) is the well-known class of close-to-convex functions
with parameter § = 0.

It is clear that

ML ((0.2),E,H) =€, ((¢,2),&,G,H) )
ceMs, (®,EGH) CCM,(9,E,GH).

The main object of this paper is to investigate convolution properties related to
the prestarlike functions and various inclusion relationships between defined classes of
functions. Some characterizations of the class %}, (h) are also given.
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1. Preliminary results

THEOREM 1. The class J#, (H) is convex.

Proof. Let gq,r € %, (H), o € [0,1]. Then there exist g;,r; € # (h;) (j=1,2)
such that
g=Hq+(1—W)q2, r=pur+{1—-pr.
It follows that

ag+(1—a)r=plogi+ (1 -a)r]+ (1 - p)lagr+ (1 —o)r].

Since aq;+ (1 —o)rje# (hj) (j=1,2), weconclude that oig+ (1 — ot)r € ), (H).
Hence, the class 7, (H) is convex. 0O

THEOREM 2.
JuyH)CH) (H) (hh<h,0<u<A<1), (5)
JyH)CHy (H) (h<hy, 1<pu<), (6)
Hu(h) C 2 (h), Pr(h) C Py (h) (k<A 0<pu<A). )

Proof. Let q € %, (H). Then there exist q; € % (h1), q» €  (h2) such that
q=Uq;+ (1 —p)qo. Thus, we have

B ~ - AU u—1
g=Aq1+(1-1)q <q2_ﬁq1+1_1q2,k7§1).

If iy <hy, 0< <A<, then J# (hy) C % (hy) and

~ ~ A—
g=Aq1+(1-1)q2 (fh = %LIH- A“Qz)

Thus, by Theorem | g1 € ¢ (hy) and consequently g € 7 (H). If hy <hy, L < u <
A, then % (hy) C % (hy) and

B ~ - AU u—1
q=Aq1+(1-21)q> (flz—mfh*'l_lfh)-

Hence, by Theorem | g, € ¥ (hy) and, in consequence, g € %), (H). From (5) and
(6) we get (7). U

The class & (h) is related to the class M of real-valued functions m of bounded
variation on [0,27] which satisfy the conditions

/dm(t) —2, /|dm(t)\ <k ®)

It is clear that M, = is the class of nondecreasing functions on [0,27] satisfying (8) or

2n
equivalently [ dm(r) =2.
0
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LEMMA 1. [7] Let 2a—1|< 1, a# 1, h(z) = #ﬁ’”z (z€X). Then q €
P (h) if and only if there exists m € My such that

/h Ydm(t) (ze¥). )

LEMMA 2. [5] Let 2a—1|< 1, a # 1, h(z)z%__f”)Z (z€XU). Then q €
Py (h) if and only if q € o and

’F (rei’) —a
/RC% dr <krm (O<r<1). (10)
0

REMARK 1. If we put a =0 in Lemma [, then we obtain the definition of the class
P =P (}—in) introduced by Pinchuk [22]. Putting a =p (0 < p < 1) in Lemma 2,

we obtain the definition of the class P (p) := %% (@) introduced by Padman-
abhan and Parvatham [20].

Let p,h € <. The first-order differential subordination

z2p'(2)
p(z)+W <h(Z) (11)

is called the Briot-Bouquet differential subordination. This particular differential sub-
ordination has a surprising number of important applications in the theory of analytic
functions (for details see [13]). In particular, Eenigenburg, Miller, Mocanu and Reade
[9] proved the following result.

LEMMA 3. [9] Let h€ /5, Re(Bh(z)+7) =0 (z€ ). If p € % satisfies the
Briot-Bouquet differential subordination (11), then p < h.

For B =0 we can extend this result.
THEOREM 3. Let hy,hy € /¢, Rey > 0. If p € o satisfies
p(2)+vzp'(z) € Ky (H), (12)

then p € K, (H).

Proof. From (12) there exist q; < hy, g2 < hy such that

p@)+72p' (@) =ug Q)+ (1 —w)q2(z) (ze%). (13)

Let p1, p> be the solutions of the Cauchy problems

pR)+71'(2) =aq1(z), p(0)=1,
p(R)+7v2'(2) = q2(z), p(0)=1.
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respectively. Then the function p = up; + (1 — ) p2 is the solution of the first-order
differential equation (13). Moreover, by (13) and Lemma 3 we have p; < h; and
p2 < hy. Therefore, p € K, (H) and the proof is completed. [

A more general problem can be formulated as the following problem.

PROBLEM 1. Let hy,hy € 7§, Re(Bhj(z)+7) =20 (ze %, j=1,2). To verify
the following result: if g € <% satisfies

7q'(2)
CI(Z)JFWE%(H),

then g € 7, (H).

REMARK 2. By Theorem 3 the result is true for f = 0. For 8 # 0 the problem is
open, but it seems to be false.

The class

i 1+(1-2a/p)z
v ((1_2)12(:)05)’ T— ) foro < p

V/((f’)yz >,%_Z> fora=p

will be called the class of multivalent prestarlike functions of order ¢. The class
Z (o) := 2%, () is the well-know class of prestarlike functions of order ¢ introduced
by Ruscheweyh [25]. Simple calculations show that f € %, (o) if and only if

f(Z)*m

Re(z(,,)>>2 foroc:p'

Zp (o) =

€., (a) fora<p

LEMMA 4. [5] If f,g € Zp (o), then fxg € %, ().
LEMMA 5. [5] If either
Rea<Rec, Ima=1Imc and 2p+1—a—0)/2<a<p (14)

or
O0<a<c and ( - =

[\SRINoY
—

so<p, 15)

then the multivalent incomplete Beta function

Ip(a.c)(z) :=2"F(a,l;c;2) = Y, Zn L2 (zew) (16)
n=p -

belongs to the class %, () .
LEMMA 6. [5] Let f € Z, (), g€ S (), h € <. Then

f*(hg)
fxg

where co{h(% )} denotes the closed convex hull of h( % ).

(w) Ceo{h(%)}, (17
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2. The main results
From now on we make the assumptions: h;,g; € /5 (j=1,2) and
Re{uhi (z)+(1—pu)ha(z)} > a, Re{vgi (2) + (1 —Vv)g2(0)} >« (ze%). (18)

Then we have
Wy (H) C 7, (o) and #y (@, H) C 7 (9, 0). (19)

THEOREM 4. If y € Z, (), then

(W (®,H)N.Z, (9, 00)] C #yu(y*D,H), (20)
(W (@,H) Wy (9, H)] C #y (w*D,H), 1)

Proof. Let f € [#, (®.H) nsy (@,a)] . Thus there exist @, ®; € Q such that

o f
o f

=phiow + (1 —u)hyom

and F = @ f € 7, (). Thus, applying properties of the convolution, we get

(@)« f  yx[(how)F]

_ Y [(hy o an) F]
(yx @)= f Y F '

v F 23)

+(1—n)

By Lemma 6 we conclude that

yx[(hjow))F]

vy (z) ecol{hj(®(%))} Chj(%) (zeu, j=1,2).

qj(z) =

Therefore, g; € #y (h;) and by (23) we have that f € #,' (y*®,H), which proves
the inclusion (20). If we apply the relationship (19) in (20), then we obtain (21).

Letnow f € #y (@,H). Then f € #, (¢, 9) H), where ¢ (z) = 29" (z) (z€ %).
Thus, by (21) we obtain that f € %, ((y* ¢,y *¢),H). Since

(vx9)(2) == (yx9) (z) (z€),

T | ew

by (18) we have f € #}, (y* ¢@,H), which proves (22) and completes the proof. [J

THEOREM 5. Let y,§ € Z,(a), 0< 8 < 1. Then

'%[f(q)vévH)mWﬂ(q)7H)C%3(W*®7€7H) (24)
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Proof. Let f € ///3 (®,E,H)N#y (P,H). Then, applying Lemma 4 and Theo-
rem 4, we obtain f € #}, (y*®,H) and f € #, ((§* y)«®,H) or equivalently

_Pxyxf Sxpxyxf
ql'_(P*V/*f WE%(H)

6%(1—1)7 qz ‘=

Since the class ¢}, (H) is convex by Theorem 1, we conclude that

Sxyxgxf  swxdxf
Exyxoxf yx@xf

(1-9) €y (H).

Thus, we have f € .#% (y*®,&,h) and, in consequence, we get (24). [
LEMMA 7. [5] If 0 < A < 0, then
MO (9,h) C M (@,h) CH (¢.h).

From Theorem 5 and Lemma 7 we have the following corollary.
COROLLARY 1. Let y € Z,(at), 0< 6 < 1. Then

MO (@.h) C .M (yx,h).
THEOREM 6. Let y,& € Z),(a), 0< 8 < 1. Then

CHWuy (®,GH)CEW yv(wx®,GH), €W (O,H) CEWy(yx®P.H), (25)

CMY, (D.E,GH)NCH 1y (®.GH) CCM,, (y+P,EGH). (26)

Proof. Let f € €W v (®,G,H). Then there exists g € #y (¢,G) and o, w; €
Q such that
oxf

P*g
Since F = ¢@+g € ¥, (G) C S, () by (19), applying properties of the convolution, we

obtain N F N F
(vrg)ef _ wrllmo@)F] .\ ¥llhow)F]

:yhloa)l—l—(l—u)hzoa)z

= (27)
(vrp)rg " Y F yxF
Analysis similarly to that in the proof of Theorem 4 gives
(y*¢)+f
e (H).
(wrp)yrg <

Moreover, by Theorem 4 we have g € 7, (v @,G) and, in consequence, f €
€W uy(y*®,G,H). This proves the first inclusion in (25). Puting e.g.

¢@)=1— (ke%)
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in (25), by (3) and (4) we obtain the second inclusion in (25).

Let now f € %//lfw (®,E,G,H)NEW yv (P,G,H). Thus, applying (25) and
Theorem 4, we obtain f € €# , (y+«®,H) and f € €, ((§+y)*D,H) or equiv-
alently

yro«f _Sxyxosf
g < IR g S

Since the class %, (H) is convex by Theorem 1, we conclude that

q1 =

(1_5)§*w*¢*f+5w*¢>*fe

J (H).
Eryrprg Cyrgrg )
This gives (26) and completes the proof. [

Combining Theorems 4-6 with Lemma 5 we obtain the following theorem.

THEOREM 7. Ifeither (14) or (15), then

(W (®,H) .75 (9, a)] C Wy (Ip(a,c,z)«D,H),
(W (@,H)N Wy (9, H)| C Wy (Ip(a,c,2) «D,H),
Wu(@H) C Wy (lpla,c)«@,H).

Moreover, if & € %), (a) and 0 < 6 < 1, then

ME(D.EH)N W (®,H) C M (Ip(a,c) «®,E H),

CW iy (©,G,H) CEH v (lp(a,c)*®,G.H),

MO (9, h) C O (Ly(a,c)« @), CH u (D,H) CEH y (Iy(a,c) « D, H),
CAM,, (D,E,GH)NCH uy (®,GH) CCM,, (Ip(a,c)«D,E GH).

Since I,(a,c) *1p(c,a)* ¢ = ¢, by Theorem 7 we obtain the next result.
THEOREM 8. [feither (14) or (15), then

[% (Ip(c,a)x D, H) NS, (Ip(c,a)* (p,Oc)] CHy(®,H),
[ (Lp(c,a) «D,H)N Wy (Ip(c,a) =9, H)| C # (9,H),
Wﬂ (lp(c7a) * (va) C % ((va) .

Moreover, if & € %), (a) and 0 < 6 < 1, then

ML (Iy(c,a) *@,E H) N Wy (Iy(c,a) »®,H) C M7 (®,E,H),

EW uv (Lp(c,a) «®,G,H) CEW v (®,G,H),

MO (Ly(c,a)« @,h) C A0 (@,h), €W y(Ly(c,a) xD,H) CEH y (®,H),
G, (Ip(c,a) +®,E,GH)NECH y (Ip(c.a) «®,G,H) C €M, (®,E,G,H).
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Let us define the linear operators J; : &7, — o), J; 1 ), X &)y — ) X ),

LG :=lw+(l—l)f(1), 8)

T3 (f,8) == (N (f) N2 (8)) (z€ %, Red)>0).

Since Jy (¢) =1,(¥, % +1)* ¢, putting a = £, ¢ = £ 41 in Theorem 8, we have the
following theorem.

THEOREM 9. If p—Re% < o < p, then

W (I (@), H) NS (1 (@), a)| C #y (P,H),
(4 (I (@), H) N W (o (@) H)| C Wy (®,H
Wy (@), H) C Wy (o,H).

~—

i

Moreover, if & € Z), () and 0 < 8 < 1, then

A (@), & H) N H (I (@), H) €A (D,,H),

CW oy (1 (®),G.H) CEW v (9,G.H),

MO (TS (@), h) C M (@,h), €Wy (I (@),H) CECH u(O,H),
%%27" (J;C ((I)) ’é’G’H) Q%W“’V (‘I;C (q)) ’ G7H) - %‘%2,\/ (q)vévGaH) '

In particular, for A = 1 we get the following theorem.

THEOREM 10. If 0 < o < p, then

[Wu (pilzq)/ (2) 7H) 05’; (pilz(p/ (1)706)] - W# (P.H),
(W (p~'2@ (2) , H) Wy (p~'2¢ (2) , H)| C #}u (@,H),
Wu (pilz(p/ (2) 7H) C % (0,H).

Moreover, if & € Z), () and 0 < § < 1, then

ME (72 (2), & H) N Wy (p~' 2 (2) , H) C M0 (9, H),

EW v (p 2@ (2),G,H) CEW py (P,G, )

MO (I (@) 1) € M (@.h), CH y (p~'2® (2) H) CCW y (@.H),
ML, (p 2@ (2) &G H)NECHW uy (p 29 (2) GH)c%///‘s (®,E,G,H).
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3. Applications and concluding remarks

The classes j/,f (®,E,H) and €A 27‘, (®,£,G,H) generalize well-known im-
portant classes, which were investigated in earlier works. Most of these classes were
defined by using linear operators and special functions.

Suppose Ay, ...,A; and By,...,B, (gq,s € N) be positive real numbers such that

s q
14+ Bi— D A >0.
k=1 k=1
For complex parameters a,...,a, and by,...,bs (g,s € .4") such that

Ay bk
—,— #0,1,2,...
Ak,Bk# b A

we define the Fox-Wright generalization of the hypergeometric ,Fy function by

(a1,A1), ..., (ag,Ay); ] ¢=i T(ai +Am)--T(ag+Agn) 2" 29)
r

WY, 4 .
47 |:(bl7Bl)7“‘7(bS7BS);Z =0 (bl-l-Bln)l"(bS—f—Bsn) n!

IfA,=1 (n=1,...,q) and B, =1 (n=1,...,s), we have the obvious relationship:
:4 = gFs(ai,...,aq;b1,...,bsz) (€ U).

where
o T(B)- T(B)
T(a)T(eg)

Moreover, in terms of Fox’s H -function, we have

(alaAl)v"'v(aqqu); _ g7lg _
o [ (b1.B1).... (bs.By): °| ~ Mass |72

(30)

(1 —al,A1)7...,(1 —aq,Aq)
(0,1)(1—=b1,By),...,(1 = bs,Bs) |

It should be remarked in passing that a further generalization of Fox’s H -function is
provided by the H -function which was encountered in the physics literature while
investigating and illustrating the use of certain Feynman integrals that arise naturally
in perturbation calculations of the equilibrium properties of a magnetic model of phase
transitions. Other interesting and useful special cases of the Fox-Wright generalized
hypergeometric ,'¥'; function defined by (29) include (for example) the generalized
Bessel function J defined by

Ty (z) = I cEU).
v () rgg)n!l“(1+v+un) (z )

which, for = 1, corresponds essentially to the classical Bessel function J,, and the

generalized Mittag-Leffler function E; , defined by

Eypu (2) = ir(%nxn) (ze¥).
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For real numbers A, 1 (A > —p), we define the function
o P (ahAl),...,(aq,Aq)'
q)(alabht)(z)_(wz quls |:(bl7Bl)7~~~,(bszs)7Z *f7L7t(Z>7 (31)

where @ is defined by (30) and

oo n+x{ t
fr4 (@) :nz;,<p+l) ' (zeU).
It is easy to verify that
a®(a+ 1,b,t) = Az® (a;b,t) + (a — pA)®(a,b,t), (32)

b®(a,b,t) = Bz® (a,b+ 1,t)+ (b — pB)®(a,b+ 1,t),
(p+2A)@(a,b,t +1) = 2@ (a,b,1) + 2D (a,b,1),
®(a,b,t) =lp(a,c)«@(c,b,t) (A=1), (33)
D(a,c,t) =1,(b,c) *P(a,b,t) (B=1),

where [, (a,c) is the multivalent incomplete Beta function (16).

Corresponding to the function ®(a,b,t) we consider the following classes of func-
tions:

V(a,b,t) =Wy (P(a,b,t);H), €V (a,b,t):=CW uy(®P(a,b,t),GH).
By using the linear operator
Oyla,b.1]f =®(a.b1)xf (f € ) (34)
we can define the class ¥ (a,b,t) alternatively in the following way:

a®,la+1,b,1]f(z) a
fe”f/(a,b,t)<:>lZ 6, b1/ +p_Z

€y, (H).

COROLLARY 2. If p—Rea< a < p, meN, then
YV (a+m,b,t) C V¥V (a,bt), €V (a+m,b,t) CEY (a,b,t). (35)
Proof. 1t is clear that it is sufficient to prove the corollary for m = 1. Let J) and

®(a,b,t) be defined by (28) and (31), respectively. Then, by (32) we have ®(a+ 1,b,1) =
Jp (®(a,b,r)). Hence, by using Theorem 9 we conclude that

Wy (®(a+1,b,1),H) C Wy (P(a,b,1),H),
CW oy (®(a+1,b,1),G,H) CEW 1y ((a,b,1),G.H).

This clearly forces the inclusion relations (35) for m=1. [

Analogously to Corollary 2, we prove the following corollary.
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COROLLARY 3. Let me N. If p—Reb < o < p, then
YV (a,b,t) CV (a,b+m,t), €V (a,b,t) CEY (a,b+mt).
If —ReA <o < p, then
YV (a,b,t+m) C ¥ (a,b,t), €V (a,bjt+m)CEY (a,b,t).

It is natural to ask about the inclusion relations in Corollaries 2 and 3 when m is
positive real. Using Theorems 4 and 6, we shall give a partial answer to this question.

COROLLARY 4. If the multivalent incomplete Beta function ly(a,c) defined by
(16) belongs to the class %, (o), then

YV (¢,b,t) C ¥V (a,b,t), €V (c,b,t) CE€YV (a,b,t) (A=1), (36)
vV (b,a,t) C ¥V (b,c,t), €V (b,a,t) CEYV (byc,t) (B=1). (37)

Proof. Letus put y =1[,(a,c), ¢ =P(c,b,t), where ®(a,b,t) is defined by (31).
Then, by using Theorems 4, 6 and relationship (33) we obtain

% (q)(c7b7t)?H) - % (q)(a7b7t)aH)7
CH 1y (®(c,b,1),G.H) CEW .y (D(a,b,t),G,H).

Thus, we get the inclusion relations (36). Analogously, we prove the inclusions (37). [

Combining Corollary 4 with Lemma 5 we obtain the following result.

COROLLARY 5. Ifeither (14) or (15), then the inclusion relations (36) and (37)
hold true.

The linear operator ©, [a,b,1] defined by (34) includes (as its special cases) other
linear operators of Geometric Function Theory which were considered in earlier works.
It contains, as its further special cases, such other linear operators as the Dziok-Sri-
vastava operator, the Hohlov operator, the Carlson-Shaffer operator, the Ruscheweyh
derivative operator, the generalized Bernardi-Libera-Livingston operator, the fractional
derivative operator, and so on (see, for the precise relationships, Dziok and Srivastava
([81, p. 3—4). Moreover, the linear operator ©), [a,b, ] includes also the Salagean opera-
tor, the Noor operator, the Choi-Saigo-Srivastava operator, the Kim-Srivastava operator,
and others (see, for the precise relationships, Cho et al. [3]). By using these linear oper-
ators we can consider several subclasses of the classes ¥ (a,b,t), €V (a,b,t), see for
example [1]-[7], [10, 21, 26, 27]. Also, the obtained results generalize several results
obtained in these classes of functions.
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