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SOME COEFFICIENT INEQUALITIES RELATED TO

THE HANKEL DETERMINANT FOR STRONGLY

STARLIKE FUNCTIONS OF ORDER ALPHA

N. E. CHO, B. KOWALCZYK, O. S. KWON, A. LECKO AND Y. J. SIM

(Communicated by J. Pečarić)

Abstract. In the present paper, the estimate of the Hankel determinant

H3,1( f ) :=

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
over the class S ∗

α , 0 < α � 1, of analytic functions f with an := f (n)(0)/n!, n ∈ N∪ {0},
such that |arg(z f ′(z)/ f (z))|< απ/2 for z ∈ D := {z ∈ C : |z| < 1} , is examined.

1. Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1} and let A be
its subclass of f normalized by f (0) := 0 and f ′(0) := 1, so of the form

f (z) = z+
∞

∑
n=2

anz
n, z ∈ D. (1.1)

Given n,q ∈ N, the Hankel determinant Hq,n( f ) of a function f ∈ A of the form
(1.1) is defined as

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣
,

where a1 := 1. To find the growth of the Hankel determinant Hq,n( f ) dependent on q
and n for the whole class S ⊂ A of univalent functions as well as for its subclasses is
one of the main problem to study. For the class S some important result was shown by
Pommerenke [16]. For fixed q and n the growth problem is reduced to find the bound of
the Hankel determinant over selected compact subclasses of A . Recently many authors
examined the Hankel determinant H2,2( f ) of order 2 as well as the Hankel determinant
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H3,1( f ) of order 3 (see e.g., [8], [15], [10], [3]). Note that H2,1( f ) = |a3−a2
2|. Thus the

Hankel determinant H2,1( f ) of order 2 reduces to the well known coefficient functional
which for S was estimated in 1916 by Bieberbach (see e.g., [7, Vol. I, p. 35]).

Given α ∈ (0,1], by S ∗
α we denote a subclass of A of functions f such that

∣∣∣∣arg z f ′(z)
f (z)

∣∣∣∣ < α
π
2

, z ∈ D, (1.2)

called strongly starlike of order α. The class S ∗
α was independently introduced by

Brannan and Kirwan [5] and Stankiewicz [17], [18] (see also [7, Vol. I, pp. 138–139]).
Clearly, S ∗ := S ∗

1 is the class of starlike functions.
In this paper we estimate the Hankel determinant H3,1( f ) over the class S ∗

α .

Let P be the class of Carathéodory functions p ∈ H of the form

p(z) = 1+
∞

∑
n=1

cnz
n, z ∈ D, (1.3)

having a positive real part in D . The results below for the class P will be used in
further considerations.

LEMMA 1.1. [6, p. 41] If p ∈ P is of the form (1.3), then

|cn| � 2, n ∈ D. (1.4)

The inequality (1.4) is sharp and the equality holds for for the function

p(z) =
1+ z
1− z

=: L(z), z ∈ D. (1.5)

LEMMA 1.2. ([11],[12]) If p ∈ P is of the form (1.3) with c1 > 0, then

2c2 = c2
1 + ζ (4− c2

1) (1.6)

and

4c3 = c3
1 +2c1(4− c2

1)ζ − c1(4− c2
1)ζ

2 +2(4− c2
1)(1−|ζ |2)η (1.7)

for some ζ and η such that |ζ | � 1 and |η | � 1.

LEMMA 1.3. ([13]) If p ∈ P is of the form (1.3), then

|c2−λc2
1| � 2, 0 � λ � 1. (1.8)

The inequality (1.8) is sharp and the equality holds for the function p(z) := L(z2),
z ∈ D.
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2. Main results

Since for f ∈ A ,

|H3,1( f )| � |a3||a2a4−a2
3|+ |a4||a4−a2a3|+ |a5||a3−a2

2|, (2.1)

we will estimate each part on the right side of (2.1).

THEOREM 2.1. Let α ∈ (0,1]. If f ∈ S ∗
α is the form (1.1), then

|a2a3−a4| (2.2)

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
3

α, 0 < α � α0,

2
9

α(2α +1)

√
2(2α +1)

(1−α)(5α +2)
, α0 � α � 1

10

(
2+

√
34

)
,

2
9

α(10α2−1),
1
10

(
2+

√
34

)
� α � 1,

where α0 = 0.559376 . . . is the unique root in (0,1) of the equation

16α3 +69α2−15α −16 = 0. (2.3)

The inequality (2.2) is sharp and the equality holds: when α ∈ (0,α0] for the function

f1(z) := zexp

[∫ z

0

(L(u3))α −1
u

du

]
, z ∈ D; (2.4)

when α ∈ [(
2+

√
34

)
/10,1

]
for the function

f2(z) := zexp

[∫ z

0

(L(u))α −1
u

du

]
, z ∈ D; (2.5)

when α ∈ [
α0,

(
2+

√
34

)
/10

]
for the function

f3(z) := zexp

[∫ z

0

(K(u))α −1
u

du

]
, z ∈ D, (2.6)

where the function L is defined by (1.5) and

K(z) :=
1− z2

1− t0z+ z2 , z ∈ D, (2.7)

with

t0 :=

√
2(2α +1)

(1−α)(5α +2)
. (2.8)
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Proof. Fix α ∈ (0,1] and let f ∈ S ∗
α be of the form (1.1). Then by (1.2) we have

z f ′(z)
f (z)

= (p(z))α , z ∈ D, (2.9)

for some function p ∈ P of the form (1.3). Putting the series (1.1) and (1.3) into (2.9)
by equating the coefficients we get

a2 = αc1, a3 =
α
2

(
c2− 1−3α

2
c2
1

)
(2.10)

and

a4 =
α
3

(
c3 +

5α −2
2

c1c2 +
17α2−15α +4

12
c3
1

)
. (2.11)

Hence

a2a3−a4 =
1
36

α
[
12(1−α)c1c2 +2(α +1)(5α −2)c3

1−12c3
]
. (2.12)

Now by using the equalities (1.6) and (1.7) we have

|a2a3−a4| = 1
36

α
∣∣(10α2−1)c3

1 +(4− c2
1)(−6αc1ζ +3c1ζ 2 −6(1−|ζ |2)η)

∣∣ ,
(2.13)

where |ζ |� 1 and |η |� 1. Since the class S ∗
α is invariant under the rotations, by (1.4)

we may assume that c1 =: t ∈ [0,2]. Thus applying the triangle inequality in the right
hand side of (2.13) with x := |ζ | and y := |η | we obtain

|a2a3−a4| � 1
36

αT (t,x,y), (2.14)

where
T (t,x,y) := |10α2−1|t3 +(4− t2)(6αtx+3tx2 +6(1− x2)y)

for (t,x,y) ∈ [0,2]× [0,1]× [0,1]. But

T (t,x,y) � T (t,x,1) =: F(t,x), (t,x) ∈ Δ := [0,2]× [0,1],

so we will find the maximum of the function F on Δ.
(i) On the vertices of Δ we have

F(0,0) = 24, F(0,1) = 0, F(2,0) = F(2,1) = 8|10α2−1|.
(ii) On the side x = 0 the function F becomes

G(t) := |10α2−1|t3 +6(4− t2), t ∈ (0,2).

For 0 < α �
√

3/10 we have

G′(t) = 3t(|10α2−1|t−4) � 0, t ∈ (0,2).
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Therefore the function G is decreasing and consequently

G(t) � 24, t ∈ (0,2).

For
√

3/10 < α � 1 the function G has a unique critical point in (0,2), namely, a
minimum at t = 4/(10α2−1) since G′′(4/(10α2−1)) = 12 > 0. Because 8(10α2−
1) � 24 for 2/

√
10 � α � 1 and 8(10α2 −1) � 24 for 0 < α � 2/

√
10, we see that

for all t ∈ (0,2),

G(t) �
{

24, 0 < α � 2/
√

10,

8(10α2−1), 2/
√

10 � α � 1.
(2.15)

(iii) On the side x = 1 the function F becomes

H(t) := |10α2−1|t3 + t(4− t2)(6α +3), t ∈ (0,2). (2.16)

For (2+
√

34)/10 � α � 1 the function H is increasing since

H ′(t) = 6(α −1)(5α +2)t2 +12(2α +1) � 0, t ∈ (0,2).

Thus H(t) � 8(10α2−1) for t ∈ (0,2).
For 1/

√
10 < α < (2 +

√
34)/10 the function H has a unique critical point in

(0,2), namely, a maximum at

t =

√
2(2α +1)

(1−α)(5α +2)
=: t0

because
H ′′(t0) = 12(α −1)(5α +2)t0 < 0.

Thus for all 0 < t < 2,

H(t) � H(t0) = 8(2α +1)

√
2(2α +1)

(1−α)(5α +2)
.

Note now that
H(t0) � 24, 1/

√
10 < α � α0,

and
H(t0) > 24, α0 < α � (2+

√
34)/10,

where α0 is the unique root in (0,1) of the equation (2.3).
For 0 < α < 1/

√
10 the function H has a unique critical point in (0,2), namely,

a maximum at

t =

√
2(2α +1)

5α2 +3α +1
=: t1

because
H ′′(t1) = −12(5α2 +3α +1)t1 < 0.
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Thus for all 0 < t < 2,

H(t) � H(t1) = 8(2α +1)

√
2(2α +1)

5α2 +3α +1
.

Note that the inequality

H(t1) � 24, 0 < α � 1/
√

10,

is equivalent to the inequality

16α3−21α2−15α −7 � 0, 0 � α < 1/
√

10,

which as easy to see is true.
(iv) We can easily compute that

F(2,x) = 8|10α2−1|, F(0,x) � 24.

(v) It remains to consider the interior of Δ. Solving the equations

∂F
∂ t

= 3|10α2−1|t2 (2.17)

−2t(6αtx+(3t−6)x2 +6)+ (4− t2)(6αx+3x2) = 0

and
∂F
∂x

= 6(4− t2)[αt +(t−2)x] = 0, (2.18)

we get for α �= 1/
√

5 a unique critical point (t2,x2), where

x2 :=
2α(1−α2)

|10α2−1|+5α2−2

and

t2 :=
4(1−α2)

|10α2−1|+3α2

which possible lies in Δ. Since t2 � 2 for 0 � α < 1/
√

5 and x2 < 0 for 0 < α < 1/2,
so (t2,x2) ∈ Δ when α � 1/2. As by (2.17) with t := t2 we have x2 = αt2/(2− t2), so
hence and from (2.16) we get

F(t2,x2) = 2(α2−1)t22 +24 � 24

for all α > 1/2.

At the end observe that for α = 1/
√

5 the system of equations (2.17) and (2.18)
has no solution in Δ.
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Summarizing all considered cases, we conclude that

F(t,x) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

24, 0 < α � α0,

8(2α +1)

√
2(2α +1)

(1−α)(5α +2)
, α0 < α <

1
10

(2+
√

34),

8(10α2−1),
1
10

(2+
√

34) � α � 1

on Δ, which together with (2.14) proves the inequality (2.2).
To show the sharpness for the case 0 < α � α0, set c1 := 0, ζ := 0, η := 1 into

(1.6) and (1.7) which yield c2 = 0 and c3 = 2. Hence and by (2.10) and (2.11), a2 = 0,
a3 = 0 and a4 = 2α/3 which holds for the function (2.4) and makes the equality in
(2.2). For the case (2+

√
34)/10 < α � 1, set c1 := 2, ζ := 0 and η := 1 into (1.6)

and (1.7) which yield c2 = c3 = 2. Hence and by (2.10) and (2.11), a2 = 2α, a3 = 3α
and a4 = 2α(17α2 + 1)/9 which holds for the function (2.5) and makes the equality
in (2.2). For the case α0 � α � (2+

√
34)/10 consider the function f3 given by (2.6).

Since the function K given by (2.7) is in P with c1 = t0, c2 = t20 −2 and c3 = t30 −3t0,
where t0 is given by (2.8), from (2.12) it follows that

|a2a3−a4| = 1
36

α
∣∣12(1−α)t0(t20 −2)+2(α +1)(5α −2)t30 −12t30 +36t0

∣∣
=

2
9

α(2α +1)

√
2(2α +1)

(1−α)(5α +2)
,

which makes the equality in (2.2). �

REMARK 2.2. For α := 1, i.e., for the class S ∗ the above theorem reduces to
Theorem 2.2 of [3].

The theorem below can be found in [10] as Corollary 1 Part 4 however the authors
did not remark on the extremal function. To complete this paper we reprove it again.

THEOREM 2.3. Let α ∈ (0,1]. If f ∈ S ∗
α is the form (1.1), then

|a2a4−a2
3| � α2. (2.19)

The inequality (2.19) is sharp and the equality holds for the function

f4(z) := zexp

[∫ z

0

(L(u2))α −1
u

du

]
, z ∈ D, (2.20)

where the function L is defined by (1.5).

Proof. Fix α ∈ (0,1] and let f ∈ S ∗
α be of the form (1.1). Then by (2.10) and

(2.11) we have

a2a4−a2
3 =

1
144

α2[(−13α2+4)c4
1+(4−c2

1)(6αc2
1ζ−(36+3c2

1)ζ
2+24c1(1−|ζ |2)η)]

(2.21)



436 N. E. CHO, B. KOWALCZYK, O. S. KWON, A. LECKO AND Y. J. SIM

for |ζ |� 1 and |η |� 1. As in the proof of Theorem 2.1 setting c1 = t ∈ [0,2], x := |ζ |
and y := |η | from the above we obtain

|a2a3−a4| � 1
144

α2T (t,x,y), (2.22)

where

T (t,x,y) := |4−13α2|t4 +(4− t2)(6αt2x+(36+3t2)x2 +24t(1− x2)y),

with (t,x,y) ∈ [0,2]× [0,1]× [0,1]. But

T (t,x,y) � T (t,x,1) =: F(t,x), (t,x) ∈ Δ := [0,2]× [0,1],

so we will find the maximum of the function F on Δ.
(i) On the vertices of Δ we have

F(0,0) = 0, F(0,1,1) = 144, F(2,0) = F(2,1) = 16|4−13α2|.
(ii) On the side x = 1 the function F becomes

G(t) := |4−13α2|t4 +(4− t2)[(6α +3)t2 +36], t ∈ (0,2). (2.23)

We will show that G is decreasing. For 0 < α � (−3 +
√

22)/13 we have 13α2 +
6α −1 < 0 and 4−13α2 � 0. Therefore

G′(t) = 4t((−13α2−6α +1)t2 +12(α −1)) � −16t(13α2 +3α +2) � 0, t ∈ (0,2).

For (−3+
√

22)/13 � α � 2/
√

13 we have −13α2−3α +1 � 0 and 4−13α2 � 0.
Therefore

G′(t) = 4t((−13α2−3α +1)t2 +12(α −1)) � 0, t ∈ (0,2).

For 2/
√

13 � α � 1 we have 4−13α2 � 0. Therefore

G′(t) = 4(α −1)t((13α +7)t2 +48) � 0, t ∈ (0,2).

Summarizing, for each α ∈ (0,1],

G′(t) � 0, t ∈ (0,2),

so G is decreasing and consequently

G(t) � 144, t ∈ (0,2).

(iii) On the edge x = 0 the function F becomes

H(t) = |4−13α2|t4 +24t(4− t2), t ∈ (0,2). (2.24)

We have
H ′(t) = 0
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if and only if
|4−13α2|t4 = 18t3−24t. (2.25)

In case when the above equation has no solution in (0,2) the function H is increasing.
Then for α ∈ (0,1],

H(t) � 16|4−13α2| � 144.

In case when there exists a solution of the equation (2.24), say t0 ∈ (0,2), by using the
the equation (2.25) with t := t0 we have

H(t0) = 6t0(12− t20) < 144.

In consequence
H(t) � 144, t ∈ (0,2).

(iv) We can easily compute that

F(2,x) = 8|10α2−1|, F(0,x) � 144.

(v) It remains to consider the interior of Δ. Solving the equations Since αt2 +(t−
2)(t−6)x > 0 for 0 < t < 2 and 0 < x < 1, we have

∂F
∂x

= 6(4− t2)(αt2 +(t−2)(t−6)x) > 0.

Thus the function F has has no critical point.
Summarizing all considered cases we conclude that

F(t,x) � 144

on Δ, which together with (2.22) proves the inequality (2.19).
To show the sharpness, set c1 := 0, ζ := 1 and η = 1 into (1.6) and (1.7) which

yields c2 = 2 and c3 = 0. Hence and by (2.10) and (2.11), a2 = 0, a3 = α and a4 = 0,
which holds for the function (2.20) and makes the equality in (2.19). �

REMARK 2.4. For α := 1, i.e., for the class S ∗ the above theorem reduces to
Theorem 3.1 of [9].

THEOREM 2.5. Let α ∈ (0,1]. If f ∈ S ∗
α is the form (1.1), then

|a3−a2
2| � α. (2.26)

The inequality (2.26) is sharp and the equality holds for the function (2.20).

Proof. From (2.10) we have

|a3−a2
2| �

1
2

α
∣∣∣∣c2− 1+ α

2
c2
1

∣∣∣∣ .
The inequality (2.26) follows by applying Lemma 1.3 with λ := (1+ α)/2∈ (1/2,1].

The sharpness of the inequality (2.26) follows from the sharpness of the inequality
(1.8) and the equality holds for the function (2.20). �
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REMARK 2.6. For α := 1, i.e., for the class S ∗ the above result is as in the class
S , so it reduces to the well known theorem due to Bieberbach (1916) (see e.g., [7, Vol.
I, p. 35]).

REMARK 2.7. Let α ∈ (0,1] and f ∈ S ∗
α be the form (1.1). For the second and

third coefficients of f the sharp estimates were given in [4], namely,

|a2| � 2α, |a3| �
{

α, 0 < α � 1/3,

3α2, 1/3 � α � 1.

For the fourth coefficient of f the sharp estimate was found in [14], namely,

|a4| �
{

2α/3, 0 < α �
√

2/17,

2α(1+17α2)/9,
√

2/17 � α � 1.

For the fifth coefficient of f the sharp result, however not complete for all α ∈ (0,1],
was obtained in [1], namely,

|a5| �
{

α/2, 228α4−194α3 +2α2 +39α −9 � 0,

α2(7+38α2)/9, 76α3−60α2 +32α −9 � 0.

Now from (2.1) by using the above coefficient estimates with (2.2), (2.19) and (2.26)
we can obtain the bound of the Hankel determinant H3,1( f ). Clearly, this bound is
incomplete and also not sharp.
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