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EXISTENCE AND UNIQUENESS SOLUTIONS FOR

A CLASS OF HEMIVARIATIONAL INEQUALITIES

AYED E. HASHOOSH

(Communicated by J. Pečarić)

Abstract. This paper deals with the existence and uniqueness of results for a class of hemivaria-
tional inequality problem.

β1(x,y)+β2(x,y)+ J0(x;y− x) � 0.

Moreover, we enhance the main results an application to the existence of solution for a differen-
tial inclusion.

1. Introduction

The theory of hemivariational inequalities was introduced by P. D. Panagiotopou-
los at the beginning of the 1980s (see [21]). Within a very short period of time, this the-
ory witnessed a remarkable development in both pure and applied mathematics. It has
been proved very efficient to describe a variety of mechanical problems and engineer-
ing sciences, economics, differential inclusion and optimal control (see [3], [8], [13],
[18–20], [24–26]). In these papers, based on Clarke’s generalized directional deriva-
tive and Clarke’s generalized gradient for locally Lipchitz functions, the researchers
study the existence and uniqueness of solutions by using such as fixed point Theorems,
KKM Theorems, critical point Theory, surjectivity Theorems for pseudomonotone and
coercive operators (see [1–2], [28]).

Recently, a number of authors have proposed many essential generalizations of
monotonicity, such as α -monotonicity, relaxed monotonicity, relaxed Ψ−α mono-
tonicity and quasimononicity (see [17], [23], [27], [30–31]).

The main purpose of this work is to give a new contribution in this area. In partic-
ular, we establish the existence and uniqueness of solutions for new type of hemivaria-
tional inequalities. It is worth mentioning that we do not deal with a classical technique
to proof our results. Thus, several difficulties occur in finding an application to the main
results, because the classical methods fail to be applied directly.

In order to achieve the aim, the study is divided into the following sections. In
Section 2, we refer to some definitions and results that will assist us in the study. In
Section 3, we prove the existence and uniqueness of solutions for the problem. The
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proof of the first result is based on arguments of α -monotone operators and a version
of the well known KKM Principle due to Ky Fan [11]. However, the second result of
this section relies essentially on the Schauder’s fixed point Theorem. In the last section
of this paper, we illustrate the applicability of our approach by a differential inclusion
in the special case of our main results. We point out the fact that the results of this work
can be viewed as generalization of many known results (see [9], [14], [29]).

2. Preliminaries

In the sequel unless stated otherwise, authors always assume that E is Banach
space and E∗ is a topological dual space of E , while 〈·, ·〉 and ‖ · ‖ denote the duality
pairing between E and E∗ and norm in E∗ , respectively.

For the convenience of the reader, we recall some definitions and results that need
to be imposed in order to prove our main results.

We say that a functional J : E → R is called locally Lipschitz if for every u ∈ X
there exists a neighborhood U of u and a constant Lu > 0 such that

|J(w)− J(v)| � Lu‖w− v‖X , for all v,w ∈U.

DEFINITION 2.1. Let J : E → R be a locally Lipschitz functional. The general-
ized derivative of J at u ∈ E in the direction v ∈ X , denoted J0(u;v) , is defined by

J0(u;v) = limsup
w→u
λ↓0

J(w+ λv)− J(w)
λ

.

The generalized gradient of J at u ∈ E is defined by

∂J(u) =
{

ξ ∈ E∗ : 〈ξ ,z〉 � J0(u;z),∀z ∈ E
}
.

We point out the fact that for each u ∈ E we have ∂J(u) 
= /0 (see e.g., [6]).

LEMMA 2.2. Let J : E → R be locally Lipschitz of rank Lu near the point u∈ X .
Then

(i) The function J0(u; ·) is finite, positively homogeneous, subadditive and satisfies

|J0(u;v)| � Lu‖v‖X ,

(ii) J0(u;v) is upper semicontinuous as a function of (u,v) ,

(iii) J0(u;−v) = (−J)0(u;v) ,

(iv) J0(u;v) = max{〈ζ ,v〉X ,ζ ∈ ∂J(u)} .

One can found it’s proof in [8].
In 2016 in [14] introduced a new type of of monotone bifunction. They called it

α -monotone bifunction, as follows:
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DEFINITION 2.3. A bifunction β : K×K → R is called α -monotone if

β (x,y)+ β (y,x)+ α(x,y) � 0 (∀x,y ∈ K). (2.1)

REMARK 2.4. If α ≡ 0 then from 2.1, is it follows that β is monotone; that is,

β (x,y)+ β (y,x) � 0 (∀x,y ∈ K).

EXAMPLE 2.5. Let E = R , K = R and let β : K×K → R be bifunction defined
by

β (u,v) = cos(u− v)2 +(u− v)2,

for all u,v ∈ K . Then

β (u,v)+ β (v,u) = 2cos(u− v)2 +2(u− v)2 � 0,

where u 
= v . Therefore β is not monotone bifunction.
But, it easy to see that β is α -monotone bifunction with α(u,v) = −5(u− v)2 .

In fact,

β (u,v)+ β (v,u) = 2cos(u− v)2 +2(u− v)2

� 5(u+ v)2

= −α(u,v).

The following notions of a KKM mapping and Schauder’s fixed point theorem
play an important role in the proof of main results.

DEFINITION 2.6. [16] Assume that K is a nonempty subset of a Hausdorff topo-
logical vector space E . A mapping G : K � E is said to be a KKM mapping for

any finite subset {u1,u2, · · ·,un} of K , we have co{u1,u2, · · ·,un} ⊂
n⋃

i=1
G(ui) , where

co{u1,u2, · · ·,un} denotes the convex hull of {u1, · · ·,un} .

LEMMA 2.7. [10] Assume that K is a nonempty subset of a Hausdorff topologi-
cal vector space E and let G : K � E be a KKM mapping. If G(x) is closed in E for
every x ∈ K and compact for some u0 ∈ K , then

⋂
u∈K

G(u) 
= φ .

THEOREM 2.8. [4] Assume that K is a convex compact set in a Banach space E
and that G : K → K is a continuous mapping. Then G has a fixed point in the set K .

DEFINITION 2.9. [7] A real-valued function, defined on a convex subset K of
E , is said to be hemicontinuous, if

lim
t→0+

Ω(tx+(1− t)y) = Ω(y) (∀x,y ∈ K).

DEFINITION 2.10. Let X be a Banach space. A mapping Λ : X → R is said to
be
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(i) lower semicontinuous (for short, (l.s.c)) at x0 ∈ X , if

Λ(x0) � liminf
n

Λ(xn)

(ii) upper semicontinuous (for short, (u.s.c)) at x0 ∈ X , if

Λ(x0) � limsup
n

Λ(xn)

for any sequence xn of X such that xn → x0.

DEFINITION 2.11. [14] Assume that E is a Banach space, and ζ : E → R∪
{+∞} a proper function. One can say that x∗ ∈ E∗ is a α -subdifferential of ζ in
x ∈ domζ = {x : ζ (x) < ∞} , if

∂α ζ (x) =
{

x∗ ∈ X∗ : ζ (y)− α (y,x)
2

� ζ (x)+ 〈x∗,y− x〉(∀y ∈ X)
}
.

Now, we consider the following problem.
Find x ∈ K such that

β1(x,y)+ β2(x,y)+ J0(x;y− x) � 0 (∀y ∈ K). (2.2)

where β1,β2 : K×K → R are two real-valued bifunctions, K is a nonempty subset of a
Banach space E .

In order to highlight the generality of a problem 2.2, we recall some special cases,
as below:

(i) β1(x,y) = 〈Ax,y− x〉 and J ≡ β2 ≡ 0 then problem 2.2 is reduces to the standard
variational inequality (see [12]).

(ii) β1(x,y) = 〈Ax,y− x〉 and β2 ≡ 0 then problem 2.2 is reduces to the hemivaria-
tional inequality (see [22]).

(iii) If β2 ≡ J ≡ 0 then problem 2.2 is reduces to the classical equilibrium problem
(for short, (EP)), which is to find x ∈ K such that β1(x,y) � 0 (∀y ∈ K) (see [5]).

(iv) If J ≡ 0 and β2(x,y) = β2(y)−β2(x) ∀y ∈ K then problem 2.2 is reduces to the
mixed equilibrium problem (for short, (MEP)) (see [17]).

(v) If β2(x,y) ≡ 0 ∀y ∈ K then problem 2.2 is reduces to the generalized equilibrium
problem (for short, (GEP)) (see [15]).

(vi) If J ≡ 0 then problem 2.2 is reduces to the new type of generalized equilibrium
problem (for short, (EPΨ)) (see [14]).

Throughout this work, let us assume that α : K×K → R in which

lim
ε→0

α(x,xε )
ε

= 0, (2.3)

α(x,y) � lim
ε→0

ε −1
ε

[
β2(x,x)+ α(x,x)

]
, (2.4)

∀ε ∈ [0,1].
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3. Main results

In this section we establish existence and uniqueness of results for a class of hemi-
variational inequalities. It is worth mentioning that through the results of this section,
we prove the existence of a solution of the problem 2.2 without any monotonicity as-
sumption on β1, nor we assume E to be a reflexive space.

LEMMA 3.1. Let K be a nonempty subset of a real reflexive Banach space E, and
J : X → R be a locally Lipschitz functional. Assume that

(i) β1 : K×K →R is α -monotone bifunction, hemicontinuous in first argument, and
convex in second argument, where β1(u,u) = 0 for all u ∈ K ,

(ii) β2,α : K×K → R is convex in second argument.

Then problem 2.2 is equivalent to the following problem:
Find a x ∈ K such that

β1(y,x)+ α(x,y) � β2(x,y)+ J0(x;y− x) (∀y ∈ K). (3.1)

Proof. Suppose that x is a solution of 2.2, and by definition of α -monotone bi-
function,

β1(y,x)+ β1(x,y)+ α(x,y) � 0 (∀x,y ∈ K), (3.2)

Therefore, by 2.2 and 3.2 we have a solution of problem 3.1.
Conversely, assume that x ∈ K is a solution of problem 3.1 and fix y ∈ K .
Letting xλ = x−λ (x− y) , λ ∈]0,1[. Then xλ ∈ K , since K is a convex, so,

β1(xλ ,x)+ α(x,xλ )−β2(x,xλ ) � J0(x;xλ − x) (3.3)

= λJ0(x;y− x)

Since β1 is convex in the second argument

0 = β1(xλ ,xλ ) � β1(xλ ,x)−λ
[
β1(xλ ,x)−β1(xλ ,y)

]
so,

λ
[
β1(xλ ,x)−β1(xλ ,y)

]
� β1(xλ ,x) (3.4)

By the convexity of β2(x, ·) and α(x, ·)
α(x,xλ ) � α(x,x)−λ

[
α(x,x)−α(x,y)

]
(3.5)

β2(x,xλ ) � β2(x,x)−λ
[
β2(x,x)−β2(x,y)

]
(3.6)

Then, from (3.3), (3.4), (3.5) and (3.6),

λ
[
β1(xλ ,x)−β1(xλ ,y)+ α(x,x)−α(x,y)+ β2(x,x)−β2(x,y)

]
� β1(xλ ,x)+ α(x,x)−α(x,xλ )+ β2(x,x)−β2(x,xλ )
� λJ0(x;y− x)−2α(x,xλ)+ α(x,x)+ β2(x,x).
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Since β1(·,y) is hemicontinuous,

λ
[−β1(x,y)−β2(x,y)− J0(x;y− x)

]
� −2α(x,xλ )+ λ α(x,y)

+(1−λ )
[
β2(x,x)+ α(x,x)

]
,

so

β1(x,y)+ β2(x,y)+ J0(x;y− x) � 2α(x,xλ )
λ

−α(x,y)+
(λ −1)

λ
[
β2(x,x)+ α(x,x)

]
.

From (2.3) and (2.4),

β1(x,y)+ β2(x,y)+ J0(x;y− x) � 0 (∀y ∈ K).

Therefore, 2.2 admits at least one solution. �

The first main result of this work is given by the following theorem.

THEOREM 3.2. Assume that K is a nonempty closed bounded convex subset of a
real reflexive Banach space E. Let β1 , β2 , α : K×K → R be three bifunctions, where
βn(x,x) = 0 ∀x ∈ K , n ∈ {1,2} . If the following conditions hold

(i) β1 is α -monotone bifunction, hemicontinuous in first argument, and l.s.c , convex
in second argument,

(ii) β2 is convex in second argument, u.s.c in first argument,

(iii) α is convex in second argument and l.s.c in first argument,

then problem 2.2 admits at least one solution.

Proof. Consider two set valued mappings Ψ,Γ : K � K defined by

Ψ(y) =
{
x ∈ K : β1(x,y)+ β2(x,y)+ J0(x;y− x) � 0 (∀y ∈ K)

}

Γ(y) = {x ∈ K : β1(y,x)+ α(x,y) � β2(x,y)+ J0(x;y− x) (∀y ∈ K)}.
Then, ∀x ∈ K the problem 2.2 has a solution iff

⋂
y∈K

Ψ(y) 
= /0 . Now, we show that Ψ

is a KKM-mapping. On the contrary, Ψ is not a KKM-mapping. Then, there exists a

finite subset {x1,x2, · · ·,xn} of K and λi � 0 for every i = 1,n with
n
∑
i=1

λi = 1 such that

x0 =
n
∑
i=1

λixi /∈
n⋃

i=1
Ψ(xi). Then

β1(x0,xi)+ β2(x0,xi)+ J0(x0;xi − x0) < 0

for every i = 1,n .
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By convexity of βn ∀n ∈ {1,2} , and the fact that J0(x0; ·) is asubadditive,

0 = β1(x0,x0)+ β2(x0,x0)+ J0(x0;x0− x0)

= β1(x0,
n

∑
i=1

λixi)+ β2(x0,
n

∑
i=1

λixi)+ J0(x0;
n

∑
i=1

λixi − x0)

�
n

∑
i=1

λi
[
β1(x0,xi)+ β2(x0,xi)+ J0(x0;xi − x0)

]

< 0,

for every i = 1,n .
This is a contradiction. Therefore Ψ is a KKM-mapping. Next, From Lemma 3.1.

Ψ(y) ⊂ Γ(y) (∀y ∈ K) . Therefore, Γ(y) is a KKM-mapping. Since α(.,y) , β1(y, .)
are l.s.c , β2(.,y) is u.s.c, and Lemma 2.2 (ii), then

β1(y,x)+ α(x,y) � liminf
n

[
β1(y,xn)+ α(xn,y)

]
� limsup

n

[
β2(xn,y)+ J0(xn;y− xn)

]

� β2(x,y)+ J0(x;y− x).

Therefore, Γ(y) is a weakly closed ∀y∈K . Since K is nonempty, bounded, closed
and convex and X is real reflexive, then K is weakly compact. Hence, Γ(y) is weakly
compact ∀y ∈ K . From Lemma 2.7 and Lemma 3.1.

⋂
y∈K

Ψ(y) =
⋂
y∈K

Γ(y) 
= φ .

So, any element of this intersection is a solution. Therefore, the problem 2.2 has a
solution. �

For uniqueness of solutions we present the next result.

THEOREM 3.3. In addition to the assumptions (i− iii) in Theorem 3.2 hold. We
assume that the following hypotheses are fulfilled:

H1 : there exists Mn > 0 such that βn(u,v)+βn(v,u)+Mn‖v2−v1‖2 � 0 for all u,v∈
K , n ∈ {1,2} .

H2 : there exists a positive constant S � Mn such that |J0(u;v)|� S‖v‖2 , ∀n∈ {1,2}.
Then problem 2.1 has a unique solution.

Proof. Towards to a contradiction, let us assume that x1,x2 ∈ K be two solutions
to problem 2.1. So, if write in the problem 2.1 for x2 with x = x1 , we have

β1(x1,x2)+ β2(x1,x2)+ J0(x1;x2 − x1) � 0. (3.7)
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and then for x1 with x = x2 ,

β1(x2,x1)+ β2(x2,x1)+ J0(x2;x1 − x2) � 0. (3.8)

Taking M = min{M1,M2} and multiplying each of the equations 3.7 and 3.8 by
−1 and summing together,

0 � −β1(x1,x2)−β1(x2,x1)−β2(x1,x2)−β2(x2,x1)− J0(x1;x2 − x1)− J0(x2;x1− x2)
� M1‖x2− x1‖2 +M2‖x2− x1‖2−|J0(x1;x2 − x1)|− |J0(x2;x1− x2)|
� (2M−2S)‖x2− x1‖2.

which shows that ‖x2− x1‖2 � 0 since M−S � 0. Consequently, x1 = x2 ∈ K . �
In the next result, we prove the problem (2.1) admits at least one solution in the

case K is a compact convex subset of E without using any monotonicity conditions on
β1 in a Banach space E .

THEOREM 3.4. Assume that K is a nonempty compact convex subset of the Ba-
nach space E . If bifunctions β1,β2 : K ×K → R are convex in second argument and
u.s.c in first argument, then the problem (2.1) admits at least one solution.

Proof. Towards to a contradiction, we assume that problem (2.1) has no solution.
Then, for each x ∈ K , there exists y ∈ K such that

β1(x,y)+ β2(x,y)+ J0(x,y− x) < 0. (3.9)

Let us define the set-valued mapping η : K � K as follows:

η(y) :=
{
x ∈ K : β1(x,y)+ β2(x,y)+ J0(x,y− x) � 0

}
.

Claim 1. η(y) is a nonempty and closed for each y ∈ K .
Clearly, η(y) is nonempty since y ∈ η(y) for each y ∈ K according to definition

of set η . Assume that {xn}n�1 ⊂ η(y) is a sequence which converges weakly to x . We
must prove that x ∈ η(y) . For each n � 1,

β1(xn,y)+ β2(xn,y)+ J0(xn,y− xn) � 0.

Since βi(·,y) is u.s.c ∀i ∈ {1,2} , and take into account Lemma 2.2 (ii), then x ∈ η(y)
for each n � 1. To do this, passing to limsup as n → ∞ in 2.18 we have

β1(x,y)+ β2(x,y)+ J0(x,y− x) � 0.

Therefore, x ∈ η(y), and η(y) is a weakly closed subset of K .
According to 3.9 for each x ∈ K , there exists y ∈ K such that x ∈ [η(y)]c = X −

η(y) . Therefore, the family {[η(y)]c} is an open covering of the compact set K , for
each y ∈ K . This means that there exists a finite subset {y1,y2, · · ·,yN} of K such that
{[η(yr)]c} is a finite subcover of K for every r = 1,N .
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Assume that Θr(x) := dis(x;η(yr)) (i.e., the distance between x and the set η(yr))
for every r = 1,N and let Sr : K → R be a function defined as follows:

Sr(x) :=
Θr(x)

N
∑
i=1

Θi(x)
.

Notice that Sr is a Lipschitz continuous function for every r = 1,N , Sr(x) ∈ [0,1] , for

all x ∈ K and
N
∑

r=1
Sr(x) = 1. Let ϒ : K → K be a mapping defined by:

ϒ(x) :=
N

∑
r=1

Sr(x)yr.

Claim 2: The mapping ϒ is continuous.
To do this, we can obtain for any x1,x2 ∈ K the following estimation:

‖ϒ(x1)−ϒ(x2)‖ = ‖
N

∑
r=1

(Sr(x1)−Sr(x2)) yr‖

�
N

∑
r=1

‖yr‖‖Sr(x1)−Sr(x2)‖

� Jr

N

∑
r=1

‖yr‖‖x1− x2‖

� J‖x1− x2‖.

This shows that ϒ is continuous map. Taking into account Theorem 2.8, there
exists x0 ∈ K such that ϒ(x0) = x0.

Let us consider the functional χ : K → R as follows:

χ(x) := β1(x,ϒ(x))+ β2(x,ϒ(x))+ J0(x,ϒ(x)− x).

Applying Lemma 2.2 , βn(x, ·) is convex ∀n ∈ {1,2} ,

χ(x) = β1(x,
N

∑
r=1

Sr(x)yr)+ β2(x,
N

∑
r=1

Sr(x)yr)+ J0(x,
N

∑
r=1

Sr(x)(yr − x))

�
N

∑
r=1

Sr(x)
[
β1(x,yr)+ β2(x,yr)+ J0(x,yr − x)

]
.

On the other hand, since K ⊂
N⋃

r=1

[
η(yr)

]c
for every r = 1,N , there exists at least one

index r0 = 1,N such that x ∈ [
η(yr0)

]c
. This shows that χ(u) < 0 for all y ∈ K which

contradicts the fact that χ(u0) = 0. �
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REMARK 3.5. Notice that the solutions of hemiequilibrium inequality on unboun-
ded domains exist if we expand the conditions for the bounded domains with a coerciv-
ity condition. As, if we put some coercivity conditions, it will ensure that Theorem 3.2
or Theorem 3.4 will also satisfy when the set K is unbounded (for more details, see [9]
and [31]).

4. Application

It is important to say that there has been an increased interest in differential prob-
lems governed by higher order operators. In this section, we apply our main result,
expressed in Theorem 3.2, to some partial differential inclusion problems. Let us con-
sider the usual Sobolev space as W 1,p(Ω) and the Banach W−1,p′(Ω) is dual space of
W 1,p(Ω) , where 1

p + 1
p′ = 1. p > 1 is a real constant, and Ω is a bounded domain of

RN , N � 1 with smooth boundary ∂Ω.
In what follows, let us consider the partial differential inclusion problem

{−w−g(x) ∈ ∂−2α f (u), x ∈ Ω
u = 0 on ∂Ω.

(4.1)

such that w ∈ ∂J(u) , g : Ω → R is continuous with compact support. f : K → R is
a continuous concave function and K is a bounded convex subset of Sobolev space
W 1,p(Ω) . For technical reasons, let us define β2 :W 1,p

0 (Ω)×W 1,p
0 (Ω)→ R as follows:

β2(ξ ,ρ) :=
∫

Ω
g(x)(ξ −ρ)(x)dx.

We suppose that K is a nonempty, closed, bounded and convex subset of Sobolev space
W 1,p

0 (Ω) .

DEFINITION 4.1. We say that u ∈ K has a K-weak subsolution of the problem
(4.1) if,

〈−w−g(x),u− v〉� f (u)− f (v)−α(u,v) (∀v ∈ K). (4.2)

Here, we show that the K-weak solvability of (4.2) By the integral form of 〈·, ·〉 , one
can get that

〈w,v−u〉−
∫

Ω
g(x)(u− v)(x)dx+ α(u,v) � f (u)− f (v).

Set β1(v,u) := f (v)− f (u) and β2(u,v) :=
∫

Ω g(x)(u− v)(x)dx . Therefore, we
obtain

β1(v,u)+ α(u,v) � β2(u,v)+ J0(u;v−u) (∀v ∈ K)

Consideration α(u,v) = −(u− v)2 . Then β1 is α -monotone bifunction. In Lemma
3.1, we proved that (3.5) and (2.1) are equivalent under some assumptions. Therefore,
we must prove that β1 and β2 hold all assumptions of Theorem 3.2.

It is clear that the bifunction α(u,v) = −(u− v)2 satisfies all assumptions in The-
orem 3.2.
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Claim 1: β2 is a convex in second argument.
Let z = tv1 +(1− t)v2 ∈ K , t ∈ [0,1] , so

β2(u,z) = β2(u, tv1 +(1− t)v2)

=
∫
Ω

g(x)(u− tv1− (1− t)v2))(x)dx

=
∫
Ω

g(x)u(x)dx−
∫
Ω

g(x)(tv1 +(1− t)v2)(x)dx

=
∫
Ω

g(x)(tu+(1− t)u)(x)dx−
∫
Ω

g(x)tv1(x)dx−
∫
Ω

g(x)(1− t)v2(x)dx

= t
∫
Ω

g(x)(u(x)− v1(x))dx+(1− t)
∫
Ω

g(x)(u(x)− v2(x))dx

= tβ2(u,v1)+ (1− t)β2(u,v2).

Moreover, if un → u ∈ W 1,p
0 (Ω) . By Sobolev embedding we can assume that

un → u ∈ Lp(Ω)

∣∣β2(un,v)−β2(u,v)
∣∣ =

∣∣∫
Ω

g(x)(un(x)−u(x))dx
∣∣

�
(∫

Ω
|g(x)|p′) 1

p′ .
(∫

Ω
|un(x)−u(x)|p) 1

p

� ϒ‖un−u‖Lp � ϒ‖un−u‖ ⇀ 0.

This shows that β2 is continuous. So, it is u.s.c in the first argument.
Notice that β1 is hemicontinuous in first argument, l.s.c and convex in second

argument, because f is concave and continuous function. Therefore, all conditions of
Theorem 3.2 satisfied.
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[25] V. RǍDULESCU, D. REPOVS, Partial Differential Equations with Variable Exponents: Variational
Methods and Qualitative Analysis, CRC Press, Taylor Francis Group, Boca Raton FL (2015).
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