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SOME NEW ITERATED HARDY-TYPE
INEQUALITIES AND APPLICATIONS

A. L. BERNARDIS AND PEDRO ORTEGA SALVADOR

(Communicated by A. Kalybay)

Abstract. We characterize some iterated Hardy inequalities previously studied by R. Oinarov
and A. Kalybay and, as an application, we give new simpler proofs of the characterizations of
the weighted inequalities for the bilinear Hardy operator.

1. Introduction and results

Let u, v and w weights, i.e., positive and locally integrable functions on (a,b)
with —eo < a < b < +oo. In [8], R. Oinarov and A. Kalybay characterize the weights

u, v and w such that the inequality
b
<C</ fpv) (1.1)
a

P () )

holds for all nonnegative functions f on (a,b) inthecase 0 < g<eand 1 < p<r<
oo, For p € (0,00], we write

1
r

1/
_ L (r@pway) " ito < p<,
||f”p,w,(a,b) - .
eSSSUP,<x<p |f(x)|w(x) lfp = ce.

When w = 1, we simply write ||, ) - With this notation we can write the above
inequality as

< C||f”p,v,(a,b)~ (1.2)
aw,(xb) ru,(a,b)

/th(s)ds

For (a,B) C (a,b) we write

(0, B) —ess inf v(t) and U(a,ﬁ):</ﬁu(s)ds>l/r.

a<t<f o
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pr’:ﬁ when 1 < p < oo and p’ = when p = 1, we define

o= g, ([ o) " ([orom) "

Finally,if ¢ < p and § = 5

qu (oc B = {/aﬁ </Xﬁ W(S)ds) 0/p (/:lel(s)ds> e/pfw(x)dx}l/e

(1-9)/q

and

Bl (0.B) = { [ ( [t ds> " e dx}

The following theorem collects the results obtained in [8].

THEOREM 1.1. ([8]) The inequality (1.1) holds if and only if
(i) F= supa<z<bU(a,z)qu )(2,b) <o for 1< p<min{g,r} <eoo;

(ii) F:supa<z<bU(a,z)qu)(z b) <o for0<g<pand1<p<r<e.

(iii) F=sup,_..,U(a, 2)B] o )(zb) o for0<g<l=p<r<eoandyv(a,f)>0
forany o, such that a < a < f3 <b.

Moreover, F =~ C, where C is the best constant in (1.1).

Let us observe that reversing the orientation in the real line it is easy to obtain from
the above theorem the corresponding characterization for the inequality

< C| ‘f‘ |p,v,(u7h)'
ru(a,b)

q.w,(a.x)

It is well known that condition Aﬁﬁ) (a,b) < oo characterizes the weighted Hardy
inequality

(/ab (/:f)llu(x)dx);gc(/abfpv)” (13)

in the case 1 < p < g < o (see [7] and [2]) and va’% (a,b) < o characterizes this
inequality in the case 0 < g < p and 1 < p < oo (see [6]).

Let us observe that if r = 4o to prove inequality (1.2) is equivalent to prove that
for almost every x € (a,b),

([ (f rras) s >d’>%<C|f|p,v,
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with a constant C independent of f and x, where Wy (¢) = w(r)u(x)?. But this is equiv-
alent to prove that the pair of weights (v, ,) verifies the necessary and sufficient con-
dition for the operator H,f(t) = [! f to be bounded from L”((x,b),v) to LI((x,b),Wy),
ie. AP (x,b) <eoif p<qor B[ (x,b) <eoif g < p.Then, we get the following

(vi¥x) (v,x)
result.

THEOREM 1.2. Let r = 4o and 1 < p,q < eo. The inequality (1.2) holds if and
only if
(i) F = sup <.y u(2)A[, (2,b) < o= for p<gq;

(ii) F= Supa<z<h”(Z)B€77j‘I4,) (z,b) < oo for g <p.

v,

Moreover, F =~ C, where C is the best constant in (1.2).

Motivated by the close connection between the inequality (1.2) and the weighted
bilinear Hardy inequality (see (1.4) below), we worked in the case r < p of (1.2) ob-
taining the desired result.

To state the result we shall need the following definition. We say that {x;} is a
covering sequence if {x;} is a decreasing sequence in (a,b) such that limy_...xx = a
and limg_, .. x; = b. We also admit decreasing sequences {xk}fzf{, where either J € Z
and x; =a, or K € Z and xx = b, or both. Our result is the following one.

THEOREM 1.3. Let 0 < g,r < oo and 1 < p < oo. Let us consider the following
cases: (a) 0<r<pand 1< p<gq and (b) max{r,q} < p. Let % =1 11—7. The
following statements are equivalent.

(i) The inequality (1.1) holds for all f > 0.

(i)
Xk n/r 1/n
Fy =sup {E[Dfﬁzv) (g, x—1)]" (/ “) } <o
at Uk ' X1

and

b AN VAN VA R
F> = sup 2 (/ w) (/ v1p> (/ u) < oo,
fud (ke N1 X Yt 1

where the suprema are taken over all covering sequences {x;}.
(iii)
b 1/n
F= { D0, MU () ) dx} <,
g :
where DV - = AP
(vw) (vw

Moreover, F ~ C, where C is the best constant in (1.1).

pd _ gpd

) in case (a) and D) (v) 12 CasC ().
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Recently, we learned of a new article of R. Oinarov and A. Kalybay [9] where
the authors studied the case r < p of the inequality (1.2). They prove (iii) = (i) in
Theorem 1.3 and (i) = (iii) only for the case (b) max{r,q} < p. The proof of the
implication (iii) = (i) is the same in this paper and in [9]. However the implication
(i) = (iii) is different even in the case (). The introduction of an intermediate condi-
tion defined in terms of covering sequences, allows us to obtain the complete result.

In [1], M. I. Aguilar Cafestro, P. Ortega Salvador and C. Ramirez Torreblanca
have studied a bilinear version of the Hardy operator defined, for pairs of nonnegative
measurable functions (f,g) on (a,b), —eo < a < b < oo, by

w0 = ([ roa) ([ swar).

The purpose of the paper [1] was to characterize the positive measurable functions
w, wi, wy such that the weighted bilinear Hardy inequality

(Lb(%(f,g)(x))qw(x)dx>; <C (/ubf’”wl) 0 (/abgmm) B (1.4)

holds for all pairs of nonnegative measurable functions (f,g) with a positive constant
C independent of f and g, where q,p1,p> > 1.

The proofs of the necessity of the characterizing conditions in [1] were based on
reducing the bilinear problem to a linear one. However, this was not the philosophy in
the proofs of the sufficiency of the conditions, specially in the cases g < p1, ¢ < p2,
where splitting and discretization techniques were applied. Our second purpose in this
article is to provide new simpler proofs of the sufficiency of the conditions by means
of reducing the problem to prove a weighted Hardy inequality with variable weight
and then applying the weighted results for the classical Hardy operator. This process
leads us to apply the weighted iterated Hardy inequality characterized in Theorems
1.1, 1.2 and 1.3. In passing, we reduce the number of characterizing conditions and
we obtain the results also for 0 < g < 1. We think that to give simpler proofs of the
weighted bilinear Hardy inequalities is of interest, because the techniques applied in [1]
are difficult to handle in order to get new results on bilinear Hardy operators, such as
bilinear weak type inequalities or bilinear Hardy-type inequalities with Oinarov kernels.

We will use the following notation:

Hf(x) = /:f(z)dz and  Hf(x) = /th(t)dt.

) 1 1 1

For i = 1,2, let cr,-:wl-1 ki and, if ¢ < p;, let r; suchthat — = - — —. If g <
Ti q Pi

1 1 1 1

1
p1,p2, let s such that - = — — — = — — — — — . With the following notation we
. s n py g pip o
describe the conditions on the weights for the different cases of relationships between

the parameters:

o = sup (Aw(x)) T (Ho\(x)"h (Hoa(x)) ",

a<x<b
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1
A BN, = sup (Ho1(x)) By (D).

wis(wz,w) a<x<b

and

1
s

wis(w2,w) (wa,w

P {/ab [szaq )(x’b)r(Hcl(x))% Gl(JC)dx}

With o7 5" 2;1(’ 14 we shall denote the term 7 %""’ I(?vf , but interchanging the roles

1.w)
of w; and w; and the roles of p; and p;. The same with Z%"> ’(7 ! 1‘1 ) with respect to

%%Pl sP2.9

1:(wa,w) *
The result for the bilinear Hardy operator is the following.

THEOREM 1.4. ([1]) Let g > 0 and p1,p> > 1. Let w,wi,wy be positive mea-

surable functions defined on (a,b) and let ¢; = wil_p", i =1,2. Then there exists a
positive constant C such that the inequality (1.4) holds for all nonnegative measurable

functions f and g if and only if
(i) o <oo,for q>p; and q = p>

(ii) ﬂl@plmq <°°,f0rq>p1 and q < pa;

15(wa,w)

1 1 1
P1:P2.4 D2iP14 oo z
(iii) A B, e A B, ) < ,for g <pi, q<psand p1+p2 >q

1 1

1
P1:P2,9 P2:P1,9 oo — —
(1) BBy oy PP rion ) < 00T 4 < P1o g < paand 2t o<

In the next section we shall prove Theorem 1.3. Although the implication (iii) =
(i) is very similar to that given in [9], we include the complete proof of Theorem 1.3
to make the paper self-contained. In Section 3 we will show how to apply the iterated

Hardy inequalities in order to prove Theorem 1.4.

2. Proof of Theorem 1.3

(iif) = (i). Working as in the proof of Theorem 2.1 in [8] we define

xk:inf{anb /(/f ) )d,<2qk}

The sequence {x;} decreases and verifies (a,b) = Ug(xg11,X;]. Now, if 1 <

= ([ () o) ([, () o)
(L7 (L) wom) "+ () ()

q <ee,
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In the case 0 < g < 1 we get that

patk=1) — _—_(gak _ alk=1)y

Sl () o [ ([ 1) woa)
sl () o (L) (7))

Then,

2’(k+1)/k u(x)dx

Xk+1

= 22’22’(1‘_1)/ ‘ u(x)dx.
k

A+1

Itg=>1,

( / :H ( / A f)qw(t)dt) rfa /kkl o
+c§ </le W) i </;’“f>r/x: u(x)dx =T +T.

)
/x:kfl </x:f>qW(t)dt+ (/jlw) (/x:“f>q}r/q/x::u(x)dx

<cxf
k
<C (/Xkl (/tf)qw(t)dt)r/q/Xk u(x)dx
= \x Xk X1
+C§ (/):1 w) v (/x:kl f)r/x:: u(x)dx =T, +Ts.

Condition F < e implies that Di’;fiw) (xk,X_1) < oo for all k and then, the Hardy oper-

ator Hyf (1) = f)fkf is bounded from L?((xg,x¢_1),v) to LY((xg,xx—1),w), i.e., there is
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a constant C; such that

(/):"1 (/x; f)qw(t)dt) v <G (/:kl f”v) 1/p

and Gy = Cp, qD( )(xk,xk 1), where C,, is a constant independent of k and only
dependent on g and p. Then we have

[ rla r/p
T_CE(xk (12 r) wieyar) ( I fpv>/ /XHIW‘)‘Z"

()"
< Czk‘,[Dﬁ,’zv) (g, 1)) (/Xkl fpv) v /x:: u(x) dx
< CZ[U(XkH,xk)DP’ (xx,b (/k 1Py )

k

On the other hand, by Holder inequality,

meeg ([ ) (L) () s

For the case p < ¢, clearly

T < C QU (g1, 00) A, (o, b (/ fp>
k %

Then

N—— N——
<
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Therefore,

T, < CYIU (vt 20)BL (b (/k fp>

k

Putting together the estimates of 77 and 7, and applying Holder inequality with expo-
nents p/r > 1 and 1 /r we have that

r/ %
r<cC (/ubfp") ’ {Z[U(xkﬂ,xk)Dﬁﬁv) (xk,b)}n} :

k

Observe that
Xi %
(U (1, 30) D (e, D)) = (/ ”) [va’ffv)(xbb)}”
Xk+1
C

dx

A1
n
<c [ ) (/ u)pu(x)dx
X1 ’ a

Then, summing up in k, we obtain

T<C ([m) " {/;[Dm) (6, b)] U (a,%) 7 () dx} " _cF (/jf”v) "

(i) = (ii). Let {x;} be a covering sequence of (a,b). Clearly,

T:/b (/b (/tf(s)ds)qw(t)dt>r/qu(x)dx
L () s
;%(/X:“ (/ka)q ()dt)r/q/XkHu(x)dx.

Applying (i) we get

U ) ([ ) e
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Let y> 1. Using the characterization of the boundedness of the Hardy operator H (1) =
f;k f from LP((xg,x¢—1),v) to LY((xy,xx—1),w), for each k there is a non negative func-
tion f; defined on (xg,x;—1) such that

1

<fx);€k—l (f;k fk>qw(t)dt> i
()

Let {a;} be a sequence of non negative numbers and let f be the function defined by
= Zk X () @S- With this function f in (2.1) we obtain

1 g (5 T p [ "
_Z[D(v’_w) (X, x5—1)] ag (/ i v) (/ u) <C Zak/ fiv .
yr k i Xk Xk+1 k X

r/
Using the notation v = [*~! f'v and wy = [D1 ) (s x1)]" <f’2"*1 f,fv) : (f"" u) ,

(vw X, Xk4-1

D{) (e Xe—1) <y

the above inequality can be written as

1/r 1/p
<2a£wk> <Cy <2aka> .
k k

. 1/n .
By Proposition 4.1 in [3] we get that (ka,?/ Ve Wp) <Cy.ie.,

X) r’/r l/Tl
2005 (i) (/ ”) <Cr.
k Xk+1

Letting ¥ tend to 1 and having into account that the covering sequence {x; } is arbitrary,
we get that F| < 4. On the other hand, for any covering sequence {x;} we have that

= ([ ([ roa) wora) o
-5/ ([ ([r0a) woa) " )
> ( / b w) " ( [ f)r [ atwya

Let {a;} be a sequence of non negative numbers and let f be the function defined by
f=> x(xhxkfl)akvl‘pl. Applying (i) to this function f, we get

b r/q X A\ X Xp , r/p
) () () el )
k Xk—1 Xk X1 k Xk
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If v = [ok-tvl™ ~7 and

b r/q Xk—1 f r Xk
e () ) ()
Xp—1 Xie Xk+1
1/n

we get that (X agwi) g C (T afvi) '/PThen, as above, <21< w,?/’vk_”/p> <C
and since this inequality holds for all covering sequences {x;}, we obtain F» < +oo.
(if) = (iii). We define two sequences: {x;} and {y,} where

Xk I !

/ u=2" and (DP9 (b)) =2,
According to a principle similar to that which was introduced by Q. Lai in [5], we
reduce the sequence {y;} to a subsequence {y,} in the following way: if (y/, ,{]N

{xx} = 0 then we delete the term y, from the sequence {y.}. Then, if y,+1 < X1 <
Yn =Yy, we getthat y! | <xiqq and y, 10 < xgso. Now,

F1— / {Di"i)(x b)] (/:u)n/pu(x)dx
< ; [va’zv) (xk+17b)}n (/x:: (/axu> Wpu(x)dx) .

Then, for k such that y,;1 < x¢i1 <y, =y, we have

[Df 4 )(xk+l7b)}p < [Df‘;[{/y) (y./r-&-hb)}p

= 4[Dp (4B 4D (v, b))

/

If p < g we get that

(D) o1, )1P = (AL, (e, 6)17

x b \P/4 17 '/q
<4 sup (/ vll’) ( w) —4 sup
yi<x<b \JV y:_ <x<b

< sup 1% /w + v / w
Vi<x<yi_, ¥ X Y1
X b NP4 yA . Y »
<C sup /vlfp /w +C pl= 1’
Vi<x<yl_, ¥ X -1

'/
() L)
Yn—-2
- w2 \ P4 R b P'/a
<C sup (/v 1’)(/ ) C(/ v 17)(/ w) .
Yn<x<Yp—2 Yn Yn-2
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. . . — b 0/p
On the other hand, if ¢ < p, using the notation w(z) = ( ) w) w(t), we get that

/

[DZ,L{,V) (karl ) b)}ﬁ’ = [BI(?\;f{,V) (karl ) b)}ﬁ

Then, since

Xj X n/p Xj n/r Xkt n/r
/ (/ u) u(x)dxéC(/ u) z(/ u)
Xer1 \Ja a Xk42

Xk+1 Vn
) ws ["u,
Xk+2 Yn+2

Y1 <Xp+1<Vn

and

we get, in the case p < ¢, that

v NP e N\ Ve . n/r
F1<cy sup (/ vll’) (/ 2w> Y / L
n Yn<X<Yp-2 Yn X Xk42

Yn+1<Xk+1 <n
Yn—2 ’ n/p
1=p
—|—C2 (/y % )
n

b r’/q Xk4-1 n/
f S L
n Yn—2 Inr1 <Xpp1 Sy HhA2

yo \N/T
<3 [ar (2] ( / u)
n ) Y

n+2

Y2 NP s b n/a sy, N\N/T
cy, (/ vl_p> (/ w) (/ u) =1, +11,.
n Yn Yn—2 Yn42

Then, clearly I, < CY,—0n -+ CYcopmi1- < CFln and Il, < CY, 0"
+C2n:2m+l RN Can-

!

_|_
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On the other hand, for the case g < p,

Yn—2 1 ’ 9/1,/ n/6 Vn n/r
F'<Cy / (/ v1p> w(t)dt (/ u)
n Yn Yn Yn+2
SO NP b n/e s iy, n/r
+Cy (/ vl—P> (/ w) (/ u) =1, +1I,.
n Yn Yn—2 In+2

. . _ b 0/p . . .
Notice that, since w(t) = ( J; w) w(t), integrating by parts we obtain

V2 t , 6/p' V2 t , 0/q b 0/q ,
/ (/ vl_p) w(t)dt < / (/ vl_p> (/ w) VI (1) dr
Yn Yn Yn Yn t
0/d o \8a
<C ( v1 1’) ( ) vI=P (1) dr
6/q 6/q ,
+C (/ ) / (/ ) VTP (1) dt
Yn—-2 Yn Yn
Yn—2 / /q Yn—2 9/11 /
~ / (/ vl_p> (/ w) vI=P (1) dr
Yn Yn t
b 0/q s 1y. s N0/
—+ (/ w) (/ vl_p) .
Yn—-2 Yn

b b 6/q
/ wR (/ w) .
Yn—2 Yn—-2

We also get that

Therefore,

n/6

Yn n/r
()
Yn+2

and

b n/q Yn—2 , n/pl Yn n/r
IhéCZ( w) (/ vll’) (/ u) .
n Yn—-2 Yn Yn+42

Finally, let us notice that

n n/r
Ih—CZB”’ (Vs Yn— ﬁ]”(/vy u) =C Y 4C Y --<CF

Yn+2 n=2m n=2m+1

and 11, <I; <CYp 0 +Cpmer - <CFy .
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3. Proof of Theorem 1.4

(7). The necessity of condition <7 follows as in [1]. Let us see now that condition
o is sufficient. Clearly, to prove (1.4) is equivalent to prove

(/;(Hf)(x))qwg(x)dx)% SC(/ahfl"m)ﬁ, 3.1

we(x) = (H(g/l[8llpywr) (%)) w(x)
and the constant C does not depend on g.
We know that, since p; < g, (3.1) is equivalent to the next condition:

where

AT (a,b) = sup (Awg(x)7 (Hoy (x)7h < o, (3.2)

wi,w
(hg) a<x<b

uniformly on g.
Observe that if @ < x < b then

1
q L

(I:IWg(X))%f (HG1(x))ﬁ = (/xhwg(t)dt) (Hoy(x))"

_ (/xb (/atg(s)/|g|pz,wzds>qw(t)dt>%(HGI(X))#
s </xh </an (5)/1181p2.w2 d5>qW(t)dt) % (Hoy (x))ﬁ

([ ([ e lllpmnas) wiar) oo

=1+l

Applying Holder inequality,

-(/ bw(t)dt); ([ el mmmas) (101

VAN
TN
h
S
-3
=
~——
Q=
X
S
=
=
Q
=
VAN
]

On the other hand, if

wi(1) = (Hoi(x)) " w(t),

we have to prove that

1

1= ([ ([ e Nellmnas) war) " <c.
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or equivalently < f (fLg(s)ds) wa(t )dt) < C||gllpswa» With a constant C indepen-

q

dent of g and x, which is (1.1) with r =co, p = py, v =wy and u(x) = (Hoy(x))" .
Then, the above inequality holds if and only if

e

AP (x.b) < oo, (3.3)

(wa,w)

sup (Hoy(x))”

a<x<b

But since for all 7 € (x,b) we have that

</thw(s)ds)‘l’ (/[:fm(s)ds>ﬁ (/):Gz(s)ds>i <,

we get that condition &7 < e implies condition (3.3).
(ii). Let us see first that condition &/ 2”24 s sufficient for (1.4) to hold.

1:(w2,w)
Working as in the proof of the above case we have to see that Af ” ’Iq_wg)(mb) <

Clearly, as in the proof of (i),

ne
7
1

(Awg(x)) ¥ (Hon (x))7

and 1 < of. Let us see now that &7 < d%illi’(’fvﬁw). Since 1/ry = 1/q—1/p,, if
a < x<b,then

<I+1

r n

1 1/rm
= o) { [ (fw0)  (H,00) % w)ar )

" )

& b n 2 1/r
< C(Hoy(x))n { / (Aw()) ™ (Hoa (1)) "2 w(t)dt} <A B

So that I < %%{’V L ’(’fv’z‘fw)
On the other hand, as mention in the above case, the inequality /1 < C, with a

constant C independent of g and x is the inequality (1.1) with r =0, p=po, v=w,
q

and u(x) = (Hoy (x))?1 . Since g < p», the necessary and sufficient condition to obtain
11 < C is the condition in Theorem 1.2 (ii) which is condition .o/ """ I(?\i;qw) < oo,
Let us see now that condition &7 #"!'1? | < o is necessary. Assume that (1.4)

1:(wa,w)
holds. Then,

(Lb(Hg)(x))qu(x)dx> % <C (/abgmw2> B 7 (3.4)
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591
where

wr(X) = (H (/A1 prwy ) () Tw ()

Since py > g, we know that (3.4) is equivalent to the following condition:

b n ,2
Bl (@:6) {/ (Awy(x)) 72 (Hoa(x)) ™2 wy

Observe that, if a < x <t < b, we have

(x)dx} g < oo,

Then,

wy () = (H( /N oy ) (0)w(e) Z HF /1] pywi) ()T w(7)

L G 07 (0) 103000 e} <o,

b 1/ry
.
([ sty ura) <l
where
u(x) = (Aw(x)"™/" (Hoy(x) P w().
The above inequality means that the operator H is bounded from LP!(wy) to L™ (u).
Since p; < ry, the pair of weights (wy,u) must verify

b 1/r )
Alwya(@:b) = sup ( / u(t)dt> [H oy (x)] /74 < oo,
’ a<x<b X

which is condition o7 710> - < oo
wii(wa,w)

(iif). As we have seen in the proofs of the above cases, to prove (1.4) is equivalent
to prove, for instance, that

(/ub(Hf)(x))qwg(x)dx)’l’ gc(/ahfl’lwly’ll,

where

(3.5)

we (x) = (H(&/18llpywy) () TW ().

On the other hand, we know that, since p; > ¢, (3.5) is equivalent to

BPIJI

om0 = {/h (i) ¥ (Ho () ¥ o <x>dx}"1 o
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Let us see that B (a,b) <
(lewg)

Bl (a.b) < { L (] eorlimanas) wiar)” ooy’

r

+{/ﬂb (/xb (/:g(s)/Hg|p27w2ds)qw(t)dt)71(HGI( ))r_l’cn(x)dx}”

=1+1II

U=
Q
S
IS
=
—

Observe that
1

I = {/ab (H(g/Hngzwz)(x))rl u(x)dx}ﬁ,

where
1

u(x) = (/wa(t)dt) e (Hoy(x)) 7 01 (x).

Then I < C if we show that the pair of weights (wy,u) verifies condition Af 271 )(a b) <
oo, due to pr < ri. But this holds because this condition is equlvalent to condition

Jzﬁ@pﬂ(?”q ) < eo. On the other hand, if we set vi(x) = (Ho(x ))q 01(x), to prove

11 < C is equivalent to prove that

{/ </ </ s ) d’)1V1<X>dX}A<C|g|p2,W2.

Since 1 < g < pp and 1 < p < r; < oo, using Theorem 1.1 with u =v;, v =
wo, r=r; and p = p, we get that the above inequality is equivalent to the condition
of BTV ) <eo.In fact, p = p, implies that 6 = r, and since u = v, and r=r; we

(v
</:u>m: ([ o >>‘1'm<t>)l/”

get that
41

- </:01(t>df>(q " = (Ho(x))'/".

The necessity of condition 7 28" ) < oo follows as in the above case. Finally,

15(wa,
IEVIV‘IW) < oo follows as in [1].

(iv). For the sufficiency of the conditions, we have to prove, as in the proof of
(iif) , that

the necessity of condition .o/ ﬂp e

1={ [ e el u(x)dx}'ll <o
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where
o
q (o] (x),

u(x) = ( / bw(t)dt) e (Hoi(x))

and .

[ /x’g<s>ds)qw<z>dz)%m(x)dx " <Ol GO

But now p; > ry. For the boundedness of 7, we have that the condition on the weights
can be written as

1/s

b/ b \S/T s o\ S/
B?\i’;;)(mb): / (/ u) (/ (52) 02 (x)dx < oo,

where 1/s =1/r; — 1/p,. This is condition @@£§:p17q < oo and then [ < e uni-

s(wi,w)
formly on g.
Notice that, since p, > ry, the inequality (3.6) was characterized in Theorem 1.3.
The condition in this theorem is the condition %" llffvzqw) < oo, In fact, taking u = v,
v=wy, r=r; and p = p, we getthat 6 =r, and n = 5. On the other hand, we have

tha
Ula,x) = (/u)l/
- ([ wem? o) .
- </ax01 (r)d’> M (Hoy (x))/71.
Therefore

=
B

Ula,x) P u(x) = (Hoy (x)) ™ (Hoy(x)) 7 01(x) = (Ho1 (x)) 7 01 (v).

The necessity of condition %" 22’(7 b ’f’_w) < oo follows as in [1].

Acknowledgement. We would like to thank the referee for calling our attention to
reference [9] and pointing out a mistake in the proof of one of the results.

REFERENCES

[1] M. I. AGUILAR CANESTRO, P. ORTEGA SALVADOR AND C. RAMIREZ TORREBLANCA, Weighted
bilinear Hardy inequalities, J. Math. Anal. Appl. 387 (2012), no. 1, 320-334.

[2] J. BRADLEY, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), no. 4, 405—408.

[3]1 A. GOGATISHVILI AND L. PICK, Discretization and anti-discretization of rearrangement-invariant
norms, Publ. Mat. 47 (2003), 311-358.

[4] A.KUFNER AND L. E. PERSSON, Weighted inequalities of Hardy type, World Scientific, 2003.



594 A.L.BERNARDIS AND P. ORTEGA SALVADOR

[5] Q. LAL Weighted modular inequalities for Hardy type operators, Proc. London Math. Soc. 79 (1999),
649-672.

[6] V.G.MAZ’JA, Sobolev Spaces, Springer-Verlag, 1985.

[71 B. MUCKENHOUPT, Hardy'’s inequality with weights, Studia Math. 44 (1972), 31-38.

[8] R.OINAROV AND A. KALYBAY, Three-parameter weighted Hardy type inequalities, Banach J. Math.
Anal. 2 (2008), no. 2, 85-93.

[9] R. OINAROV AND A. KALYBAY, Weighted inequalities for a class of semiadditive operators, Ann.
Funct. Anal. 6 (2015), no. 4, 155-171.

(Received March 13, 2016) A. L. Bernardis
IMAL, CCT CONICET Santa Fe

Colectora Ruta Nac. No. 168

Paraje El Pozo (3000) Santa Fe, Argentina

e-mail: bernard@santafe-conicet.gov.ar

Pedro Ortega Salvador

Universidad de Mdlaga

Departamento de Andlisis Matemdtico
Facultad de Ciencias

29071 Malaga, Spain

e-mail: portega@uma.es

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com



