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TWO–WEIGHT ENTROPY BOUNDEDNESS OF

MULTILINEAR FRACTIONAL TYPE OPERATORS

MINGMING CAO AND QINGYING XUE

(Communicated by L. Liu)

Abstract. This paper will be devoted to study the two-weight norm inequalities of the multilin-
ear fractional maximal operator Mα and the multilinear fractional integral operator Iα . The
entropy conditions in the multilinear setting will be introduced and the entropy bounds for Mα
and Iα will be given.

1. Introduction

1.1. Background

Let Mα and Iα be the fractional maximal operator and fractional integral operator
defined by

Mα f (x) := sup
Q

|Q| α
n 〈 f 〉Q ·1Q(x), Iα f (x) :=

∫
Rn

f (y)
|x− y|n−α dy, 0 � α < n.

In 1982, Saywer [22] first showed that Mα(·σ) : Lp(σ) → Lq(w) holds if and only if
(w,σ) satisfies the following testing condition

[w,σ ]S(p,q) := sup
Q

σ(Q)−
1
p
∥∥1QMα(1Qσ)

∥∥
Lq(w) < ∞.

Subsequently, using the similar testing conditions, Saywer [23, 24] gave some charac-
terizations of two-weight weak and strong type inequalities of Iα .

After the works of Saywer, many works have been done in the characterizations
of two weighed boundedness of continuous operators. Among such achievements are
the celebrated works of Hytönen [7], Lacey [10, 11], Lacey et al [15], which demon-
strated the characterizations of the two weighted L2 inequality of Hilbert transform in
terms of Saywer type testing conditions and two-weight A2 condition. Recently, Lacey
and Li [12] gave a characterization of two-weight norm inequalities for the classical
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Littlewood-Paley g -function. Still more recently, Cao, Li and Xue [1] obtained the
characterization of two weighted inequalities for the g∗λ -function with more general
fractional type of Poisson kernels. As for the discrete operators, on the one hand, two-
weight characterizations of martingale transforms and dyadic shifts were presented by
Nazarov et al [20] and Hytönen [8]. The two weighted Lp(σ) → Lq(w)-type inequali-
ties of positive dyadic operators were established by Nazarov et al [20] with p = q = 2,
Lacey et al [14] with p < q and Hytönen [6] with p,q ∈ (1,∞) . On the other hand, in
order to study the sufficient conditionS for the two weight inequalities of the singular
integral operators, Treil and Volberg [26] introduced the entropy conditions. Later on,
the entropy conditions were used to obtain the two-weight norm inequalities of intrinsic
square functions and fractional maximal and integral operators by Lacey, Li [13] and
Rahm, Spencer [21], respectively.

In the multilinear setting, several works also have already been done for the muliti-
linear fractional maximal operator Mα and fractional integral operators Iα (0 � α <
mn ), which are defined by

Mα(�f )(x) = sup
Q

|Q| α
n

m

∏
i=1

〈| fi|〉Q ·1Q(x), Iα(�f )(x) =
∫

(Rn)m

∏m
i=1 fi(x− yi)

|(y1, . . . ,ym)|mn−α d�y.

In 2013, Chen and Damián [4] first gave some sufficient conditions for the two-weight
inequalities of the multilinear maximal operator M0 . In 2015, Li and Sun [18] con-
sidered the problem of two weighted inequalities of multilinear fractional maximal op-
erator Mα . But it is worth pointing out that their method is not valid for the case
0 � α < n(1/p−1/max{pi}) . In 2016, Cao and Xue [2] extended the ranges of expo-
nents to 0 � α < mn by applying the atomic decomposition of tent space. Moreover,
Cao, Xue and Yabuta [3] defined and studied the multilinear fractional strong maximal
operator and the corresponding multiple weights associated with rectangles. Under the
dyadic reverse doubling condition, a necessary and sufficient condition for two-weight
inequalities of the multilinear fractional strong maximal operator was given.

It is well known that it is difficult to give a two-weight characterization of Mα and
Iα with respect to Saywer-type testing condition. Even if we make it, it is generally
very hard to verify Saywer-type testing condition in practice. This leads us to quest
some sufficient conditions for two-weight norm inequalities of Mα and Iα . This kind
of conditions should mainly concerned with Ap like conditions.

In this paper, we are mainly concerned with Ap like conditions that are sufficient
for two-weight norm inequalities of Mα and Iα . We will work with the multiple
version of entropy conditions and try to obtain the entropy bounds of Mα and Iα .
For simplicity, we only give the results and the proofs in the case m=2, although our
results still hold for general m � 2.

1.2. Main results

First, we give one definition related to multiple weights.

DEFINITION 1.1. (Multiple weights class) Let 0 � α < mn , 1
p = 1

p1
+ · · ·+ 1

pm

with 1 < p1, · · · , pm < ∞ , and 0 < p � q < ∞ . Let w,σi (i = 1, . . . ,m) be nonnegative
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and locally integrable functions on Rn , and ν�σ = ∏m
i=1 σ p/pi

i . We define

[w,�σ ]A(�p,q) := sup
Q

A�p,q(w,�σ ;Q) < ∞,

[w,�σ ]A(�p,q)A
exp
∞

:= sup
Q

A�p,q(w,�σ ;Q)Aexp
∞ (ν�σ ;Q)

1
p < ∞,

[w,�σ ]A(�p,q)H∞
�p

:= sup
Q

A�p,q(w,�σ ;Q)
m

∏
i=1

Aexp
∞ (σi;Q)

1
pi < ∞,

where

Aexp
∞ (w;Q) := 〈w〉Q exp

(〈logw−1〉Q
)
, A�p,q(w,�σ ;Q) := |Q| 1

q− 1
p + α

n 〈w〉
1
q
Q

m

∏
i=1

〈σi〉
1
p′i
Q .

REMARK 1.2. If we denote

[�σ ]H∞
�p

:= sup
Q

m

∏
i=1

Aexp
∞ (σi;Q)

p
pi , [�σ ]RH�p := sup

Q
ν�σ (Q)−1

m

∏
i=1

σi(Q)
p
pi ,

it is easy to check that

[�σ ]H∞
�p

� [�σ ]RH�p [ν�σ ]Aexp
∞

, [w,�σ ]A(�p,q)Aexp
∞

� [w,�σ ]A(�p,q) [ν�σ ]1/p
Aexp

∞
,

[w,�σ ]A(�p,q)A
exp
∞

� [w,�σ ]A(�p,q)H
∞
�p

� [�σ ]1/p
RH�p

[w,�σ ]A(�p,q)A
exp
∞

.

Now, we give the definition of multilinear version of entropy conditions.

DEFINITION 1.3. (Multilinear version of entropy conditions) Let 0 � α < mn ,
1
p = 1

p1
+ · · ·+ 1

pm
with 1 < p1, · · · , pm < ∞ , and 0 < p � q < ∞ . Let w,σi (i = 1, . . . ,m)

be nonnegative and locally integrable functions on Rn . We define

�w,�σ	�p,q,ε := sup
Q

A�p,q(w,�σ ;Q)ρν�σ (Q)
1
p ε(ρν�σ (Q))


w,�σ��p,q,�ε,η := sup
Q

A�p,q(w,�σ ;Q)ρw,η (Q)
1
q′

m

∏
i=1

ρσi,εi(Q)
1
pi

[[�σ ]](i, j,k),εi
:= sup

Q

(
|Q| α

n

2

∏
i=1

〈σi〉Q
) p′k

p′i j · 〈σ3〉Qγ(i, j,k)(Q)εi(γ(i, j,k)(Q)).

where ε,η ,εi are monotonic increasing functions on (1,∞) , and

ρw(Q) := w(Q)−1
∫

Q
M(1Qw)(x)dx and ρw,ε(Q) = ρw(Q)ε(ρw(Q)),

γ(i, j,k)(Q) :=

∫
Q Mα(1Qσi,1Qσ j)(x)

p′k
pi j dx

(∫
Q σ

pi j
pi

i σ
pi j
p j

j dx
) p′k

pi j

and
1
pi j

=
1
pi

+
1
p j

.
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We now state the main results of this paper as follows.

THEOREM 1.1. Let 0 � α < 2n, 0 < p � q < ∞ and 1
p = 1

p1
+ 1

p2
with 1 <

p1, p2 < ∞ . Suppose that σ1,σ2,w are weights on Rn . Let ε be a monotonic increasing
function on (1,∞) that satisfies

∫ ∞
1

dt
tε(t)q < ∞ . Then the following inequality holds

∥∥Mα( f1σ1, f2σ2)
∥∥

Lq(w) � �w,�σ	�p,q,ε

2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)
.

THEOREM 1.2. Let 0 � α < 2n, 0 < p � q < ∞ and 1
p = 1

p1
+ 1

p2
with 1 <

p1, p2,q < ∞ . Suppose that σ1,σ2,w are weights on Rn . Let ε1,ε2,η be monotonic
increasing functions on (1,∞) that satisfy

∫ ∞
1

dt
tεi(t)pi < ∞ and

∫ ∞
1

dt
tη(t)q′

< ∞ . Then

there holds that

∥∥Iα ( f1σ1, f2σ2)
∥∥

Lq(w) � 
w,�σ��p,q,�ε,η

2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)
.

THEOREM 1.3. Let 0 � α < 2n, and 1 < pi < ∞ (i = 1,2,3) with 1
pi

+ 1
p j

� 1

for i �= j . Suppose that σ1,σ2,σ3 are weights on Rn . Let εi be a monotonic increasing
function on (1,∞) such that

∫ ∞
1

dt

tεi(t)
1/p′i

< ∞ , i = 1,2,3 . Then the following inequalities

hold

∥∥Iα ( f1σ1, f2σ2)
∥∥

Lp′3 (σ3)
� ∑

(i, j,k)∈Ω
[[�σ ]]

1/p′k
(i, j,k),εi

2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)
; (1.1)

∥∥Iα( f1σ1, f2σ2)
∥∥

Lp′3,∞(σ3)
� ∑

i�=3
(i, j,k)∈Ω

[[�σ ]]
1/p′k
(i, j,k),εi

2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)
; (1.2)

where Ω is the set of all permutations of (1,2,3) .

The article is organized as follows: In Section 2, some notations and lemmas will
be given. In Section 3, we will demonstrate Theorem 1.1 and Theorem 1.2. Section 4
will be devoted to complete the proofs of Theorem 1.3.

2. Preliminaries

First, we present some definitions and lemmas, which will be used later.

DEFINITION 2.1. A collection, D of cubes is said to be a dyadic grid if it satisfies

(1) The side length of every Q ∈ D equals 2k for some k ∈ Z .

(2) For any Q,R ∈ D , Q∩R = {Q,R, /0} .
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(3) Rn =
⋃

Q∈Dk

Q , Dk = {Q ∈ D ;�(Q) = 2k} for any k ∈ Z .

DEFINITION 2.2. A subset S of a dyadic grid is said to be spare, if for every
Q ∈ S there holds that ∣∣∣ ⋃

Q′∈S
Q′�Q

Q′
∣∣∣ � 1

2
|Q|.

Equivalently, if E(Q) = Q\⋃
Q′∈S
Q′�Q

Q′ , then the sets {E(Q)}Q∈S are pairwise disjoint

and |Q| � 2|E(Q)| .

DEFINITION 2.3. Let 0 � α < mn and D ,S be a given dyadic grid and a spare
set. The dyadic versions of multilinear fractional maximal and fractional integral oper-
ators are defined by

M D
α (�f )(x) := sup

Q∈D
|Q| α

n

m

∏
i=1

〈| fi|〉Q ·1Q(x),

I D
α (�f )(x) := ∑

Q∈D

|Q| α
n

m

∏
i=1

〈 fi〉Q ·1Q(x),

TS ,α(�f )(x) := ∑
Q∈S

|Q| α
n

m

∏
i=1

〈 fi〉Q ·1E(Q)(x).

We will need the following lemma given by Hytönen and Pérez in [9].

LEMMA 2.1. There are 2n dyadic grids Dt , t ∈ {0,1/3}n such that for any cube
Q ⊂ Rn there exists a cube Qt ∈ Dt satisfying Q ⊂ Qt and �(Qt) � 6�(Q) , where the
dyadic grid Dt is defined by

Dt :=
{
2−k([0,1)n +m+(−1)kt) : k ∈ Z,m ∈ Zn}, t ∈ {0,1/3}n.

We also need the following lemma.

LEMMA 2.2. Let D be a dyadic grid. For any non-negative integrable fi (i =
1, . . . ,m) , there exist sparse families S ⊂ D such that for all x ∈ Rn , it holds that

Mα(�f )(x) � sup
t∈{0,1/3}n

M Dt
α (�f )(x), M D

α (�f )(x) � TS ,α(�f )(x); (2.1)

Iα(�f )(x) � sup
t∈{0,1/3}n

I Dt
α (�f )(x), I D

α (�f )(x) � TS ,α(�f )(x). (2.2)

The proof of (2.1) can be found in [17] and (2.2) was shown in [19].
We will apply the following multilinear version of Carleson embedding theorem

[25] at certain key points in the proofs of our results.
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LEMMA 2.3. (Carleson embedding theorem) Let 0 < p � q < ∞ and 1
p = 1

p1
+

· · ·+ 1
pm

satisfying 1 < p1, . . . , pm < ∞ . Suppose that the nonnegative numbers {cQ}Q

satisfy

∑
Q⊂Q′

cQ � A ν�σ (Q′)q/p, for any Q′ ∈ D ,

where σi (i = 1, · · · ,m) are weights and ν�σ = ∏m
i=1 σ p/pi

i . Then for all nonnegative
functions fi ∈ Lpi(σi) , we have

∑
Q∈D

cQ

m

∏
i=1

(〈 fi〉σi
Q

)q � A
∥∥M d

�σ (�f )
∥∥q

Lp,q(ν�σ ) � A
m

∏
i=1

∥∥ fi
∥∥q

Lpi (σi)
,

where Lp,q(w) is the Lorentz space defined by

∥∥ f
∥∥

Lp,q(w) =
[∫ ∞

0

(
λw

({x ∈ Rn; | f (x)| > λ})1/p
)q dλ

λ

]1/q

< ∞.

3. Proofs of Theorems 1.1–1.2

In this section, our aim is to demonstrate Theorem 1.1 and Theorem 1.2 by mak-
ing use of dyadic techniques (see for examples, [8] and [16]).

3.1. Proof of Theorem 1.1

Let S be any sparse set of D . By Lemma 2.2, it suffices to show that

∥∥TS ,α( f1σ1, f2σ2)
∥∥

Lq(w) � �w,�σ	�p,q,ε

2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)
. (3.1)

We may assume that each fi is a non-negative function for i = 1,2. Denote

Sk :=
{

Q ∈ S ; 2−k�w,�σ	�p,q,ε � Γ(Q) � 2−k+1�w,�σ	�p,q,ε

}
,

where Γ(Q) := |Q| 1
q− 1

p+ α
n 〈w〉

1
q
Q ∏2

i=1〈σi〉
1
p′i
Q · ρν�σ (Q)

1
p ε(ρν�σ (Q)). Using the pairwise

disjointness of the sets {E(Q)}Q∈S , we deduce that

∥∥TS ,α( f1σ1, f2σ2)
∥∥q

Lq(w) =
∞

∑
k=1

∑
Q∈Sk

(
|Q| α

n

2

∏
i=1

〈 fiσi〉Q
)q

w(E(Q)) :=
∞

∑
k=1

Δk.

To obtain the bound of Δk , we need to introduce the notion

cQ =
(|Q|α/n〈σ1〉Q〈σ2〉Q

)q
w(E(Q)).

Then, it is easy to see that

Δk = ∑
Q∈Sk

cQ

(
〈 f1〉σ1

Q 〈 f2〉σ2
Q

)q
.
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In order to apply the Carleson embedding theorem, we need to analyze {cQ}Q∈Sk . Fix
Q′ ∈ Sk . Since Γ(Q) � 2−k�w,�σ	�p,q,ε for each Q ∈ Sk , we get

∑
Q∈Sk:Q⊂Q′

cQ � ∑
Q∈Sk:Q⊂Q′

Γ(Q)q
(

σ1(Q)
1
p1 σ2(Q)

1
p2

ρν�σ (Q)
1
p ε(ρν�σ (Q))

)q

� 2−kq�w,�σ	q
�p,q,ε ∑

Q∈Sk :Q⊂Q′

ν�σ (Q)q/p

ρν�σ (Q)q/pε(ρν�σ (Q))q

:= 2−kq�w,�σ	q
�p,q,εΔ′

k.

Now, we tentatively claim that

Δ′
k � ν�σ (Q′)q/p. (3.2)

Therefore, if the above claim is true, we actually obtain that

∑
Q∈Sk:Q⊂Q′

cQ � 2−kq�w,�σ	q
�p,q,εν�σ (Q′)q/p,

and

Δk � 2−kq�w,�σ	q
�p,q,ε

2

∏
i=1

∥∥ fi
∥∥q

Lpi (σi)
,

where we have used Lemma 2.3. Consequently, it yields that

∥∥TS ,α(�f ·�σ)
∥∥

Lq(w) =
∞

∑
k=1

Δk � �w,�σ	
2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)
.

This shows that inequality (3.1) is true.
Now, we are in the position to demonstrate (3.2) . Set

Sk, j :=
{
Q ∈ Sk; Q ⊂ Q′, 2 j−1 � ρν�σ (Q) < 2 j},

and S ∗
k, j is the collection of maximal elements in Sk, j . Thereby, we have

(
∑

Q∈Sk, j

ν�σ (Q)q/p
)p/q

� ∑
Q∗∈S ∗

k, j

∑
Q⊂Q∗

ν�σ (Q)

� ∑
Q∗∈S ∗

k, j

∑
Q⊂Q∗

∫
E(Q)

〈1Q∗ν�σ 〉Q1Q(x)dx

� ∑
Q∗∈S ∗

k, j

∑
Q⊂Q∗

∫
E(Q)

sup
P∈D

〈1Q∗ν�σ 〉P1P(x)dx

� ∑
Q∗∈S ∗

k, j

∫
Q∗

sup
P∈D

〈1Q∗ν�σ 〉P1P(x)dx
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� ∑
Q∗∈S ∗

k, j

∫
Q∗

M(1Q∗ν�σ )(x)dx

= ∑
Q∗∈S ∗

k, j

ν�σ (Q∗)ρν�σ (Q∗) � 2 jν�σ (Q′).

Accordingly, we deduce that

Δ′
k �

∞

∑
j=0

1

2 jq/pε(2 j)q ∑
Q∈Sk, j

ν�σ (Q)q/p

� ν�σ (Q′)q/p
∞

∑
j=0

1
ε(2 j)q

� ν�σ (Q′)q/p
∫ ∞

1

dt
tε(t)q � ν�σ (Q′)q/p.

The proof of (3.2) is finished. �

3.2. Proof of Theorem 1.2

By duality, we have

∥∥TS ,α(�f ·�σ)
∥∥

Lq(w) = sup
||g||

Lq′ (w)�1

∣∣∣∣ ∑
Q∈S

(|Q| α
n 〈 f1σ1〉Q〈 f2σ2〉Q

)∫
Q

g(x)wdx

∣∣∣∣
:= sup

||g||
Lq′ (w)�1

∣∣V (g)
∣∣.

Denote

Sk =
{
Q ∈ S ; 2k < λQ � 2k+1}, λQ = A�p,q(w,�σ ;Q)ρw,η (Q)

1
q′

2

∏
i=1

ρσi,εi(Q)
1
pi .

Then, we have k � K0 := log2
w,�σ��p,q,�ε,η . Therefore, by the Hölder inequality, it now
follows that

V (g) =
K0

∑
k=1

∑
Q∈Sk

λQ

2

∏
i=1

〈 fi〉σi
Q σi(Q)

1
pi

ρσi,εi(Q)
1
pi

〈g〉wQw(Q)
1
q′

ρw,η(Q)
1
q′

�
K0

∑
k=1

2k
(

∑
Q∈Sk

2

∏
i=1

(〈 fi〉σi
Q

)qσi(Q)
q
pi

ρσi,εi(Q)
q
pi

) 1
q
(

∑
Q∈Sk

(〈g〉wQ)q′ w(Q)
ρw,η(Q)

) 1
q′

� 
w,�σ��p,q,�ε,η

2

∏
i=1

(
∑

Q∈Sk

(〈 fi〉σi
Q

)pi σi(Q)
ρσi,εi(Q)

) 1
pi

(
∑

Q∈Sk

(〈g〉wQ)q′ w(Q)
ρw,η(Q)

) 1
q′

.

By the Carleson embedding theorem 2.3, it is enough to show that for each Q′ ∈ Sk

∑
Q∈Sk
Q⊂Q′

σi(Q)
ρσi,εi(Q)

� σi(Q′), i = 1,2,3,
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where σ3 = w and ε3 = η . A completely analogous calculation to that of the preceding
subsection yields the desired result. �

4. Proof of Theorem 1.3

In this section, we shall give the proof of Theorem 1.3. We need the following
two-weight characterization of I S

α , which was proved in [6] and [19].

LEMMA 4.1. Let D be a dyadic grid and S ⊂ D be a sparse family. Suppose
that σ1 , σ2 and σ3 are positive Borel measures and 1 < pi < ∞ (i = 1,2,3) with
1
pi

+ 1
p j

� 1 for i �= j . Then

(1) The strong type inequality

∥∥I S
α ( f1σ1, f2σ2)

∥∥
Lq(σ3)

� N
2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)

holds if and only if the following test conditions hold for any triple (i, j,k) ∈ Ω ,

TS ,(i, j,k) := sup
R∈S

∥∥∥∑Q∈S
Q⊂R

|Q| α
n 〈σ j〉Q〈σk〉Q1Q

∥∥∥
Lp′i (σi)

σ j(R)1/p jσk(R)1/pk
< ∞.

(2) The weak type inequality

∥∥I S
α ( f1σ1, f2σ2)

∥∥
Lq,∞(σ3)

� Nweak

2

∏
i=1

∥∥ fi
∥∥

Lpi (σi)

holds if and only if TS ,(i, j,k) < ∞ , for any triple (i, j,k) ∈ Ω and i �= 3 .

Moreover, the best constants satisfy

N � ∑
(i, j,k)∈Ω

TS ,(i, j,k), Nweak � ∑
i�=3,(i, j,k)∈Ω

TS ,(i, j,k).

Proof of Theorem 1.3 . By Lemma 4.1, it suffices to show

TS ,(i, j,k) � [[�σ ]](i, j,k),εi
, for each (i, j,k) ∈ Ω.

By symmetry, we only focus on estimating the case (i, j,k) = (1,2,3) . For conve-
nience, we write q = p′3 , p = p12 and γ = γ(1,2,3) . From now on, we fix the cube
R ∈ D and introduce the notations

A (R) :=
∥∥∥ ∑

Q∈S

|Q| α
n 〈σ1〉Q〈σ2〉Q1Q

∥∥∥
Lq(R,w)

,

B(Q) :=
(
|Q| α

n

m

∏
i=1

〈σi〉Q
) q

p′ · 〈w〉Qγ(Q)ε1(γ(Q)).
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Then, we make a partition of S by setting

Sa,b :=
{
Q ∈ S ; Q ⊂ R,2a < B(Q) � 2a+1,2b < γ(Q) � 2b+1}.

Note that 2a � [[�σ ]](1,2,3),ε1
. Now we construct the stopping cubes F . Let F be the

minimal subset of Sa,b containing the maximal cubes in Sa,b such that whenever F ∈
F , the maximal cubes Q ⊂ F , Q ∈ Sa,b with |Q| α

n 〈σ1〉Q〈σ1〉Q > 4|F| α
n 〈σ1〉F〈σ1〉F

are also in F . Denote by πF (Q) the minimal cube in F which contains Q . Denote

S k
a,b :=

{
Q ∈ Sa,b; |Q| α

n 〈σ1〉Q〈σ2〉Q � 2−k|πF (Q)| α
n 〈σ1〉πF (Q)〈σ2〉πF (Q)

}
.

Then Minkowski inequality implies that

A (R) � ∑
a,b

∞

∑
k=1

∥∥∥ ∑
Q∈S k

a,b

|Q| α
n 〈σ1〉Q〈σ2〉Q1Q

∥∥∥
Lq(w)

:= ∑
a,b

∞

∑
k=1

Θk
a,b. (4.1)

For each F ∈ F , write

ΨF := ∑
Q∈S k

a,b
πF (Q)=F

|Q| α
n 〈σ1〉Q〈σ2〉Q, ΨF, j := ΨF1{ΨF� j2−k|F | α

n 〈σ1〉F 〈σ2〉F}.

Making use of Hölder inequality, we may obtain that

Θk
a,b �

∥∥∥( ∞

∑
j=1

j
− 2

q′ j
2
q′ ∑

F∈F

ΨF, j

)q∥∥∥
1
q

L1(w)

�
( ∞

∑
j=1

j
− 2

q′ q
′) 1

q
∥∥∥ ∞

∑
j=1

j
2q
q′ ∑

F∈F

Ψq
F, j

∥∥∥
1
q

L1(w)

�
( ∞

∑
j=1

j2(q−1) ∑
F∈F

∫
Q0

ΨF, j(x)qw dx

) 1
q

.

(4.2)

Therefore, we are in a position to consider the contribution of the integral in the above
inequality. Before doing that, we first claim that the following estimate is true:

w
({x;ΨF(x) > λ2−k|F| α

n 〈σ1〉F〈σ2〉F}
)

� 2−λ w(F). (4.3)

By (4.3) and noticing the fact that the set {x;ΨF(x) > λ2−k|F | α
n 〈σ1〉F〈σ2〉F} coin-

cides with F if 0 < λ < j/2 and is empty if λ > j , it is easy to get that
∫ ∞

0
qλ q−1w

({x;ΨF(x) > λ2−k|F | α
n 〈σ1〉F〈σ2〉F}

)
dλ � jq2−

j
2 w(F).

Hence, it now follows that
∫

Q0

ΨF, j(x)qw dx � 2−kq|F | αq
n 〈σ1〉qF 〈σ2〉qF

(
jq2−

j
2 w(F)

)
. (4.4)
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Collecting the inequalities (4.2) and (4.4) , we have

( ∞

∑
k=1

Θk
a,b

)q
�

( ∞

∑
k=1

2−k
)q ∞

∑
j=1

j3q−22−
j
2 ∑

F∈F

|F| αq
n 〈σ1〉qF〈σ2〉qFw(F)

� 2a

2bε1(2b) ∑
F∈F

(
|F | α

n 〈σ1〉F〈σ2〉F
) q

p |F |.

Let F ∗ be the maximal elements of F , then we obtain

( ∞

∑
k=1

Θk
a,b

)q
� 2a

2bε1(2b) ∑
F∗∈F ∗

∑
F∗⊃F∈F

∫
E(F)

Mα(1F∗σ1,1F∗σ2)(x)
q
p dx

� 2a

2bε1(2b) ∑
F∗∈F ∗

∫
F∗

Mα(1F∗σ1,1F∗σ2)(x)
q
p dx

� 2a

ε1(2b) ∑
F∗∈F ∗

ν�σ (F∗)
q
p � 2a

ε1(2b)

(
∑

F∗∈F ∗
ν�σ (F∗)

) q
p

� 2a

ε1(2b)
ν�σ (R)

q
p � 2a

ε1(2b)
[
σ1(R)

1
p1 σ2(R)

1
p2

]q
.

Consequently, the equation (4.1) gives that

A (R) � ∑
a,b

2a/q

ε1(2b)1/q
σ1(R)

1
p1 σ2(R)

1
p2

� [[�σ ]]1/q
(1,2,3),ε1

∫ ∞

1

dt

tε1(t)1/q
σ1(R)

1
p1 σ2(R)

1
p2 .

This shows that

TS ,(1,2,3) � [[�σ ]]1/q
(1,2,3),ε1

.

We are left to prove the claim (4.3) . If w is the Lebesgue measure, the inequality
is obvious. For any Q ∈ S k

a,b satisfying πF (Q) = F , it holds that

2a � B(Q) � (
2−k|F | α

n 〈σ1〉F〈σ2〉F
) q

p′ 〈w〉Q2bε1(2b).

Let S k,∗
a,b be the maximal cubes in S k

a,b and

ΛF :=
2a

2bε1(2b)
(
2−k|F| α

n 〈σ1〉F〈σ2〉F
)− q

p′ .

Note that the set {x;ΨF(x) > λ2−k|F | α
n 〈σ1〉F〈σ2〉F} is the union of maximal cubes

P ∈ S k
a,b with πF (P) = F and inf

x∈P
ΨF(x) > λ2−k|F | α

n 〈σ1〉F〈σ2〉F . Then, it yields
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that

w
({x;ΨF(x) > λ2−k|F| α

n 〈σ1〉F〈σ2〉F}
)

� ΛF
∣∣{x;ΨF(x) > λ2−k|F | α

n 〈σ1〉F〈σ2〉F}
∣∣

� ΛF 2−λ ∑
Q∗∈S k,∗

a,b

|Q∗| � 2−λ ∑
Q∗∈S k,∗

a,b

w(Q∗)

� 2−λw(F). �
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[9] T. HYTÖNEN AND C. PÉREZ, Sharp weighted bounds involving A∞ , Analysis and PDE. 6 (2013), no.
4, 777–818.

[10] M. T. LACEY, The two weight inequality for the Hilbert transform: a primer, submitted (2013),
http://www.arxiv.org/abs/1304.5004.

[11] M. T. LACEY, Two weight inequality for the Hilbert transform: a real variable characterization, II,
Duke Math. J. 163 (2014), no. 15, 2821–2840.

[12] M. T. LACEY, K. LI, Two weight norm inequalities for g function, Math. Res. Lett. 21 (2014), no. 03,
521–536.

[13] M. T. LACEY, K. LI, On Ap -A∞ type estimates for square functions, Math. Z. 284 (2016), 1211–
1222.

[14] M. T. LACEY, E. T. SAWYER, I. URIARTE-TUERO, Two weight inequalities for discrete positive
operators, http://arxiv.org/abs/0911.3437v4.

[15] M. T. LACEY, E. T. SAWYER, I. URIARTE-TUERO AND C.-Y. SHEN, Two weight inequality for the
Hilbert transform: a real variable characterization, I, Duke Math. J. 163 (2014), no. 15, 2795–2820.

[16] M. LACEY AND S. SPENCER, On entropy bumps for Calderón-Zygmund operators, Concr. Oper.
2015, 2: 47–52.

[17] K. LI, K. MOEN, W. SUN, Sharp weighted inequalities for multilinear fractional maximal operator
and fractional integrals, Math. Nachr. 288 (2015), no. 5–6, 619–632.

[18] K. LI, W. SUN, Characterization of a two weight inequality for multilinear fractional maximal oper-
ators, Houston J. Math. 42 (2016), no. 3, 977–990.

[19] K. LI, W. SUN, Two weight norm inequalities for the bilinear fractional integrals, Manuscripta math.
150, 159–175 (2016).

[20] F. NAZAROV, S. TREIL AND A. VOLBERG, The Bellman function and two weight inequalities for
Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928.



TWO-WEIGHT BOUNDEDNESS 453

[21] R. RAHM, S. SPENCER, Some entropy bump conditions for fractional maximal and integral operators,
Concr. Oper. 2016, 3: 112–121.

[22] E. SAWYER, A characterization of a two weight norm inequality for maximal operators, Studia Math.
75 (1982), 1–11.

[23] E. SAWYER, A two weight weak type inequality for fractional integrals, Trans. Amer. Math. Soc. 281
(1984), 339–345.

[24] E. SAWYER, A characterization of two weight norm inequalities for fractional and Poisson integrals,
Trans. Amer. Math. Soc. 308 (1988), 533–545.

[25] B. F. SEHBA, On two-weight norm estimates for multilinear fractional maximal function,
http://arxiv.org/abs/1502.01612.

[26] S. TREIL AND A. VOLBERG, Entropy conditions in two weight inequalities for singular integral
operators, Adv. Math. 301 (2016) 499–548.

(Received March 28, 2016) Mingming Cao
School of Mathematical Sciences

Beijing Normal University
Laboratory of Mathematics and Complex Systems

Ministry of Education
Beijing 100875, People’s Republic of China

e-mail: m.cao@mail.bnu.edu.cn

Qingying Xue
School of Mathematical Sciences

Beijing Normal University
Laboratory of Mathematics and Complex Systems

Ministry of Education
Beijing 100875, People’s Republic of China

e-mail: qyxue@bnu.edu.cn

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


