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NEW INEQUALITIES FOR THE VOLUME OF THE UNIT BALL IN R
n

TAO BAN AND CHAO-PING CHEN
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Abstract. Many interesting monotonicity properties and inequalities for the volume of the unit
ball in R

n have been established. The main object of this paper is to establish new inequalities
for the volume of the unit ball in R

n .

1. Introduction

In the recent past, several researchers established interesting monotonicity proper-
ties and inequalities of the volume of the unit ball in R

n ,

Ωn =
πn/2

Γ( n
2 +1)

, n ∈ N := {1,2,3, . . .},

where Γ denotes the gamma function.
Böhm and Hertel [7, p. 264] pointed out that the sequence

(
Ωn
)
n�1 is not mono-

tonic for n � 1. Indeed, we have

Ωn < Ωn+1 if 1 � n � 4 and Ωn > Ωn+1 if n � 5.

Anderson et al. [5] showed that
(
Ω1/n

n
)
n�1 is monotonically decreasing to zero. An-

derson and Qiu [6] proved that the sequence
(
Ω1/(n lnn)

n
)
n�2 decreases to e−1/2 . Guo

and Qi [12] proved that the sequence
(
Ω1/(n lnn)

n
)
n�2 is logarithmically convex. Klain

and Rota [13] proved that the sequence
(
nΩn/Ωn−1

)
n�1 is increasing.

Many interesting inequalities for the volume of the unit ball in R
n have been

established [3, 4, 8, 11, 16, 17, 18, 19]. For example, Alzer [3] proved that for all
integers n � 1,

a1Ωn/(n+1)
n+1 � Ωn < b1Ωn/(n+1)

n+1 , (1)

√
n+a2

2π
<

Ωn−1

Ωn
�
√

n+b2

2π
(2)
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and (
1+

1
n

)a3

� Ω2
n

Ωn−1Ωn+1
<

(
1+

1
n

)b3

(3)

with the best possible constants

a1 =
2√
π

= 1.1283 . . . , b1 =
√

e = 1.6487 . . . ,

a2 =
1
2
, b2 =

π
2
−1 = 0.5707 . . .

and

a3 = 2− lnπ
ln2

= 0.3485 . . . , b3 =
1
2
.

Double inequality (2) was rediscovered by Qiu and Vuorinen [19]. Double in-
equality (2) refines a result due to Borgwardt [8, p. 253] who proved (2) with a2 = 0
and b2 = 1. Merkle [16] improved the left-hand side of (3) and obtained the following
result: (

1+
1

n+1

)1/2

� Ω2
n

Ωn−1Ωn+1
, n � 1. (4)

Recently, Mortici [17] improved the inequalities (1) to (3) and obtained the fol-
lowing results:

64·72011/12·21/22

10395·π5/11

2n
√

2π
� Ωn

Ωn/(n+1)
n+1

<

√
e

2n
√

2π
, n � 4, (5)

√
n+ 1

2

2π
<

Ωn−1

Ωn
<

√
n+ 1

2

2π
+

1
16πn

, n � 1 (6)

and (
1+

1
n

) 1
2− 1

4n

� Ω2
n

Ωn−1Ωn+1
<

(
1+

1
n

) 1
2

, n � 4. (7)

Very recently, Chen and Lin [11] presented sharp inequalities for the volume of
the unit ball in R

n . More precisely, the authors proved that, for all integers n � 1,(
1+

1
n+1

)α
<

Ω2
n

Ωn−1Ωn+1
�
(

1+
1

n+1

)β
, (8)

(
1+

1
2n

− 3
8n2

)λ
<

Ω2
n

Ωn−1Ωn+1
�
(

1+
1
2n

− 3
8n2

)μ
, (9)

√
2π

n+a
� Ωn

Ωn−1 + Ωn+1
<

√
2π

n+b
(10)
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and

1√
π(n+ θ )

(
2πe
n

)n/2

� Ωn <
1√

π(n+ ϑ)

(
2πe
n

)n/2

(11)

with best possible constants

α =
1
2
, β =

2ln2− lnπ
ln3− ln2

= 0.5957713 . . .,

λ = 1, μ =
2ln2− lnπ
2ln3−3ln2

= 2.0509275 . . .,

a =
π(1+ π)2

2
−1 = 25.94353 . . ., b =

1
2

+4π = 13.06637 . . .

and

θ =
e
2
−1 = 0.3591409 . . ., ϑ =

1
3
.

The main object of this paper is to establish new inequalities for the volume of the
unit ball in R

n .

2. Lemmas and preliminaries

Euler’s gamma function:

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0

is one of the most important functions in mathematical analysis and its applications
in various diverse areas. The logarithmic derivative of the gamma function ψ(x) =
Γ′(x)/Γ(x) is known as the psi (or digamma) function. The derivatives of the psi func-
tion ψ(x) :

ψ(n)(x) :=
dn

dxn {ψ(x)}, n ∈ N

are called the polygamma functions.
The following asymptotic formulas are well known [1, p. 257] that, as x → ∞ ,

lnΓ(x) ∼
(

x− 1
2

)
lnx− x+ ln

√
2π +

1
12x

− 1
360x3 +

1
1260x5 −

1
1680x7 + · · · . (12)

The following asymptotic expansion can be found (see [15, p. 33]):

Γ(x+ t)
Γ(x+ s)

∼ xt−s
∞

∑
n=0

(−1)n (s− t)n

n!
B(t−s+1)

n (t)
1
xn , x → ∞, (13)

where the symbol B(a)
n (t) stands for the generalized Bernoulli polynomials, defined by

the following generating function:

xaetx

(ex −1)a =
∞

∑
n=0

B(a)
n (t)

xn

n!
, (14)
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and (t)n is Pochhammer’s symbol defined as

(t)n = t(t +1) · · ·(t +n−1) =
Γ(t +n)

Γ(t)
, (t)0 = 1.

Formula (13) yields, as x → ∞ ,[
Γ(x+1)
Γ(x+ 1

2 )

]2

∼ x+
1
4

+
1

32x
− 1

128x2 −
5

2048x3 +
23

8192x4 +
53

65536x5 −·· · (15)

and[
Γ(x+ 3

2 )
Γ(x+1)

]2

∼ x+
3
4

+
1

32x
− 3

128x2 +
27

2048x3 −
27

8192x4 −
171

65536x5 + · · · . (16)

The following lemmas are required in our present investigation.

LEMMA 2.1. ([9, Corollary 1]) Let m,n ∈ N . Then for x > 0 ,

2m

∑
j=1

(
1− 1

22 j

)
2B2 j

(2 j)!
(2 j +n−2)!

x2 j+n−1

< (−1)n
(

ψ(n−1)(x+1)−ψ(n−1)
(

x+
1
2

))
+

(n−1)!
2xn

<
2m−1

∑
j=1

(
1− 1

22 j

)
2B2 j

(2 j)!
(2 j +n−2)!

x2 j+n−1 , (17)

where Bn are the Bernoulli numbers.

It follows from (17) that, for x > 0,

1
2x

− 1
8x2 +

1
64x4 −

1
128x6 < ψ(x+1)−ψ

(
x+

1
2

)

<
1
2x

− 1
8x2 +

1
64x4 −

1
128x6 +

17
2048x8 .

(18)

It was proved in [11] that for x > 0,

1
2x

− 3
8x2 +

1
4x3 −

9
64x4 < ψ

(
x+

3
2

)
−ψ(x+1) <

1
2x

− 3
8x2 +

1
4x3 −

9
64x4 +

1
16x5

(19)

and

ψ
(

x+
3
2

)
−ψ(x+1) >

1
2x

− 3
8x2 +

1
4x3 −

9
64x4 +

1
16x5 −

3
128x6 . (20)

LEMMA 2.2. For x � 2 ,

x+
1
4

+
1

32x
− 1

128x2 −
5

2048x3 <

[
Γ(x+1)
Γ(x+ 1

2)

]2

. (21)
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Proof. Consider the function P(x) defined for x > 0 by

P(x) = 2lnΓ(x+1)−2lnΓ
(

x+
1
2

)
− ln

(
x+

1
4

+
1

32x
− 1

128x2 −
5

2048x3

)
.

We conclude from the asymptotic formula (15) that

lim
x→∞

P(x) = 0.

Differentiating and applying the second inequality in (18), we find that for x � 2,

P′(x) = 2

(
ψ (x+1)−ψ

(
x+

1
2

))
− 2048x4−64x2 +32x+15)

x(2048x4 +512x3 +64x2−16x−5)

< 2

(
1
2x

− 1
8x2 +

1
64x4 −

1
128x6 +

17
2048x8

)

− 2048x4−64x2 +32x+15)
x(2048x4 +512x3 +64x2−16x−5)

= −
(
1548853+5160656(x−2)+6899824(x−2)2+4780544(x−2)3

+1819808(x−2)4+361984(x−2)5+29440(x−2)6
)

/(
1024x8(2048x4+512x3+64x2−16x−5)

)
< 0.

Hence, we have for x � 2,

P(x) > lim
x→∞

P(x) = 0.

By rearranging the terms in the last expression, inequality (21) follows. �

LEMMA 2.3. For x � 3 ,

x+
3
4

+
1

32x
− 3

128x2 <

[
Γ(x+ 3

2 )
Γ(x+1)

]2

< x+
3
4

+
1

32x
. (22)

Proof. In [11, Lemma 2.2], it was proved that the first inequality in (22) is valid
for all x � 2. We now prove the second inequality in (22) for x � 3. Consider the
function V (x) defined for x > 0 by

V (x) = 2lnΓ
(

x+
3
2

)
−2lnΓ(x+1)− ln

(
x+

3
4

+
1

32x

)
.

We conclude from the asymptotic formula (16) that

lim
x→∞

V (x) = 0.
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Differentiating and applying the first inequality in (19), we find that for x � 3,

V ′(x) = 2

(
ψ
(

x+
3
2

)
−ψ(x+1)

)
− (32x2−1)

x(32x2 +24x+1)

> 2

(
1
2x

− 3
8x2 +

1
4x3 −

9
64x4

)
− (32x2−1)

x(32x2 +24x+1)

=
39+232(x−3)+72(x−3)2

32x4(32x2 +24x+1)
> 0.

Hence, we have for x � 3,
V (x) < lim

x→∞
V (x) = 0.

By rearranging the terms in the last expression, the second inequality in (22) fol-
lows. �

From (19), we obtain that for x � 1,

(2x+1)

(
−ψ

(
x+

3
2

)
+ ψ(x+1)

)
+1

> (2x+1)
(
− 1

2x
+

3
8x2 −

1
4x3 +

9
64x4 −

1
16x5

)
+1

=
1
4x

− 1
8x2 +

1
32x3 +

1
64x4 −

1
16x5

=
7+45(x−1)+74(x−1)2+56(x−1)3 +16(x−1)4

64x4 > 0

and

(2x+1)

(
−ψ

(
x+

3
2

)
+ ψ(x+1)

)
+1 < (2x+1)

(
− 1

2x
+

3
8x2 −

1
4x3 +

9
64x4

)
+1

=
1
4x

− 1
8x2 +

1
32x3 +

9
64x4 ,

we then obtain

0 < (2x+1)

(
−ψ

(
x+

3
2

)
+ ψ(x+1)

)
+1 <

1
4x

− 1
8x2 +

1
32x3 +

9
64x4 , x � 1.

(23)

The proof of Theorem 3.2 makes use of the inequalities (22) and (23).

3. Main results

In view of the second inequality in (6), it is natural to ask: what is the smallest
number ϑ1 and what is the largest number ϑ2 such that the inequality√

n+ 1
2

2π
+

1
16π(n+ ϑ1)

� Ωn−1

Ωn
�

√
n+ 1

2

2π
+

1
16π(n+ ϑ2)

holds for all integers n � 1? Theorem 3.1 answers this question.
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THEOREM 3.1. For n � 1 ,√
n+ 1

2

2π
+

1
16π(n+ ϑ1)

� Ωn−1

Ωn
<

√
n+ 1

2

2π
+

1
16π(n+ ϑ2)

(24)

with best possible constants

ϑ1 =
13−4π
4π −12

= 0.7656283 . . . and ϑ2 =
1
2
.

Proof. Inequality (24) can be written as

ϑ1 � 1

16π
(

Ωn−1
Ωn

)2 −8n−4
−n > ϑ2.

We now show that the sequence

yn =
1

16π
(

Ωn−1
Ωn

)2−8n−4
−n =

1

16

(
Γ( n

2 +1)
Γ( n

2 + 1
2 )

)2

−8n−4

−n

is strictly decreasing for n � 1. To this end, we consider the function g(x) defined by

g(x) =
1

16

(
Γ(x+1)
Γ(x+ 1

2 )

)2

−16x−4

−2x.

Elementary calculations show that

− 1
2

⎛
⎝(Γ(x+1)

Γ(x+ 1
2 )

)2

− x− 1
4

⎞
⎠

2

g′(x)

=

⎛
⎝
(

Γ(x+1)
Γ(x+ 1

2 )

)2

− x− 1
4

⎞
⎠

2

+
1
16

(
ψ(x+1)−ψ

(
x+

1
2

))(
Γ(x+1)
Γ(x+ 1

2 )

)2

− 1
32

.

By using inequalities (21) and the first inequality in (18), we obtain that for x � 4,

− 1
2

⎛
⎝
(

Γ(x+1)
Γ(x+ 1

2 )

)2

− x− 1
4

⎞
⎠

2

g′(x)

>

(
1

32x
− 1

128x2 −
5

2048x3

)2

+
1
16

(
1
2x

− 1
8x2 +

1
64x4 −

1
128x6

)(
x+

1
4

+
1

32x
− 1

128x2 −
5

2048x3

)
− 1

32

=
125413+281712(x−4)+201058(x−4)2+64761(x−4)3+9840(x−4)4+576(x−4)5

4194304x9

> 0.
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Hence, the function g(x) is strictly decreasing on [4,∞) and the sequence
(
xn
)

is
strictly decreasing for n � 8.

Direct computation would yield

y1 = g
(

1
2

)
= 0.76562832 . . ., y2 = g(1) = 0.68938142 . . .,

y3 = g
(

3
2

)
= 0.64519319 . . ., y4 = g(2) = 0.61698646 . . .,

y5 = g
(

5
2

)
= 0.59764076 . . ., y6 = g(3) = 0.58363594 . . .,

y7 = g
(

7
2

)
= 0.57306769 . . ., y8 = g(4) = 0.56482818 . . ..

Consequently, the sequence
(
yn
)
n�1 is strictly decreasing. This leads to

lim
n→∞

yn < yn � y1 =
13−4π
4π −12

for all n � 1.

It remains to prove that

lim
n→∞

yn =
1
2
. (25)

We conclude from the asymptotic formula (15) that

g(x) =
1
2

+O

(
1
x

)
as x → ∞,

which implies (25). This completes the proof of Theorem 3.1. �
As numerical computations confirm, the ratio Ω2

n/(Ωn−1Ωn+1) in (8) becomes

closer to
(
1+ 1/(n+ 1)

)1/2
, as n approaches infinity. This fact motivated us to pose

the following question: what is the smallest number θ1 and what is the largest number
θ2 such that the inequality(

1+
1

n+ θ1

)1/2

� Ω2
n

Ωn−1Ωn+1
�
(

1+
1

n+ θ2

)1/2

holds for all integers n � 1? Theorem 3.2 answers this question.

THEOREM 3.2. For n � 1 ,(
1+

1
n+ θ1

)1/2

� Ω2
n

Ωn−1Ωn+1
<

(
1+

1
n+ θ2

)1/2

(26)

with best possible constants

θ1 =
2π2−16
16−π2 = 0.60994576 . . . and θ2 =

1
2
.

Proof. Inequality (26) can be written as

θ1 � 1(
Ω2

n
Ωn−1Ωn+1

)2 −1
−n > θ2.
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We now show that the sequence

xn =
1(

Ω2
n

Ωn−1Ωn+1

)2 −1
−n =

1

4
(n+1)2

(
Γ( n

2 + 3
2 )

Γ( n
2 +1)

)4

−1

−n

is strictly decreasing for n � 1. To this end, we consider the function f (x) defined by

f (x) =
1

4
(2x+1)2

(
Γ(x+ 3

2 )
Γ(x+1)

)4

−1

−2x.

Elementary calculations show that

− 1
2

⎛
⎝ 4

(2x+1)2

(
Γ(x+ 3

2 )
Γ(x+1)

)4

−1

⎞
⎠

2

f ′(x)

=

⎛
⎝ 4

(2x+1)2

(
Γ(x+ 3

2)
Γ(x+1)

)4

−1

⎞
⎠

2

−
8
(
(2x+1)

(−ψ(x+ 3
2 )+ ψ(x+ 1

2 )
)
+1
)

(2x+1)3

(
Γ(x+ 3

2 )
Γ(x+1)

)4

.

By using inequalities (22) and (23), we obtain that for x � 12,

− 1
2

⎛
⎝ 4

(2x+1)2

(
Γ(x+ 3

2 )
Γ(x+1)

)4

−1

⎞
⎠

2

f ′(x)

>

(
4

(2x+1)2

(
x+

3
4

+
1

32x
− 3

128x2

)2

−1

)2

−
8
(

1
4x − 1

8x2 + 1
32x3 + 9

64x4

)
(2x+1)3

(
x+

3
4

+
1

32x

)2

=
λ (x−12)

16777216x8(2x+1)4 ,

with

λ (x) = 45704971569681+200145001247568x+105831697102560x2

+25217680734464x3+3382791477504x4+273737302016x5

+13326352384x6+360972288x7+4194304x8.

Hence, f (x) is strictly decreasing on [12,∞) and the sequence
(
xn
)

is strictly decreas-
ing for n � 24.
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Direct computation would yield

x1 = f
( 1

2

)
= 0.609945759 . . ., x2 = f (1) = 0.577896831 . . .,

x3 = f
( 3

2

)
= 0.559987003 . . ., x4 = f (2) = 0.548648634 . . .,

x5 = f
(

5
2

)
= 0.540861512 . . ., x6 = f (3) = 0.535197735 . . .,

x7 = f
(

7
2

)
= 0.530899584 . . ., x8 = f (4) = 0.527529486 . . .,

x9 = f
(

9
2

)
= 0.524817824 . . ., x10 = f (5) = 0.522589737 . . .,

x11 = f
(

11
2

)
= 0.520727001 . . ., x12 = f (6) = 0.519146891 . . .,

x13 = f
(

13
2

)
= 0.517789828 . . ., x14 = f (7) = 0.516611833 . . .,

x15 = f
( 15

2

)
= 0.515579748 . . ., x16 = f (8) = 0.514668106 . . .,

x17 = f
( 17

2

)
= 0.513857031 . . ., x18 = f (9) = 0.513130781 . . .,

x19 = f
( 19

2

)
= 0.512476735 . . ., x20 = f (10) = 0.511884651 . . .,

x21 = f
( 21

2

)
= 0.511346135 . . ., x22 = f (11) = 0.510854241 . . .,

x23 = f
(

23
2

)
= 0.510403173 . . ., x24 = f (12) = 0.509988057 . . ..

Consequently, the sequence
(
xn
)
n�1 is strictly decreasing. This leads to

lim
n→∞

xn < xn � x1 =
2π2−16
16−π2 for all n � 1.

It remains to prove that

lim
n→∞

xn =
1
2
. (27)

We conclude from the asymptotic formula (16) that

f (x) =
1
2

+O

(
1
x

)
as x → ∞,

which implies (27). This completes the proof of Theorem 3.2. �

REMARK 3.1. The lower bound in (26) is sharper than one in (8) for n � 1; the
upper bound in (26) is sharper than one in (8) for n � 2.

Theorem 3.3 improves the inequality (7).

THEOREM 3.3. For n � 1 ,(
1+

1
n+1

) 1
2+ 1

4n− 3
8n2

<
Ω2

n

Ωn−1Ωn+1
<

(
1+

1
n+1

) 1
2 + 1

4n

. (28)

Proof. In order to prove the first inequality in (28), it suffices to show that the
sequence

yn = ln2+2lnΓ
(

n+3
2

)
−2lnΓ

(
n+2

2

)
− ln(n+1)−

(
1
2

+
1
4n

− 3
8n2

)
ln

(
n+2
n+1

)
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is positive for n � 1.
We consider the function F(x) defined by

F(x) = ln2+2lnΓ
(
x+ 3

2

)−2lnΓ(x+1)− ln(2x+1)−
(

1
2

+
1
8x

− 3
32x2

)
ln

(
2x+2
2x+1

)
.

We conclude from the asymptotic formula (16) that

lim
x→∞

F(x) = 0 and lim
n→∞

yn = 0.

It is not difficult to show that

1
2x

− 3
8x2 < ln

(
2x+2
2x+1

)
<

1
2x

− 3
8x2 +

7
24x3 , x > 0. (29)

Differentiating F(x) and applying inequalities (19) and (29), we obtain that for
x � 3/2,

F ′(x) = 2

(
ψ
(

x+
3
2

)
−ψ(x+1)

)
+
(

2x−3
16x3

)
ln

(
2x+2
2x+1

)
− 64x3 +48x2−4x+3

32x2(2x+1)(x+1)

< 2

(
1
2x

− 3
8x2 +

1
4x3 −

9
64x4 +

1
16x5

)
+
(

2x−3
16x3

)(
1
2x

− 3
8x2 +

7
24x3

)

− 64x3 +48x2−4x+3
32x2(2x+1)(x+1)

= −24+124(x−1)+213(x−1)2+92(x−1)3

384x6(2x+1)(x+1)
< 0.

Hence, F(x) is strictly decreasing on [3/2,∞) , and therefore, the sequence
(
yn
)

is
strictly decreasing for n � 3.

Direct computation would yield

y1 = F

(
1
2

)
= −3

8
ln3+

19
8

ln2− lnπ = 0.089515 . . . ,

y2 = F(1) = −65
16

ln2+
49
32

ln3+ lnπ = 0.0110695 . . .,

y3 = F

(
3
2

)
=

73
12

ln2− 13
24

ln5−2ln3− lnπ = 0.002912 . . ..

Consequently, the sequence
(
yn
)
n�1 is strictly decreasing. This leads to

yn > lim
n→∞

yn = 0, n � 1.

In order to prove the second inequality in (28), it suffices to show that the sequence

zn = ln2+2lnΓ
(

n+3
2

)
−2lnΓ

(
n+2

2

)
− ln(n+1)−

(
1
2

+
1
4n

)
ln

(
n+2
n+1

)

is negative for n � 1.
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We consider the function G(x) defined by

G(x) = ln2+2lnΓ
(

x+
3
2

)
−2lnΓ(x+1)− ln(2x+1)−

(
1
2

+
1
8x

)
ln

(
2x+2
2x+1

)
.

We conclude from the asymptotic formula (16) that

lim
x→∞

G(x) = 0 and lim
n→∞

zn = 0.

Differentiating G(x) and applying inequalities (19) and (29), we obtain that for
x � 3,

G′(x) = 2

(
ψ
(

x+
3
2

)
−ψ(x+1)

)
+

1
8x2 ln

(
2x+2
2x+1

)
− 16x2 +12x−1

8x(2x+1)(x+1)

> 2

(
1
2x

− 3
8x2 +

1
4x3 −

9
64x4

)
+

1
8x2

(
1
2x

− 3
8x2

)
− 16x2 +12x−1

8x(2x+1)(x+1)

=
3
(
20+27(x−3)+6(x−3)2

)
64x4(2x+1)(x+1)

> 0.

Hence, G(x) is strictly increasing on [3,∞) , and therefore, the sequence
(
zn
)

is strictly
increasing for n � 6.

Direct computation would yield

z1 = G
( 1

2

)
= −0.0625343 . . ., z2 = G(1) = −0.0159006 . . .,

z3 = G
( 3

2

)
= −0.0063856 . . ., z4 = G(2) = −0.0031937 . . .,

z5 = G
(

5
2

)
= −0.0018234 . . ., z6 = G(3) = −0.0011382 . . ..

Consequently, the sequence
(
zn
)
n�1 is strictly increasing. This leads to

zn < lim
n→∞

zn = 0, n � 1.

The proof of Theorem 3.3 is thus completed. �

REMARK 3.2. The lower bound in (28) is sharper than one in (7) for n � 2, and
the upper bound in (28) is better than one in (7) for all n � 1.

Theorem 3.4 provides new bounds for Ω2
n

Ωn−1Ωn+1
.

THEOREM 3.4. For n � 1 ,

1+
1
2n

− 3
8n2 <

Ω2
n

Ωn−1Ωn+1
< 1+

1
2n

− 3
8n2 +

3
16n3 +

3
128n4 . (30)

Proof. Inequality (30) can be written as

1+
1
2n

− 3
8n2 <

2
[
Γ
(

n+3
2

)]2
(n+1)

[
Γ
(

n
2 +1

)]2 < 1+
1
2n

− 3
8n2 +

3
16n3 +

3
128n4 . (31)
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The lower bound in (31) is obtained by considering the function J(x) defined for x > 0
by

J(x) = ln2+2lnΓ
(

x+
3
2

)
− ln(2x+1)−2lnΓ(x+1)− ln

(
1+

1
4x

− 3
8(2x)2

)
.

We conclude from the asymptotic formula (16) that

lim
x→∞

J(x) = 0.

Differentiating and using the second inequality in (19), we find that for x � 1,

J′(x) = 2

(
ψ
(

x+
3
2

)
−ψ(x+1)

)
− 2(32x3− x+3)

x(2x+1)(32x2 +8x−3)

< 2

(
1
2x

− 3
8x2 +

1
4x3 −

9
64x4 +

1
16x5

)
− 2(32x3− x+3)

x(2x+1)(32x2 +8x−3)

= −67+505(x−1)+954(x−1)2+648(x−1)3 +144(x−1)4

32x5(2x+1)(32x2 +8x−3)
< 0.

Hence, J(x) is strictly decreasing on [1,∞) , and therefore, the sequence
{
J
(

n
2

)}∞
n=2 is

strictly decreasing.
Direct computation would yield

J
(

1
2

)
= 5ln2− lnπ −2ln3 = 0.1237814 . . .,

J(1) = 2ln2+ ln3+ lnπ − ln37 = 0.0187186 . . ..

Consequently, the sequence
{
J
(

n
2

)}∞
n=1 is strictly decreasing. This leads to

J
(

n
2

)
= ln

(
2
[
Γ
(

n+3
2

)]2
(n+1)

[
Γ
(

n
2 +1

)]2
)
− ln

(
1+

1
2n

− 3
8n2

)
> lim

n→∞
J
(

n
2

)
= 0

for n � 1. By rearranging the terms in the last expression, the first inequality in (31)
follows.

The upper bound in (31) is obtained by considering the function K(x) defined for
x > 0 by

K(x) = ln2+2lnΓ
(

x+
3
2

)
− ln(2x+1)−2lnΓ(x+1)

− ln

(
1+

1
4x

− 3
8(2x)2 +

3
16(2x)3 +

3
128(2x)4

)
.

We conclude from the asymptotic formula (16) that

lim
x→∞

K(x) = 0.
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Differentiating and using (20), we find that for x � 3
2 ,

K′(x)=2

(
ψ
(

x+
3
2

)
−ψ(x+1)

)
− 2(2048x5−64x3 +96x2−81x−6)

x(2x+1)(2048x4 +512x3−192x2 +48x+3)

>2

(
1
2x

− 3
8x2 +

1
4x3 −

9
64x4 +

1
16x5 −

3
128x6

)

− 2(2048x5−64x3 +96x2−81x−6)
x(2x+1)(2048x4 +512x3−192x2 +48x+3)

=
9828+55941(x−3

2)+103860(x−3
2 )2+87492(x−3

2)3+34720(x−3
2 )4+5280(x−3

2 )5

64x6(2x+1)(2048x4+512x3−192x2+48x+3)
> 0.

Hence, K(x) is strictly increasing on [ 3
2 ,∞) , and therefore, the sequence

{
K
(

n
2

)}∞
n=3

is strictly increasing.
Direct computation would yield

K
(

1
2

)
= 9ln2− lnπ −2ln3− ln19 = −0.0480688 . . .,

K(1) = 8ln2+ ln3+ lnπ − ln41− ln59 = −0.0025898 . . .,

K
( 3

2

)
= 12ln2+ ln3− lnπ − ln7− ln13− ln43 = −0.0004110 . . ..

Consequently, the sequence
{
K
(

n
2

)}∞
n=1 is strictly increasing. This leads to

K
(

n
2

)
= ln

(
2
[
Γ
(

n+3
2

)]2
(n+1)

[
Γ
(

n
2 +1

)]2
)
− ln

(
1+

1
2n

− 3
8n2 +

3
16n3 +

3
128n4

)

< lim
n→∞

K
(

n
2

)
= 0, n � 1.

By rearranging the terms in the last expression, the second inequality in (31) follows.
This completes the proof of Theorem 3.4. �

Theorem 3.5 provides new bounds for Ωn .

THEOREM 3.5. For n � 1 ,√
1
π

(
1
n
− 1

3n2

)(
2πe
n

)n/2

< Ωn <

√
1
π

(
1
n
− 1

3n2 +
1

18n3 +
31

810n4

)(
2πe
n

)n/2

.

(32)

Proof. The lower bound is obtained by considering the function C(x) defined for
x > 0 by

C(x) = x lnπ − lnΓ(x+1)−
[

1
2

ln

(
1
π

)
+

1
2

ln

(
1
2x

− 1
3(2x)2

)
+ x(lnπ +1− lnx)

]
.

We conclude from the asymptotic formula (12) that

lim
x→∞

C(x) = 0.
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It follows from the known result (see [2, Theorem 8]) that, for x > 0,

lnx− 1
2x

− 1
12x2 +

1
120x4 −

1
252x6 < ψ(x) < lnx− 1

2x
− 1

12x2 +
1

120x4 . (33)

Differentiating and applying the first inequality in (33), we find that for x � 1
2 ,

C′(x) = lnx−ψ(x)− 1
x

+
3x−1

x(6x−1)

< − 1
2x

+
1

12x2 −
1

120x4 +
1

252x6 +
3x−1

x(6x−1)

= −
29
8 + 237

2 (x− 1
2 )+483(x− 1

2 )2 +546(x− 1
2)3 +210(x− 1

2 )4

2520x6(6x−1)
< 0.

Hence, C(x) is strictly decreasing for x � 1
2 , and we have for n � 1,

C
(

n
2

)
= ln

(
πn/2

Γ( n
2 +1)

)
− ln

[√
1
π

(
1
n
− 1

3n2

)(
2πe
n

)n/2
]

> lim
n→∞

C
(

n
2

)
= 0.

By rearranging the terms in the last expression, the first inequality in (32) follows.
The upper bound is obtained by considering the function D(x) defined for x > 0

by

D(x) = x lnπ − lnΓ(x+1)

−
[

1
2

ln

(
1
π

)
+

1
2

ln

(
1
2x

− 1
3(2x)2 +

1
18(2x)3 +

31
810(2x)4

)
+x(lnπ+1− lnx)

]
.

We conclude from the asymptotic formula (12) that

lim
x→∞

D(x) = 0.

Differentiating and applying the second inequality in (33), we find that for x � 1
2 ,

D′(x) = lnx−ψ(x)− 1
x

+
3240x3−1080x2 +135x+62

x(6480x3−1080x2 +90x+31)

> − 1
2x

+
1

12x2 −
1

120x4 +
3240x3−1080x2 +135x+62

x(6480x3−1080x2 +90x+31)

=
543
2 +1300(x− 1

2)+1390(x− 1
2 )2

120x4
[
616+3870(x− 1

2 )+8640(x− 1
2 )2 +6480(x− 1

2)3
] > 0.

Hence, D(x) is strictly increasing for x � 1
2 , and we have for n � 1,

D
(

n
2

)
= ln

(
πn/2

Γ( n
2 +1)

)
− ln

[√
1
π

(
1
n
− 1

3n2 +
1

18n3 +
31

810n4

)(
2πe
n

)n/2
]

< lim
n→∞

D
(

n
2

)
= 0.

By rearranging the terms in the last expression, the second inequality in (32) fol-
lows. �
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