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ON AN ELEMENTARY INEQUALITY AND ITS APPLICATION

IN THE THEORY OF INTEGRAL EQUATIONS

JÓZEF BANAŚ AND AGNIESZKA CHLEBOWICZ

(Communicated by Q.-H. Ma)

Abstract. An elementary inequality is proved and some special cases of that inequality are dis-
cussed. Moreover, the usefulness of that inequality in the theory of some classes of nonlinear
integral equations is shown.

1. Introduction

Inequalities of various kinds play a significant role in almost all branches of mathe-
matics. With help of inequalities we express numerous estimates in mathematical anal-
ysis, functional analysis, numerical analysis, probability theory, geometry and so on.
The mentioned estimates allow us to deduce a lot of important properties of functions
describing investigated phenomena and other important quantities considered in con-
nection with real world events, geometric relations and other parameters investigated in
natural sciences (cf. [1], [2], [3], [4], for example).

In this paper we focus on an inequality of an elementary type. It seems that the
mentioned inequality cannot be deduced in a standard way with help of the methods and
tools of classical mathematical analysis (cf. [5], [6], [7]). It turns out that the inequal-
ity in question is very useful in the theory of nonlinear integral equations. Namely,
applying that inequality we can derive the solvability of a lot of classes of nonlinear
integral equations such as quadratic integral equations of Fredholm type and nonlinear
Volterra-Wiener-Hopf integral equations.

Obviously, we can also obtain existence results concerning nonlinear integral equa-
tions of Hammerstein or Urysohn type but in the present paper we restrict ourselves to
the classes of integral equations mentioned above.

In our considerations we will use the existence results proved in other, earlier pub-
lished papers [8] and [9], but we will illustrate those results by new classes of integral
equations being more general than those included in papers [8], [9].
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2. An inequality and its special cases

In order to set the stage for our considerations we establish first some notation.
Namely, denote by R the set of real numbers and put R+ = [0,∞) . The symbol N will
stand for the set of natural numbers.

In what follows we will consider the inequality being the principal object of the
study in the paper.

THEOREM 2.1. Let p,q be arbitrary real numbers such that 1 � q < p. More-
over, let a be an arbitrarily fixed nonnegative number. Then, the following inequality
is satisfied ∣∣∣(xq +a)

1
p − (yq +a)

1
p

∣∣∣ � |x− y| q
p (2.1)

for all x,y ∈ R .

REMARK 2.2. Observe that using the notation of the generalized root of an arbi-
trary degree p (p > 0) , i.e. putting

p
√

x = x
1
p (2.2)

for x ∈ R+ , we can represent inequality (2.1) in a more transparent form∣∣∣ p
√

xq +a− p
√

yq +a
∣∣∣ � p

√
|x− y|q. (2.3)

Proof of Theorem 2.1. It is easily seen that the function f : R+ → R defined by
the formula

f (x) = (xq +a)
1
p

is increasing on the interval R+ . Indeed, we have

f ′(x) =
q
p

(xq +a)
1
p−1 xq−1.

Hence we see that f ′(x) > 0 for x > 0. Moreover, notice that f (0) = a
1
p � 0. Thus,

applying standard tools of the classical analysis we deduce that f is a self-mapping of
R+ and f is increasing (more precisely: strictly increasing) on R+ . In view of the
above established facts we infer that we can restrict ourselves to the proof of inequality
(2.1) in the case when y < x .

Thus, fix arbitrarily a number y � 0 and take x such that x > y . For convenience
we will write x = y+ α , where α > 0. Then we can rewrite inequality (2.1) (or (2.3))
in the form

p
√

(y+ α)q +a− p
√

yq +a � α
q
p . (2.4)

Our aim is to show that inequality (2.4) is satisfied for α ∈ R+ , where a and y are
arbitrary nonnegative numbers.

To this end consider the function g : R+ → R defined by the formula

g(α) = p
√

(y+ α)q +a−α
q
p − p

√
yq +a.
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We have g(0) = 0 and

g′(α) =
1
p

[
(y+ α)q +a

] 1
p−1 (y+ α)q−1 q− q

p
α

q
p−1

=
q
p

⎧⎨
⎩ (y+ α)q−1[

(y+ α)q +a
]1− 1

p

− 1

α1− q
p

⎫⎬
⎭

=
q
p

α1− q
p (y+ α)q−1− [

(y+ α)q +a
]1− 1

p

α1− q
p
[
(y+ α)q +a

]1− 1
p

. (2.5)

In what follows let us observe that applying the well known binomial expansion, we get

[
(y+ α)q +a

]p−1 = (y+ α)q(p−1) +
(

p−1
1

)
(y+ α)q(p−2)a+ . . . . (2.6)

On the other hand we have the following obvious inequality

α p−q(y+ α)p(q−1) � (y+ α)p−q(y+ α)p(q−1) = (y+ α)q(p−1). (2.7)

Combining (2.6) and (2.7), we obtain

α p−q(y+ α)p(q−1) <
[
(y+ α)q +a

]p−1
.

Further, raising both sides of the above inequality to the power 1
p we derive the follow-

ing estimate

α1− q
p (y+ α)q−1 <

[
(y+ α)q +a

]1− 1
p

or, equivalently

α1− q
p (y+ α)q−1− [

(y+ α)q +a
]1− 1

p < 0. (2.8)

Now, linking expression (2.5) with estimate (2.8) we conclude that g′(α) < 0 for any
α > 0. Taking into account this assertion and the equality g(0) = 0 we deduce that
the function g = g(α) is decreasing on R+ and g(α) � 0 for α � 0. This proves
inequality (2.1) (or, equivalently, (2.3)) and completes the proof. �

Observe that in the case when q is a natural even number inequality (2.1) can be
extended to the whole real axis R i.e., if q = 2n , where n ∈ N , then for an arbitrary
number p > 2n the following inequality is satisfied∣∣∣(x2n +a)

1
p − (y2n +a)

1
p

∣∣∣ � |x− y| 2n
p , (2.9)

for arbitrary x,y ∈ R and for each fixed a � 0.
Notice that under convention (2.2) the above inequality can be written in the form∣∣∣ p

√
x2n +a− p

√
y2n +a

∣∣∣ � p
√

(x− y)2n, (2.10)
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where x,y ∈ R and a � 0.
The proof of inequality (2.10) (or (2.9)) follows immediately from inequality (2.3)

(or (2.1), respectively). Indeed, for arbitrarily fixed x,y ∈ R , we have∣∣∣ p
√

x2n +a− p
√

y2n +a
∣∣∣ =

∣∣∣∣ p
√
|x|2n +a− p

√
|y|2n +a

∣∣∣∣
� p

√∣∣|x|− |y|∣∣2n
.

Hence, in view of the fact that the function h(x) = p
√

x is nondecreasing on R+ , we
obtain ∣∣∣ p

√
x2n +a− p

√
y2n +a

∣∣∣ � p
√
|x− y|2n = p

√
(x− y)2n

which proves our assertion.
Particularly, taking in (2.10) p = 3 and n = 1, we obtain the following inequality∣∣∣ 3

√
x2 +a− 3

√
y2 +a

∣∣∣ � 3
√

(x− y)2

which was proved in [10].

REMARK 2.3. In the case when a = 0 we have that f (x) = x
q
p (cf. the proof

of Theorem 2.1). Applying the standard methods of mathematical analysis (second
derivative, the concavity and the subadditivity of the function f ) we can easily show
that ∣∣∣x q

p − y
q
p

∣∣∣ � |x− y| q
p

for x,y ∈ R+ . Unfortunately, such an approach fails to work in the case a > 0.

3. Application to a class of Volterra-Wiener-Hopf integral equations

In this section we present a result on the existence of solutions of a nonlinear
integral equation of Volterra-Wiener-Hopf type which was obtained in [8]. Next, using
the inequality proved in Section 2, we indicate a class of integral equations of Volterra-
Wiener-Hopf type for which the mentioned result can be applied.

For further purposes denote by BC(R+) the Banach space consisting of real func-
tions defined, continuous and bounded on the half-axis R+ . This space will be fur-
nished with the standard supremum norm, i.e. for x ∈ BC(R+) we put

||x|| = sup
{|x(t)| : t ∈ R+

}
.

The object of our study in this section is the following nonlinear Volterra-Wiener-Hopf
integral equation

x(t) = a(t)+
∫ t

0
k(t − s) f (s,x(s))ds, (3.1)

where t ∈ R+ .
Now, we recall the existence result concerning equation (3.1) which was obtained

in [8].
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THEOREM 3.1. Assume that the functions involved in equation (3.1) satisfy the
following conditions:

(i) The function a = a(t) belongs to the space BC(R+) and is such that there exists
the limit lim

t→∞
a(t) (obviously, this limit is finite).

(ii) f : R+ ×R → R is continuous and there exists a function φ : R+ → R+ which
is nondecreasing, φ(0) = 0 , lim

t→0
φ(t) = 0 and such that

| f (t,x)− f (t,y)| � φ(|x− y|)
for all t ∈ R+ and x,y ∈ R .

(iii) The function t → f (t,0) belongs to the space BC(R+) .

(iv) The function k(u) = k : R+ → R+ is nonincreasing and integrable on R+ .

(v) There exists a positive solution of the inequality

||a||+(φ(r)+F1)k � r,

where F1 = sup
{| f (t,0)| : t ∈ R+

}
and k =

∫ ∞
0 k(u)du.

Then there exists at least one solution x = x(t) of equation (3.1) in the space BC(R+)
which has a limit at infinity.

In the sequel we will investigate the class of Volterra-Wiener-Hopf integral equa-
tions having the form

x(t) = a(t)+
∫ t

0
k(t − s)

(
x2n(s)+b(s)

) 1
p ds, (3.2)

where t ∈ R+ and n is a natural number. Moreover, we assume that p is a fixed real
number such that p > 2n . Additionally, we require that the function a = a(t) satisfies
assumption (i) and the function k = k(u) fulfills assumption (iv) of Theorem 3.1.
Further, we impose the following assumption

(vi) The function b : R+ → R+ is a member of BC(R+) .

Then we can formulate the following result.

THEOREM 3.2. Under assumptions (i) , (iv) and (vi) equation (3.2) has at least
one solution in the space BC(R+) which has a limit at infinity.

Proof. Observe that equation (3.2) is a particular case of the Volterra-Wiener-Hopf
equation (3.1), where

f (t,x) =
(
x2n +b(t)

) 1
p . (3.3)

Thus, we need only check that there are satisfied assumptions (ii) , (iii) and (v) of
Theorem 3.1.
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To verify assumption (ii) let us take into account the fact that the function f =
f (t,x) appearing in equation (3.2) has the form (3.3). So, applying Theorem 2.1 (in the
special case indicated by (2.10)), for arbitrarily fixed x,y ∈ R and t ∈ R+ , we obtain

∣∣ f (t,x)− f (t,y)
∣∣ =

∣∣(x2n +b(t)
) 1

p − (
y2n +b(t)

) 1
p
∣∣

� p
√

(x− y)2n = (x− y)
2n
p .

This shows that the function φ appearing in assumption (ii) can be accepted in the

form φ(r) = r
2n
p . In order to check assumption (iii) of Theorem 3.1 let us observe that

f (t,0) = (b(t))
1
p . Obviously this function is a member of the space BC(R+) on the

basis of assumption (vi) . Further, we have

F1 = sup
{| f (t,0)| : t ∈ R+

}
= ||b|| 1

p .

Finally, let us notice that the inequality from assumption (v) of Theorem 3.1 has the
form

||a||+ (
r

2n
p + ||b|| 1

p
)
k � r.

The above inequality can be written in a more transparent form as follows

α + kr
2n
p � r, (3.4)

where α = ||a||+ k||b|| 1
p .

Taking into account the concavity of the function φ(r) = r
2n
p we conclude that

inequality (3.4) has positive solution. More precisely, there exists r0 > 0 such that
inequality (3.4) is satisfied for each r � r0 . This shows that assumption (v) of The-
orem 3.1 is satisfied. Finally, in view of Theorem 3.1 we complete the proof of our
theorem. �

No, we illustrate the result of Theorem 3.2 by an example.

EXAMPLE 3.3. Consider integral equation (3.2), where the functions involved
have the form:

a(t) = arctant,

b(t) =
t2 +1
2t2 +3

,

k(u) =
u+1
eu .

Moreover, assume that n = 3 and p = 7.
Then, the function f (t,x) has the form

f (t,x) = 7

√
x6 +

t2 +1
2t2 +3

.
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Apart form this we have that ||a||= π
2 , ||b||= 1

2 and φ(r) = r
6
7 . We can also calculate

that

k =
∫ ∞

0
k(u)du =

∫ ∞

0
(u+1)e−udu = 2.

Hence we see that there are satisfied assumptions (i), (iv) and (vi) of Theorem 3.2.
On the other hand notice that the inequality from assumption (v) of Theorem 3.1 has
the form

π
2

+2

(
r

6
7 +

1
7
√

2

)
� r.

It is easily seen that each real number r � r0 , where r0
∼= 150, satisfies the above

inequality.

4. Solvability of a quadratic Fredholm integral equation in the Hölder space

The considerations of this section are located in the class of functions satisfying
the Hölder condition. More precisely, if α is a fixed number such that 0 < α � 1,
then the symbol Hα([a,b]) will denote the set of all real functions x = x(t) defined on
the interval [a,b] and satisfying on [a,b] the Hölder condition with the exponent α .
This means that x ∈ Hα([a,b]) if and only if there exists a nonnegative constant Hα

x
(depending on x ) such that

|x(t)− x(s)| � Hα
x |t− s|α

for all t,s ∈ [a,b] .
Observe that the set Hα([a,b]) forms a linear space. Moreover, Hα([a,b]) en-

dowed with the norm

||x||α = |x(a)|+ sup

{ |x(t)− x(s)|
|t− s|α : t,s ∈ [a,b], t �= s

}

is a Banach space.
The investigations concerning the space Hα([a,b]) and its properties were con-

ducted in [11] (cf. also [9]) and we will not recall here involved details.
For our purposes we recall an existence result proved in [9] and concerning the

following quadratic integral equation of Fredholm type

x(t) = p(t)+ x(t)
∫ b

a
k(t,τ)x(τ)dτ, (4.1)

where t ∈ [a,b] . In order to present the mentioned result we formulate first appropriate
assumptions under which our considerations will be conducted.

(i) The function p = p(t) belongs to the Hölder space Hβ ([a,b]) , where β is a fixed
number in the interval (0,1] .
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(ii) k : [a,b]× [a,b] → R is a continuous function such that it satisfies the Hölder
condition with the exponent β with respect to the first variable, that is, there
exists a constant kβ > 0 such that

∣∣k(t,τ)− k(s,τ)
∣∣ � kβ |t− s|β

for all t,s,τ ∈ [a,b] .

In what follows, on the basis of the above assumptions, we can define the constant
K by putting

K = sup

{∫ b

a
|k(t,τ)|dτ : t ∈ [a,b]

}
.

Thus, we are prepared to formulate our last assumption.

(iii) The following inequality is satisfied

||p||β
(
max

{
1,(b−a)β

})2(
2K + kβ (b−a)

)
<

1
4
, (4.2)

where ||p||β denotes the norm of the function p in the space Hβ ([a,b]) .

Now, we are prepared to present the above announced existence result.

THEOREM 4.1. Under assuptions (i)–(iii) equation (4.1) has at least one solu-
tion belonging to the space Hα([a,b]) , where α is arbitrarily fixed number such that
0 < α < β .

In the sequel we distinguish a class of quadratic integral equations of Fredholm
type which have solutions in view of Theorem 4.1. This class will be created on the
basis of the inequality presented in Section 2.

Namely, consider the quadratic Fredholm integral equation having the form

x(t) = p(t)+ x(t)
∫ b

a

(
q|t|γ + r(τ)

)δ
x(τ)dτ, (4.3)

where t ∈ [a,b] and the function p = p(t) satisfies assumption (i) , i.e. p satisfies the
Hölder condition with the exponent β ∈ (0,1) , while the function r : [a,b] → R+ is
continuous on [a,b] . Moreover, we assume that γ,δ ,q are positive constants such that
δ ∈ (0,1) , γ > 1 and γδ = β . Apart form this we impose the following assumption:

(iv) Inequality (4.2) is satisfied with kβ = qδ and the constant K can be evaluated in
the following way

K � qβ max
{|a|β , |b|β }

(b−a)+
∫ b

a

(
r(τ)

)β
dτ. (4.4)

Then we have the following theorem.
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THEOREM 4.2. Under assumptions (i),(iv) and the above formulated require-
ments the quadratic integral equation (4.3) has a solution in the space Hα([a,b]) ,
where α is an arbitrarily fixed number such that 0 < α < β γ .

Proof. Notice that equation (4.3) is a particular case of equation (4.1), where

k(t,τ) =
(
q|t|γ + r(τ)

)δ

for t,τ ∈ [a,b] . Obviously, in order to prove our theorem it is sufficient to show that
there is satisfied assumption (ii) of Theorem 4.1 and estimate (4.4) holds.

Thus, fix arbitrary numbers t,s,τ ∈ [a,b] . Thus, in view of inequality (2.1) (with
p = 1

δ ) we obtain

∣∣k(t,τ)− k(s,τ)
∣∣ =

∣∣(q|t|γ + r(τ)
)δ − (

q|s|γ + r(τ)
)δ ∣∣

=
∣∣((q 1

γ |t|)γ + r(τ)
)δ − (

(q
1
γ |s|)γ + r(τ)

)δ ∣∣
�

∣∣q 1
γ |t|−q

1
γ |s|∣∣γδ =

(
q

1
γ
)γδ ∣∣|t|− |s|∣∣γδ

� qδ |t − s|β .

Hence, we see that our function k = k(t,τ) satisfies assumption (ii) with kβ = qδ .
Further, we show the validity of estimate (4.4). To this end let us observe that in

virtue of the fact that the function z(t) = tδ is concave (hence subadditive) on R+ , we
get

K = sup

{∫ b

a
|k(t,τ)|dτ : t ∈ [a,b]

}
= sup

{∫ b

a

(
q|t|γ + r(τ)

)δ
dτ : t ∈ [a,b]

}

� sup

{∫ b

a
qδ |t|γδ dτ +

∫ b

a

(
r(τ)

)δ
dτ : t ∈ [a,b]

}

� qδ max
{|a|β , |b|β }

(b−a)+
∫ b

a

(
r(τ)

)δ
dτ.

This proves estimate (4.4) and completes the proof. �

EXAMPLE 4.3. To illustrate the applicability of the above proved theorem let us
consider the following special case of equation (4.3)

x(t) =
√

ct +d + x(t)
∫ 1

0

(
qt

3
2 + τ3e−τ) 1

3 dτ (4.5)

for t ∈ [0,1] ,where c,d and q are positive constants. Observe that comparing equations
(4.5) and (4.3) we see that p(t) =

√
ct +d and

k(t,τ) =
(
qt

3
2 + τ3e−τ) 1

3 .
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Thus the function p = p(t) satisfies the Hölder condition with the exponent β = 1
2 .

Indeed, in view of inequality (2.1) we have

|p(t)− p(s)|= ∣∣(ct +d)
1
2 − (cs+d)

1
2
∣∣ � |ct− cs| 1

2 =
√

c|t − s| 1
2 .

Moreover, we have the following estimate

||p||β = sup

{
|p(t)− p(s)|√|t− s| : t,s ∈ [0,1],t �= s

}

= sup

{√
ct +d−√

cs+d√
t− s

: t,s ∈ [0,1],t > s

}

= sup

{
c(t− s)(√

ct +d +
√

cs+d
)√

t− s
: t,s ∈ [0,1],t > s

}

= sup

{
c
√

t− s√
ct +d +

√
cs+d

: t,s ∈ [0,1],t > s

}
� c

2
√

d
.

Further, for arbitrarily fixed t,s,τ ∈ [0,1] , in view of inequality (2.1), we get

∣∣k(t,τ)− k(s,τ)
∣∣ =

∣∣(qt 3
2 + τ3e−τ)

1
3 − (qs

3
2 + τ3e−τ)

1
3
∣∣

=
∣∣[(q 2

3 t)
3
2 + τ3e−τ] 1

3 − [
(q

2
3 s)

3
2 + τ3e−τ] 1

3
∣∣

�
∣∣q 2

3 t−q
2
3 s

∣∣ 1
2 = q

1
3 |t− s| 1

2 .

Hence we see that there is satisfied assumption (ii) with the exponent β = 1
2 and the

constant kβ = q
1
3 .

Next, we estimate the constant K appearing in Theorem 4.1. In view of (4.4) we
obtain

K = q
1
3 +

∫ 1

0

(
τ3e−τ) 1

3 dτ = q
1
3 +9

(
1− 4

3
e−

1
3
)

= q
1
3 +0.4013 . . . .

Thus, inequality (4.2) will be satisfied provided the following inequality is satisfied

c

2
√

d

(
2q

1
3 +0.8026 . . .+q

1
3
)

<
1
4
.

For example, if we take c = 1
6 ,d = 9 and q = 1 then we can easily seen that the above

inequality is satisfied.
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