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ENDPOINT ESTIMATES FOR COMMUTATORS OF
SUBLINEAR OPERATORS IN THE MORREY-TYPE SPACES

HuA WANG

(Communicated by S. Li)

Abstract. Let [b, 7] (0 < o0 < n) be the commutators generated by BMO(R") functions and
a class of sublinear operators satisfying certain size conditions. The aim of this paper is to study
the endpoint estimates of these commutators on the weighted Morrey spaces and the generalized
Morrey spaces, under the assumptions that [b, 7] (0 < o < n) satisfy (weighted or unweighted)
endpoint inequalities on R” or on bounded domains. Furthermore, as applications of our main
results, we will obtain, in the endpoint case, the boundedness properties of many important
operators in classical harmonic analysis on the weighted Morrey and the generalized Morrey
spaces.

1. Introduction and main results

Suppose that .7 represents a linear or a sublinear operator, which satisfies that for
any f € L'(R") with compact support and x ¢ supp f,

SO

n =y

7 F(x)] < CO/R dy, (1.1)

where ¢ is a universal constant independent of f and x € R". The condition (1.1) was
first introduced by Soria and Weiss in [28]. It can be proved that (1.1) is satisfied by
many integral operators in Harmonic Analysis, such as the Hardy-Littlewood maximal
operator, Calderén—-Zygmund singular integral operators, Carleson’s maximal opera-
tor, Ricci—Stein’s oscillatory singular integrals and Bochner—Riesz means at the critical
index and so on.

Similarly, for given 0 < & < n, we assume that .7, represents a linear or a sub-
linear operator with order o, which satisfies that for any f € L'(R") with compact
support and x & supp f,

| Tt ()] <1 /]R WOy, (1.2)

n | =yl
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where ¢ is also a universal constant independent of f and x € R". It can be easily
checked that (1.2) is satisfied by some important operators such as the fractional maxi-
mal operator, Riesz potential operators and fractional oscillatory singular integrals and
SO on.

Let b be alocally integrable function on R", suppose that the commutator operator
[b, 7] stands for a linear or a sublinear operator, which satisfies that for any f € L!(R")
with compact support and x ¢ supp f,

16, Z1(F) ()| < e /

where ¢, is an absolute constant independent of f and x € R". Similarly, for given
0 < oo < n, we assume that the commutator operator [b, 7] stands for a linear or a
sublinear operator, which satisfies that for any f € L'(R") with compact support and

£fsuen/: () = ()| - |FO)]
X)—0\y)|" y
b, Zal(1) )| <es [, P

where c¢3 is also an absolute constant independent of f and x € R".

The classical Morrey spaces .27 were originally introduced by Morrey in [20]
to study the local behavior of solutions to second order elliptic partial differential equa-
tions. Since then, these spaces played an important role in studying the regularity of
solutions to partial differential equations. For the boundedness of the Hardy—Littlewood
maximal operator, the fractional integral operator and the Calderén—Zygmund singular
integral operator on these spaces, we refer the reader to [1, 2, 23]. In [19], Mizuhara
introduced the generalized Morrey space LP*© which was later extended and studied by
many authors (see [9, 10, 11, 18, 21]). In [14], Komori and Shirai defined the weighted
Morrey space L”*(w) which may be viewed as an natural generalization of weighted
Lebesgue space, and then discussed the boundedness of several classical operators in
Harmonic Analysis on LP>*(w).

In [18, 27], the authors investigated the boundedness of sublinear operators Z
(0 < o < n) and their commutators with BMO functions on weighted Morrey spaces
and generalized Morrey spaces. Motivated by [18, 27], in this paper, we will study
the endpoint estimates of these commutators generated by BMO(R") functions and
sublinear operators defined above in the weighted Morrey spaces L'¥(w) for 0 < k <
1, and in the generalized Morrey spaces L€, where © is a growth function on (0, 4-o)
satisfying the doubling condition. In order to simplify the notation, for any given ¢ >0,

we set
o (L) _ 001, L)

o o

b(x) —b(y)|- \f(y>|dy (1.3)
" e —y|" ’ .

Y, (1.4)

when ®@(7) =7 (1 +1log*7) and log™ r = max{log#,0} . The main results of this paper
can be stated as follows.

THEOREM 1.1. Let b € BMO(R") and [b, 7| satisfy the condition (1.3). Sup-
pose that 0 < k < 1, w € Ay, and for any given ¢ > 0,

w({xeR":|[b,7](f)(x)| >0})<Cy | @ (ﬁ) -w(x)dx, (1.5)

Rn

o



ENDPOINT ESTIMATES FOR COMMUTATORS OF SUBLINEAR OPERATORS 609

where ®(t) =t - (1 +1log"t) and Cy depends only on n,w and ||b||., but not on f and
0. Then for the above given ¢ > 0 and any ball B C R", there exists a constant C > 0
independent of f, B and ¢ such that

w({xeB:|b.7](H))| > o})

L +log" (w(B)'™") /)]
<C-Sgp{ W (B)F /;D(T)-w(x)dx}.

THEOREM 1.2. Let b € BMO(R") and [b, 7| satisfy the condition (1.3). Sup-
pose that © satisfies (2.3) with 1 < D(©) < 2", and for any given ¢ > 0,

’{xeRn;’[b,ﬂ](f)(x)’>G}’<C0/Rnd)<@>dx, (1.6)

where ®(t) =t - (1+log"t) and Cy depends only on n,D(®) and ||b||., but not on
f and ©. Then for the above given 6 > 0 and any ball B(xg,r) C R", there exists a
constant C > 0 independent of f, B(xo,r) and & such that

w(B)¥

|{x € Blxo,r) : |[b, 71(f)(x)| > o}

1+ log" (Pt ney
<C-su - / D (—) dx
et o(r) Blxo.r) c

1
o(r)

THEOREM 1.3. Let b € BUO(R") and b, 7] satisfy the condition (1.4). Sup-
posethat 0< a<n, g=n/(n—a), 0<x < 1/q, wi € Ay, and for any given 6 >0
and any bounded domain Q C R",

w(fre: o700 > )] <ao [0 (L2 ) wax
where ®(t) =t-(1+1log"t) and Cy depends only on n,o,w and ||b||., but not on f,

Q and o. Then for the above given ¢ > 0 and any ball B C R", there exists a constant
C > 0 independent of f, B and ¢ such that

! q . 1/q
(W'W (freB: b, Z)(H )] > a}))

14 log* (2B
< Cosup M/¢<m> W) d
B B

wi(B)X o

THEOREM 1.4. Let b € BUO(R") and b, 7] satisfy the condition (1.4). Sup-
pose that 0 < o <n, g=n/(n—a), O satisfies (2.3) with 1 < D(®) < 2"/4, and for
any given ¢ > 0 and any bounded domain Q C R",

[{xeQ: b, Z] ()] > o} < Co/gq) (@) dx, (1.8)
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where ®(t) =t-(1+1log™t) and Cy depends only on n,o.,D(©) and ||b|«, but not on
f» Q and o. Then for the above given 6 > 0 and any ball B(xy,r) C R", there exists
a constant C > 0 independent of f, B(xo,r) and ¢ such that

! 1/q
(@q(r) . |{XE B(xo,r) : |[b,:%¢}(f)(x)| > a}|)
o 5
<t BRI [ g (DY,

REMARK 1.5. It should be pointed out that the conclusions of our main theorems
are natural generalizations of the corresponding endpoint estimates on the weighted or
unweighted Lebesgue spaces. The operators satisfying the assumptions of the above
theorems include 6 -type Calderén—Zygmund operators, Marcinkiewicz integral opera-
tors, Littlewood—Paley operators, Bochner—Riesz means, fractional maximal functions
and fractional integrals, which will be discussed in the last section.

2. Notation and preliminaries

A weight w will always mean a non-negative, locally integrable function on R"
which is positive on a set of positive measure, B = B(xg,r5) = {x € R" : |x — x| < r}
denotes the open ball centered at xy and with radius rg > 0. Givenaball B and A > 0,
AB denotes the ball with the same center as B whose radius is A times that of B. Given
a Lebesgue measurable set E and a weight function w, |E| will denote the Lebesgue
measure of E and w(E) = [pw(x)dx. For 1 < p < o, a weight function w is said to
belong to the Muckenhoupt’s class A, if there is a constant C > 0 such that for every
ball B C R” (see [8, 22]),

(o) oo 2

Forthe case p =1, w € Ay, if there is a constant C > 0 such that for every ball B C R",

XeB

1
H/w(x)dx < C-essinf w(x).
B

We also define Aco = Uj<p<ed) . Itis well known thatif w € A, with 1 < p < oo, then
for any ball B, there exists an absolute constant C > 0 such that

w(2B) < Cw(B). 2.1)

In general, for w € A} and any A > 1, there exists an absolute constant C > 0 such that
(see [3])
w(AB) < C-A"w(B).
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Moreover, if w is in A.., then for all balls B and all measurable subsets E of B, there
exists a number 6 > 0 independent of E and B such that (see [8])

w(E) [E\®
w(B) “(B) | =2

We say that a weight w is in the reverse Holder class RHj, if there exist two constants
s >1 and C > 0 such that the following reverse Holder inequality with exponent s > 1
holds for every ball B C R".

(EH / W(x)sdx)l/s <c(|;{| / w(x)dx)-

Given a weight function w on R”, for 1 < p < o, the weighted Lebesgue space L1, (R")
is defined as the set of all functions f such that

e = ( [, bromma) <

In particular, when w = 1, we will denote L (R") simply by LP(R").
Let 0 < k¥ < 1 and u,v be two weight functions on R". Then the weighted Morrey
space L' (u,v) is defined by (see [14])

LY () = { £ € L) | Fllprgu = 5 / () dx < }

where the supremum is taken over all balls B in R". If u =v = w, then we set
L% (w,w) = L (w). Define

%Ll,logL( ) = {f € LlOC Hf” ///Llo;:L < oo}’

where ®(t) =¢- (1 +1log"¢) and

@ ()
L 3= 590 = | <o

Obviously, for 0 < k < 1, le'((u,v) D Q///Ll’('fgL(mv). When u = v = w, then we set
1,x _ 1,x
///LlogL(W’ w) = ///LlogL(W) .
Let © = O(r), r > 0, be a growth function, that is, a positive increasing function
n (0,+e0) and satisfy the following doubling condition:

O(2r)<D-0O(r), forall r>0, (2.3)

where D = D(©) > 1 is a doubling constant independent of r. The generalized Morrey
space L'"®(IR") is defined as the set of all locally integrable functions f for which (see

[19])

1
swp oo [ (pwldv< e,
r>0:B(xp,r) @(7‘) B(xo.r)
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where the supremum is taken over all balls B(xp,r) in R". We also define

A8, (B i= {1 € L) 1] g <}

“LlogL

where ®(¢) =1 (1+log™t) and

(g
7] yro = sup / F(x)] dx < oo.
B(xq,r)

‘LlogL r>0;B(xq,r) ‘B()C()7 I")|

Obviously, we have L'©(R") D ///Lll’gg ,(R"). From the above two definitions, for
given o > O, we may rewrite the right-hand side of the inequalities in Theorems 1.1-1.4

f f f
(Do, 12 g ey =2 [2CD,
spectively.

We next recall some basic definitions and facts about Orlicz spaces needed for
the proof of the main results. For more information on the subject, one can see [26].
A function @ is called a Young function if it is continuous, nonnegative, convex and
strictly increasing on [0, +e0) with ®(0) =0 and ®(¢) — +oo as t — +oo. We define
the ®-average of a function f over a ball B by means of the following Luxemburg

norm: 1 i
. X
Hqu)’B:mf{0>0; H/B(D<T)dx< 1}.

An equivalent norm that is often useful in calculations is as follows (see [26, 24]):

||f}|q,B 1nf{n+|B| @('f;))dx}gznfnw. (2.4)

re-

i

as ‘
1,k e 2
///Ll gL( ) Ll()éL

w, wd)

n>0

Given a Young function ®, we use @ to denote the complementary Young function
associated to @. Then the following generalized Holder’s inequality holds for any
given ball B (see [24, 25]).

31 Jo 1@ -5 <20l el

In order to deal with the weighted case, for w € A.., we also need to define the weighted
®-average of a function f over a ball B by means of the weighted Luxemburg norm:

Il n =005 - [ (LD Yuimar <1},

It can be shown that for w € A (see [26, 35]),

Hf”<1>(w),8%,%2f(‘){n+$/3q)<f;x”)w(x)dx}, (2.5)

ﬁ/}g\f(x)-g( CHchp BHchI)

and



ENDPOINT ESTIMATES FOR COMMUTATORS OF SUBLINEAR OPERATORS 613

Here, and in what follows, A ~ B means that there exist two positive constants C; and
C> such that C; < % < C,. The young function that we are going to use is ®(¢) =

t-(1+4log"t) with its complementary Young function ®(z) ~ ¢ — 1. In the present
situation, we denote
HfHLlogL,B = Hf||<1>,3’ HgHexpL,B = HquS,B;
and
1 | sogrer.s = 1oy e 18llexprin.s = l18lam,

By the (unweighted or weighted) generalized Holder’s inequality, we have (see [24, 35])

|B| / |f ‘dx < 2HfHLlogLBHgHexpLB7 (26)

and
1
m /B |f(x) -g(x)\w(x) dx < CHf}’LlogL(w),BHgHexpL(w),B' 2.7)

Let us now recall the definition of the space of BMO(R") (Bounded Mean Oscil-
lation) (see [7, 12]). A locally integrable function b is said to be in BMO(R"), if

1
1b]l. = sup — / 1b(x) — byl dx < oo,
s |B| /B

where bp stands for the average of b on B, i.e., bp = ‘%I Jzb(y)dy and the supremum
is taken over all balls B in R"”. Modulo constants, the space BMO(R") is a Banach
space with respect to the norm |- |.. By the John-Nirenberg’s inequality, it is not
difficult to see that for any given ball B (see [24, 25])

6= 08| o1 5 < CID 2.8)

expL,B

Furthermore, we can also prove that for any w € A.. and any given ball B (see [35]),

|6~ bs|| 5 <Clb].. 2.9)

expL(w

In the sequel, the letter C always denotes a positive constant which is independent
of the main parameters involved, but whose value may be different from line to line. We
also use Cy, 2, c3 appearing in the first section of this paper to denote certain constants.
For convenience, we write p’ = p/(p — 1) for given 1 < p < oo,

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Fix aball B = B(xy,rg) C R" and decompose [ = f1 + />,
where fi = f- X5, X,s denotes the characteristic function of 2B = B(xg,2rg). For any
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0< x<1,weA; and any given 0 > 0, one writes

w({xeB:[[b.7)(f)(x)| > o})

w(B)¥
1
gw(B)K w({xeB:|[b, 7](fi)x)| > c/2})
* W(jlg) w({x€B:|[b,7](£)x)| > 0/2})
=+ 1.

Using the inequalities (1.5) and (2.1), we get

d <C°'w(;z>K/nq’<|ﬂc(:)> wldx

~Gy- W(L)K /23‘I’<f£:)|> e
ZCO'W(zB)K' ! /23‘1)<&)-W(X)dx

o

dx

—~

1+log" (w(B)' ™) S )]
<C-s%p{ W (B /Bd>< p )~w(x)dx}.

For any x € B, from the definition of (1.3), it follows that

7R < [ 2 —f<y>y|'-1|f2<y>|dy

<afb) o] - [ 2 £0) d+/ )= bl 1L,

x —y|"
= U (x) +v(x).

So we have

)5) <@-w({x63:u(x)>0/4})+ w({xeB:v(x)>a/4})

=L+ 1.

1
w(B)¥

For the term I3, we can easily see that for every x € B,

2O, f()
/R” |X—y|”dy_/ ¢ lx— y\" 2 \21+1B\ /2,+l y)ldy. (3.1

Since w € Ay, then there exists a number s > 1 such that w € RH;. Hence, by us-
ing the above pointwise estimate (3.1), Chebyshev’s inequality together with Holder’s
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inequality and John—Nirenberg’s inequality (see [12]), we conclude that

1 4
K< —— 2
3 W B O_/Bu(x) w(x)dx

- ! SO
< -
= CZ’I 27+ 1B /2_/+13 o dy

@ . (/B [b(x) — bB}“"dx) " (Aw(x)“‘dx) "

- | SO -k
<
\Cgl 27TE| /2#13 p dy xw(B) ¥,

Furthermore, it follows directly from the A; condition and the fact 7 < ®(z) =¢- (1 +
log™¢) that

w(2/+1B) |2/ 1B o}

Y 1 w(2/*B) S W)l 1-x
L _c; : /WB dy x w(B)

. ,

/

1 : ‘f(y)| 1-x
<
C,E ( ] ) essjlrllf W(y) /j . —_— dy X W(B)

: ,

N

1
¢ =1 w(2/*1B) /sz @ -w(y)dy x w(B)'~*

~.

e [ (2 ) 5

N

1+log" (w(B)' ) SOl < ) F
<C-5111}p{ w(B)¥ /Bq)<T> } ; 2/+IB

Note that w € A| C A.., by the inequality (2.2), we get

= ] K oo ‘B‘ 5(1 K)
Z’lw 2]+lB 1-x <CZ (2}+IB)

oo o(1-x)
< CFZ1 (W) <C, (3.2)

which in turn implies that

1+log" (w(B)'¥) 1fO)]
I3<C~s1;p{ W(B) /qu( - )-W(y)dy}-

Similar to the proof of (3.1), for all x € B, we can show the following pointwise estimate
as well.

v <Cy

] |2J+IB| /sz = bs| - [f(v)]dy. (3.3)
Jj=
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Applying the above pointwise estimate (3.3) and Chebyshev’s inequality, we have

1
AT _/
w(B
s W(SB))K \21'“3‘ /’“B _bB} ’ |f(3’)}dy
w C > 1
s W((BB))K c g’ ‘ j'HB‘ 2/+13|b(y)_b2j“3| ) ’f()’)|dy

.
B Ejzzl |2J’+IB| iy 2015 = b - [ O) ] dy
=15+ 1.

To estimate the term Is, we first use the generalized Holder’s inequality with weight
(2.7), (2.9) and (2.5) together with the A; condition to obtain

C - 1
s c B Z w(2/1B) /2./‘+13 |b(y) B b2j+13| ' |f(y)}w(y)dy
C oo
< p w(B)'~ Z, l|o— b21+13||expL !“BHfHLlogL(w),zHlB
C

=

< Il (By_éggfo{wm/wf(ff?) e

Moreover, observe that for any a,b > 0, ®(a-b) < D(a) - P(b) when O(t) =1 (1 +

+ . _ .
log"#). For j=1,2,..., we may take N = 7w(21'+13)1*’< and then use the estimate
(3.2) to obtain

Cli]l: .

Is < w(B)! ¥

o
: o o(mRE) ) 7@
2{ 2f+1B T T W@TB) w2l B) /zmsq’< o )'W(Z)dz}
Ltlog” (w(B) ™) [ (/@) S w(B)
1+S‘;P{ e — he (%) 'W@"ZH 2B
L+ log" (w(B)!™%) [ (/)
<C'Slép{ W(B)K /Bq)< o )'W(Z)dz}~

For the last term Is we proceed as follows. Since b € BMO(R"), then a simple calcu-
lation shows that

<Cllp].

byiv1p = bs| <C-(j+1)[b]]s- (3.4)
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Applying the inequality (3.4) and the facts that w € A} and 1 < ®(r), we get

o 1 lfO)l
Iy <C-w(B)'"~ Z(H'l)HbH* |2/t1B| Jri+1p o ay

<CwlB)' B+ Il gy [, Ll w0y

i1 (2~7+IB) j+lg O

1+log" (w(B)! =% < w(B)' ¥
<C-51113p{ ng((B)K )/B<D<|féy))-W(y)dy}XZ(J+l)-W~

j=1

8

Since w € A| C A.., by using the inequality (2.2) again, we have

w(B)!*

oo oo ) ‘B‘ 5(1—)()
g w(2iT1B)1- K<CZ(J+1)'<2J'+1B)

o 1 6(1-x)

L +log* (w(B)' ) SOl
16<C-sgp{ WB)F /B‘D< - )-W(y)dy}.

Summarizing the above discussions, we obtain the conclusion of the theorem. [J

Therefore

Proof of Theorem 1.2. For any ball B = B(xg,r)CR" with xo € R"” and r>0, we
write [ as f = fi + f», where fi = f-x,,. Then for each fixed o > 0, we have

1
o [l B: (7w > o}

<$~|{XEB:|[b,<7](f1)(x)’>0/2}’+ ! HxeB:|b,T)(H)x)] > o/2}|

=J1+ /5.
We consider the term J; first. The condition (1.6) and the inequality (2.3) imply that

@Er) / ® ( |flc(;x>| ) >

g (1)

~0 o 8 s (0 )
®Er) /B(er) ¢ (@) dx}

1+10g+ |B(x0,r)]
<0~sup{ oty )/B( )d><|f(x))dx
X0,

1 <G

o(r) (o}
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We now turn our attention to the estimate of J,. Recall that the following estimate
holds for any x € B,

b, Z1(f2) ()] < p(x) + v(x),

S R e

where

and

= [ PO AU,

e — y|

Thus, we have

b < gy [fx e Bits) > 0/a}+ g+ [{v € B:v(x) > 0/}

=J3 +J4.

By using the previous pointwise estimate (3.1), Chebyshev’s inequality and the defini-
tion of BMO, we can deduce that

1 4
J3<w'5/3li(x)dx

S SOl B 1
<Cjzzl W/WBT‘W {@(r> .E/B }b(x)—b3|dx}

5 B 0@l 1 [ £O)]
< C|b||« - . . - d
Il X 5TE —6m 8@ ) by @ ©

1 £l o Bl e
<l a7 o (Fe) 1 E i o

Jj=1

1+log" (et ) Bl ety
<C-su / () —)d X - . .
w0 [ 2 e

Note that 1 < D(©) < 2", then by using the doubling condition (2.3) of ©, we can see
that

) ‘B‘ e) 21+1 oo (@) Jj+1
i B <C, .
j; \21+1B\ @ r 2 ¢ 3.5)

which in turn gives that

1 +10g |B(x07r)|
Jo< Costp (58t )/ q,<|f(y))dy
r>0 @(V) B(xo.r)
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Applying the previous pointwise estimate (3.3) and Chebyshev’s inequality, we have

Ji < o0 o Bv(x)dx
S @1(5;) gi \ZJLB\ 2/+lB| —bsl |70)|dy
< @1(9}’) gjg 12 JilB\ 2J+1B|b(3’)_b2f“3| |G| dy
+ (;?J’) . gj; |2.f+llB| 2j+1p ’be“B _bB| ' |f(y)’dy
=Js+Js

For the term Js, we first use the generalized Holder’s inequality (2.6), (2.8) and (2.4)
to obtain

Bl C &
Sem E Z’ Hb - szHBHexpLQj“BHfHLlogLQfﬂB

clpll« 18l < . n @)
< : f : o L) gL
c O Eﬁ‘lo N+ g |2/+1B] J2i+1p n @

Moreover, notice that the inequality ®(a-b) < ®(a)-P(b) holds for any a,b > 0, when
o-0(2/t1r)
2718

®(t) =t-(1+1log"t). For j=1,2,..., in this case, we may take 1 =

and then use the estimate (3.5) to obtain

C|

bl |B]
o o(r)

oo JH1, j+1 j+1
B ) G il N ol W ol [ o),
S\ TTE B B \e@n) ) Jswarn \ o

j=1
1 +log" (el
) If(Z)|>
<C|bll«- |1 +su / CD( dz
i1 s o(r) B(xo.r) o

Js <

5B eeh
i=1 ‘ZjJrlB‘ @(r)

1 +log* (B0
, e (% u>/ @Cﬂm>ﬂ
>0 o(r) B(xg,r) o
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For the last term Jg, an application of the inequality (3.4) leads to that

Bl < 1 /W)l
<c. 2L e —
e S0t [, L
_~ 1Bl e(2/*'r) 1 ()]
=C o(r) 2( + Dl 27+1B]  ©(2/+17) /13(x02/+1) (o} dy

B(xq,r
1 +log" () cD(f(y)|>dy
B(xq,r) (&

. r>0 @(r)
- . B e/ !r
Xj:z,l(1+1)' |2j!+1|B| ’ (®(r) )

Moreover, by using the doubling condition (2.3) of ® again and the fact that 1 <
D(®) < 2", we find that

o B ®2j+1 oo D(® j+1
Zl(j+1)-|2JH|B|- (G(r)r)gczl(jﬂ)-( §)> <C. (3.6)
J= j=

Substituting the above inequality (3.6) into the term Jg, we thus obtain

1-+log" (gt £6)]
Jo < C-su O ——— |d
6 r>g o(r) B(xq,r) ( o ) Y

Summing up all the above estimates, we therefore conclude the proof of the main the-
orem. [l

4. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Fix a ball B = B(xg,rg) CR"” and x € B, we split f as
usual by f:f-xw—i-f%(w)c =fi+/fo. Forany 0 < x < 1/gq, w! € A with ¢ =
n/(n— o) > 1 and any given ¢ > 0, we then write

! q . 1/q
(W'W (freB: b, Z)(N))] > G})>

! q . 1/q
< <WW ({XEB. |[b7ya}(f1)(x)’ > G/Q}))

! q . 1/q
+ <WW ({xeB:|[b, Zu](f2)(x)| > g/2})>

=1+ 1.



ENDPOINT ESTIMATES FOR COMMUTATORS OF SUBLINEAR OPERATORS 621

By using the assumption (1.7) and the inequality (2.1), we get

I/ <Co- w‘l(lB)K /B(I) (flT(x)) -w(x)dx

:co.wq(lB)K/mcp(@) w(x) dx
g OB ( <x|> "

wi(B)¥ w‘i(ZB) c

gC'S‘ép{w%lB)K/B“I’(f ) }

1+logh (4B )
<Cosup () ( (XI> wix
B wi(B)* o

For any x € B, from the definition of (1.4), it follows that

|16 Zo) (f2) ()] < e3 / ,, b0 =B 12O

e — |-

SC3’b(x)—bB|~/n |xf2y|” —dy+c / r b;?|n |£2( )|dy
= () + V().

So we can rewrite the term 7, as follows:

1/q
I < (W wi({xeB:pu(x)> 0/4})>

1 _ 1/q
- .
n (w(mw Wi({x e B: V() > 0/4})>
=L+
For the term 15, we can easily check that for given 0 < o < n and every x € B,

20 SOl < 1 /
e dy = gy <C Y, dy.
/R,, ey 0= Jomye ey ® J; Dig[i-al g WY @41

Since w? is in Ay, we know that there exists a number r > 1 such that w? € RH,.
Hence, by using the above pointwise estimate (4.1), Chebyshev’s inequality together
with Holder’s inequality and John—Nirenberg’s inequality (see [12]), we deduce that

B ( / ﬁ(x)qw%x)dx)l/q

\ 1 SO 1 ta
s CZ m/zﬁm o dy % wi(B)¥ ) (/B }b(x) —bB|qwq(x)dx>

j=1
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S 1 fO)]
<Cy — —d
jgl ‘2}+lB‘l—a/n /ZI'HB o Y

o 1/(qr') . 1/(qr)
- (/B }b(x) —bB| dx) (/B [wq(x)] dx)
S 1 SO 1g-
< - - a(g)l/a—x
\CJ:ZI ‘2j+lB‘l—O€/n /2j+lB o d W ( ) :
Moreover, by applying Holder’s inequality and then the reverse Holder inequality in

succession, we can show that w € A; NRH,, if and only if w? € Ay (see [13]). Thus, we
are able to verify that forany j € Z,

. 1/q . .
wi (271 g)l/a = (/ 1 wq(x)dx> < C-[27+1B|Ya=1 (2741 B),
2i+1B

which is equivalent to
wi(2/+1B)1/4 w(2/+1B)
‘2j+lB‘1/q S [2/+1B|
Therefore, by using the inequality (4.2) together with the facts that 1/¢g =1 — o/n,
weA; and t < D(r), we obtain

q(2Jj+1g\1/q qa(p\l/q—x
Czwa L S0 o _(B)
* [27H1B|1- a/n wa(2tIB)K Lhivip  © wd (271 B)1/a—x

4.2)

At S WY G 1 PN s
S =t ‘2j+lB‘ Wq(szrlB)K g © Wq(2j+1B)l/q7K
Wq(B)l/q—K

=1 /()]
<€ gtl wd(2/+1B)x /2j+13 o wy)dyx wd(2/H1B)1/a—x

1 /)] o wi(B)'ax
<conl e 0 (Y5 w0 3 B

j
1+logt (%) FO) = wi(B)l/ax
/BCD< = ) w(y)dy ijzl—wq(ZJ'HB)l/q*K'

Applying the inequality (2.2) and the property w? € A| C A, we can get

= wi(B )l/q K oo |B| 6%(1/q—x) oo 1 6*(1/q—x)
G P -
Lo ect(mm) (@) <o

(4.3)
where in the last inequality we have used the facts that 6* > 0 and 0 < Kk < 1/q.
Substituting the above inequality (4.3) into the term 5, we thus obtain

1+ log*t —W(B)K
I <C-sup () /q,<f(y)l> W)y
B B

wi(B)¥ o
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For the term Ig, similar to the proof of (4.1), for all 0 < @ < n and all x € B, we can
show the following pointwise estimate as well.

~ - 1
VWl <€ X g [, [60) =l L) (44)
=

Following the same arguments as in the proof of Theorem 1.1 and using the pointwise
inequality (4.4) and Chebyshev’s inequality, we have

I} < ! - g(/BV(x)qwq(x)dx)l/q

S B

s % ' % i m/w |b(y) = bs| - [£(v)] dy

s % ) Z m/,w |6(y) = byl [£ ()| dy
+#Bz)1/q g 2 m/w |byie1p = b | f(v)| dy

=I5+ I

To deal with the term 7, it then follows from the inequality (4.2) and the facts 1/g =
l—o/nand we A that

C& wi(B)\/ax 1

= .
5= O'.Z'l wid(2/H1B) /4= ya(2/+1B)K

wq(ZjJrlB)l/q
x W ./2j+lB }b(Y) _b2j+13} : }f(}’)|dy
C wi(B)/a—¥ 1
S0 S wi(2it1B) ek wa(2/HIB)K
w(2/+1B)
) |2/+1B| ./2./+13 |b(y) _b2j+13| ’ |f(y)}dy
cg& wi(B)l/ax 1
SG 21 Wwi(2 1 B)a—x a2 B)R /sz [60) = bassig| - [f ) [w() .
j:

Furthermore, by using the generalized Holder’s inequality with weight (2.7) and (2.9)
together with (2.5), we can conclude that

c&  wi(B)\/ax w(2/+1B
Ig = E 121 wq(2l+lB)1/‘1 K wq(21+lB H b2j+lB||expL(w),2!'“B||fHL10gL(w)72./+lB

CHbH*E wl(B )l/q N w(2/+1B)
STo & wi(2it1B) /4K wi(27H1B)x

i s oo () o)
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o-wi(2H1B)¥
w(2/+1B)
that ®@(¢) is submultiplicative (®(a-b) < ®(a) - ®(b) for any a,b > 0), we deduce

For j=1,2,..., we may choose N = . Then by using (4.3) and the fact

< Clbl wi(B)!/x  w(2/t!B)
5576 'zlwq(zzHB)l/q K W2/ 1)~

y o-wi(2/T1B)x L_¢© .w(2~’+1B)K.q) w(2/71B)

w(2/+1B) w(2/t1B)  w(2/+1B) wi(2/+1B)k
Y Gl
2/+1B (o
L+log! (i) 1 (1£()

< . .

<Clbl-- |1+ sup e /Bq>< : ) w(z)dz

S wi(B)!
gf /+IB 1/q—x

I1+1lo w(B)_
< C-sup £ (Wq(B) )/CI)<|f Z”)-w(z)dz
B

For the last term I; we proceed as follows. Since b € BMO(R"), as before, a straight-
forward computation shows that

|baye1 b < C-(j+D)||b]].. @.5)

Thus, by (4.5), (4.2), the A; condition and the fact that 7 < ®(r), we obtain

< CWi(E 1/‘1 2 7+l m/ﬂﬂg@d})
=C-||b]« 2 21(-?1);/)[11/: K wq(2/1+13) W;(i:;Bl)/;/q /ZIHB ‘fg)”d
sC ”b”*Z’l(J+ 1>qu:2/('+1>;/)ql/:—1< ' wq(2j1+13);< ’ W|(22/:Z|;) /2/“3 |féy)\ d
=C ”b”*20+ l)qugl(fl);/;/:—K ' w‘l(2jl+lB)K /2./+13 |fg)‘ W) dy

1+ log™ (B - P
< Coqupd 08 Grtar) [0 (L20) iy < 5 oy 2
B B (o)

wi(B)¥ = wa(2i+1B)1/a—x"
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Moreover, since w? € A} C A, by using the inequality (2.2) again, we have
oo Wq( )l/qu =< |B| (1/g—x
20D g <C LU (g

e 1 (1/g—x)
< j | —— <

which in turn gives that

1+log" (B
1< Cosup () /q)<f(y)|> W) dy
B B

wi(B)¥ o

Combining all the above estimates, we are done. [

Proof of Theorem 1.4. For any ball B = B(xg,r) C R" with xy € R" and r >0,
weset f = [ X, +f'l(23)c := f1+ f>. Then for each fixed ¢ > 0, we have

1 1/q
(eq(r {xeB: b, Z(N )] > a}|)

1 1/q
< (@‘I(r) -HxGBI Hb,ya}(fl)(xﬂ > 0/2}|>

| 1/q
+<@q |{x€B Hb,ga](ﬁ)(x” >G/2}’>
=J+Jb.

We consider the term J{ first. The assumption (1.8) and the inequality (2.3) yield that

e g o (1)
cargh [ o),
~G G0 557 ()
<l o o @ (707 25}

B(xq,r
coup[LRECER) g (),
S0 o(r) B(xo.r) o

We now turn our attention to the estimate of J5. Recall that the following estimate
holds for given 0 < & < n and any x € B,

|[b, Zo] (f2) (x)| < H(x) + V(x),
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where
fi(x) = e3|b(x) — bs] / xlfzyn —dy,

and

<y b(y) = bg|-|20)]

v(x) —C3/n e dy.
Thus, we have

1 1/q 1 _ 1/q

Jh < (@q {xeB:pu(x)> a/4}|> + <®q n {xeB:v(x) > a/4}’>

I:J3 +J4

Using the previous pointwise estimate (4.1), Chebyshev’s inequality, John—Nirenberg’s
inequality and the fact that 1/qg = 1— o//n, we deduce that

(/u qu)l/q

& )l M
; 2r+lB|1 - /WB—G dyx | |B|- |B|/|b ) — bp|"dx

o B et 1 / lf()|
< B0 o
CHbH Z |2;+IB|1/q O(r) 9(2J+1r) B(xp2itlr) O dy

Observe that <7+ (1 +log"t) = ®(t), we get

/ < BlYe et 1 SO
K< Clbl- g‘l |2/+1B|1/4 CY0) x O(2/+1y) /B(xog_/ﬂr)q) o 4y

1B(xo.r)] _ .
L+log” (o) [ o If(y)) 3 BV e
B \ O 2B e0)

<C-su
o0 o)

Note that 1 < D(0) < 2"/4  then by using the doubling condition (2.3) of ©, we are
able to verify that

oo 1/ j+15 oo Jj+1
5 Bl ey § (D(@)) e )
J

S [l e(r) S\ 2

Hence

1_,’_10g+ (|B((axo7r)|) |f( )‘
J;<C-su ) / q)(—y)d
} r>g o(r) B(xq,r) 9 Y




ENDPOINT ESTIMATES FOR COMMUTATORS OF SUBLINEAR OPERATORS 627

Applying the previous pointwise estimate (4.4) and Chebyshev’s inequality, we have

i<ty g (frore)

|B|'/a C 1
< 9(7’) g}zzl ‘ZjJrlB‘l*a/" /2j+13’b(y)_b3|'|f(y)’dy

B|'/1 C & 1 _
S e(r) o & B[ /QMB’b(y)_bz-f“B"’f(y)|dy
IB|'e C & 1 /
=y — byji1g — bp| - d
@(r) ng’l ‘2]+IB|1*OC/}1 2J+IB| 2/+1B B| |f(y)| y
=JE+ Jg.

For the term J%, notice that the inequality ®(a-b) < ®(a)-®(b) holds for any a,b >0,
when @(¢) =¢-(1+log™ t). We then use the generalized Holder’s inequality (2.6), (2.8)
and (2.4) together with (4.7) to obtain

B[V € & /n
JS o(r) Zl2’“3|a Hb bzf“BHexpngHBHfHLlongjHB
Cli| \B\”q & it/ n £ ()]
< o 2’21 B x#;% n+\21'+1B\ 2j+13q) o dz
Cllp|l« \B\”q & it | O/7
S [o o(r) 2’2 B’

J=

c-0(2/"r) o 002" |2/+1B] |f(2)]
. R G . YAl
X{ 2 g Tp e C\e /2./'+IB s )%
L+ log" (Fg) /)
<Clb]l«- |1 4+su @(—')dz
H H r>g 9(") B(xq.r) o

(3 B ek
=1 27+1B|Va O(r)

+1og" (“635) /)
<C-s / Ol —= |d
e o(r) B(x,7) ( Y ) -

For the last term Jé, in view of the inequality (4.5) and the fact that < @(r), we get

/ \B\l < 1 /)
Jo<C 2 G+ D]l 2/ 1g[1=a/n /zjﬂB p dy

\B\l - e(2/tr) 1 SOl
e . : O —=
2 |b|| |2J+IB|1—O£/71 @(2]+1r) /B(x0,2j+lr) dy

(&
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I +log" (%gt) £0)]
<C-su ! / @ ( —) d
b o0 s \ o )@

i L) Bl e@t)
2V G e

Moreover, by using the doubling condition (2.3) of ® again and the fact that 1 <
D(©) < 24 we find that

i(jﬂ)- w/q -G(ZMV)<Ci(j+1)-<D(®)>M<C. (4.8)
=1

12/+1B|Va  O(r) pe] 21/

Substituting the above inequality (4.8) into the term J/., we finally obtain

1+10g (|B(x07 )|) |f( )‘
J.<Cosu o) q)(—y)d
6 r>g o(r) B(xq,r) 9 g

Summing up all the above estimates, we finish the proof of the main theorem. [

5. Some applications

In this section, we will give some applications of our main theorems to several
integral operators such as 0 -type Calderén—Zygmund operators, Marcinkiewicz inte-
gral operators, Littlewood—Paley operators, Bochner—Riesz means, fractional maximal
functions and fractional integrals.

5.1. 6-type Calder6n-Zygmund operators

Calder6n—Zygmund singular integral operators and their generalizations on the
Euclidean space R have been extensively studied (see [7, 8, 31, 33] for instance).
In particular, Yabuta [33] introduced certain 0 -type Calderén—Zygmund operators to
facilitate his study of certain classes of pseudo-differential operators. Let 6 be a non-
negative, non-decreasing function on (0,+oe) with

/1 0(1) - |logt] , _
0 t

A measurable function K on R” x R"\{(x,x) : x € R"} is said to be a 0 -type kernel if
it satisfies

() [K(x,y)| < C-|x—y[™", forany x # y;

(i) [K(x,y) = K(z,y)|+|K(y,x) = K(y,2)| < C-0(|]x — 2| /|x = y[) [x— y| =", for |x—
7| < |x—yl/2.

Let Ty be a linear operator from . (R") into its dual .’ (IR"). We say that Ty is
a 0 -type Calder6n—Zygmund operator if
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(1) Ty can be extended to be a bounded operator on L?(R");

(2) There is a O-type kernel K such that Tg f(x) = [p: K(x,¥)f(y)dy forall f €
Cy(R™) and for all x ¢ supp f, where Cj’(R") is the space consisting of all infinitely
differentiable functions on R” with compact supports. If b € BMO(R"), we define the
commutator [b,Ty| to be the operator

[b,Tg]f (x) = b(x) - To f (x) — To(bS)(x) = / [b(x) = b(y)|K(x,y)f(y)dy.

n

The following endpoint estimates for commutator of the 6-type Calder6n—Zygmund
operator were established in [16] and [36].

THEOREM 5.1. ([36]) Let w € Ay and b € BMO(R"). Then for all ¢ > 0, there
is a constant Cy > 0 independent of f and ¢ such that

w({xeR": |[b,To](f)(x)| > c}) gco/ @('fg)) -w(x) dx,

Rn
where ®(t) =1t(1+log"¢).

THEOREM 5.2. ([16]) Let b € BMO(R"). Then for all ¢ > 0, there is a constant
Co > 0 independent of f and o such that

[{xeR": |[b,To](f)(x)| > o} <C°/an)<@) e

where ®(t) =1t(1+1log"t).
Then, from Theorem 1.1 and Theorem 1.2, we immediately get the following:
COROLLARY 5.3. Let 0 <k < 1, we Ay and b € BMO(R"). Then for any given

o0 > 0 and any ball B, there exists a constant C > 0 independent of f, B and ¢ such
that

1
w(B)*

w({xeB:|[b,Ty](f)(x)| >0}) <C- H@(%)

H'///LlifgL(W)
where ®(t) =1t(1+1log"t).

COROLLARY 5.4. Let b € BMO(R"). Suppose that © satisfies (2.3) and 1 <
D(®) < 2", then for any given ¢ > 0 and any ball B(xy,r), there exists a constant
C > 0 independent of f, B(xo,r) and © such that

o |x B0 : BTl > o} <C- H‘D@) fo/

where ®(t) =1t(1+log"¢).
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5.2. Marcinkiewicz integral operators

Suppose that §”~! is the unit sphere in R” (n > 2) equipped with the normalized
Lebesgue measure do. Let  be a homogeneous function of degree zero on R” satis-
fying Q € L'($"7!) and [ 1 Q(¥')do(x') =0, where x' = x/|x| for any x # 0. Then
the Marcinkiewicz integral of higher dimension is defined by

: </0w’Fﬂ7t<x>|2%>l/2,

Fasl) = | 2623) 1) ay.

oyl [x =y

where

For b € BMUO(R"), the commutator operator [b, ] is defined by (see [6])

A (/ ’ Qt 2dt>1/2’

Ay - | 209 110y~ ()] () dy.

oyl [x =yt

where

For 0 < o < 1, we say that Q € Lipa(S”_l), if there exists a constant L > O such that
Q) — Q)| <Ll —y|*, forany ',y € ",
Let H be the Banach space

H = {h Il = (/Om|h<r>|2f—§)l/2 <w}.

Then, it is clear that [b, ug|(f)(x) = ||F£7t (x)|]. By Minkowski’s inequality and the
condition on Q, we can get

, 12
paal (] < [ T2 w00 ol ([T )

<C2/n [b(x) = b (y)\-\f(y)ldy

e — y|

where ¢, is an absolute constant independent of f and x € R”. Thus, [b,ugq] satisfies
the condition (1.3). Moreover, in [6], Ding et al. considered the weighted weak LlogL-
type estimate for the commutator [b, Ug] and proved:

)

THEOREM 5.5. ([6]) Let 0< <1, Q€ Lipa(S"~'), we Ay and b€ BMO(R™).
Then for all c > 0, there is a constant Cy > 0 independent of f and ¢ such that

w({xeR": |[b,ua](f)(x)]| > 0}) < CO/R,,‘D (@) -w(x)dx,

where ®(t) =1t(1+1log"t).
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In particular, we have the following estimate if w is taken to be a constant function.

THEOREM 5.6. ([6]) Let 0 << 1, Q€ Lipg(S"~1) and b € BMO(R"). Then
forall o >0, there is a constant Cy > 0 independent of f and ¢ such that

{xeR":|[b,ua)(f)(x)| > o} <C0/an)<@> o

where ®(t) =1t(1+log"t).

As a consequence of Theorem 1.1 and Theorem 1.2, we obtain the following
results:

COROLLARY 5.7. Let 0 < @ < 1, Q € Lipo(S"™1), 0 <k <1, w€ Ay and
b€ BMO(R"). Then for any given ¢ > 0 and any ball B, there exists a constant C >0
independent of f, B and ¢ such that

e nes it -oh<e fo( )]

LlogL

where ®(t) =1t(1+1log"t).

COROLLARY 5.8. Let 0 < ¢ < 1, Q € Lipo(S"~!) and b € BMO(R"). Suppose
that © satisfies (2.3) and 1 < D(©) < 2", then for any given ¢ > 0 and any ball
B(xo,7), there exists a constant C > 0 independent of f, B(xo,r) and & such that

%.’{xeB(xo,r) LB o] (N)(0)] > o} <C- Hq’<f)H ’

Ll()éL

where ®(t) =1t(1+log"¢).

5.3. Littlewood—Paley operators

Let € > 0 and y be a fixed function which satisfies the following properties:

(1) WELI(R”) and [ W(x )dsz;

(@) y(x) <C- (1 [af) "0+

3) lyx+y) - yx)| <C- (L )~ 140) when 2]y] < [,

We set y;(x) =t "y(x/t) and T'(x) = {(y,t) € R%" : [x—y| <}. The Little-
wood-Paley g-function, Lusin area integral and the g -function will be defined re-
spectively by (see [32])

gu(f)(x) = (/0 |y flx >2"”) "

sy =[] 1w roP )"
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and

/2
zdydt
(//w(zﬂx y|> [vixf0) ’th) AL

For b € BUO(IR"), we will consider the commutators generated by b and Littlewood—
Paley operators, which are defined respectively by the following expressions (see [34]):

o 2\ "?
[b,gw](f)(X)=</0 t) ,
5 1/2
sl - Jf, s
and

(5,85} (H)(x)

B (//Ml (ﬁ)ln

Let H be the Banach space

- {h R (/0°°|h<t>|2?)1/2 < w}
H- {h Il = ( I ()P 2 )1/2 < w}.

Fy(x) = / b))y (x =) £ (v) dy,

/ [bl) =)y (x =) f(v) dy

/,1 )= b(2)|w(y—2)f(z)dz

/n [b(x) = b(2)|wi(y—2)f(z)dz

5 1/2
dydt
;;Ii'> ,k > 1.

or

If we set

Fy ) = [ b0 -b@)wilr -2 () dz,

and denote the characteristic function of T'(x) by AT (x) - then, for each fixed x € R", it
is easy to see that

[0.8](N@) =g, [5:5y] (NG =[2re - Fya ()]
and

An/2
685 ] (F)x) = H<;> Fp(xy)| -

t+[x—yl
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By using Minkowski’s inequality and the condition on Y, we can get

. ) 1/2
el <er [ oo y>>~*f<y>|(/o (& ) ?> “

<cz/n\b() bOI-1FO 4,

e —y

Similarly, we can also prove

!Mékaxw|<c;/ () —bO)| - f )],

" [x —y|"

)

and
[6C0) —bW)I-IfO)I

" e — y|

(6,85, ] ()] < 2 /

where ¢, is an absolute constant independent of f and x € R”". Thus, [b,gy], [b,Sy]
and [b, gi_w} all satisfy the condition (1.3). The following endpoint estimates for these

commutator operators [b,gy], [b,Sy] and [b,g; 1,/] were proved by Xue and Ding in
[34], when b € BMO(R") and w € A;.

)

THEOREM 5.9. ([34]) Let A >3, we€ Ay, b € BMO(R") and v be a function
on R" satisfying (1)—(3) mentioned above. Then for all ¢ > 0, there is a constant
Co > 0 independent of f and o such that

w({xeR":|[b,Ty](/)(x)| > 0}) < Co an) (@) -w(x)dx,
where ®(t) =t(1+log" ) and Ty is gy or Sy or Sy

THEOREM 5.10. ([34]) Ler A >3, b € BMO(R") and y be a function on R"
satisfying (1)—(3) mentioned above. Then for all ¢ > 0, there is a constant Cy > 0
independent of f and ¢ such that

[{x e R":|[b,Ty](f)(x)| > o} gCOA{n@(@)dx’

where ®(t) =t(1+log" 1) and Ty is gy or Sy or gi_w.
Then, from Theorem 1.1 and Theorem 1.2, we can show that:

COROLLARY 5.11. Let A >3, 0< k<1, we A, b€ BMOR") and y be a
Sunction on R" satisfying (1)—(3) mentioned above. Then for any given ¢ > 0 and
any ball B, there exists a constant C > 0 independent of f, B and ¢ such that

e (lre B B TW] > o)) < H (f)H/, 7

Ll()éL( )

where ®(t) =t(1+log*t) and Ty is gy or Sy or &y



634 H. WANG

COROLLARY 5.12. Let A >3, b € BMO(R") and y be a function on R" satis-
Sfying (1)—(3) mentioned above. Suppose that © satisfies (2.3) and 1 < D(©) < 2",
then for any given ¢ >0 and any ball B(xo,r), there exists a constant C > 0 indepen-
dent of f, B(xo,r) and o such that

ot |(re B0 [ (0] > o} <c- o L) H/,,

where ®(t) =t(1 +log*t) and Ty is gy or Sy or &y

5.4. Bochner—Riesz means

The Bochner—Riesz means of order 6 > 0 in R" are defined initially for Schwartz
functions in terms of Fourier transforms by

0 ~

— 2
m@ne=(-50) 7@, 0<r<,

where f denotes the Fourier transform of f. We recall that the Bochner—Riesz means
can be expressed as convolution operators (see [17, 30])

Tlgf(x) = (¢1/R*f)(x)7

where ¢(x) = [(1—|-]*)2]*(x) and ¢1/r(x) = R"- ¢(Rx). It is well known that the
kernel ¢ can be represented as (see [17, 30])

0(x) = 1 OT(8 4+ 1) x|~ +91y (2],

where J,(¢) is the Bessel function
1 |
7/ (1 —s*)H72 ds.
) /-1
Let b€ BMO(R") and 0 < R < «. Consider the commutator [b,T,2] defined by

[, TR](f)(x) = b(x) - T f(x) — T (bf) (x) = / [b(x) — b()] 61 /r(x — ¥) f(y) dy.

Rn

The maximal operator [b7 T*‘S] associated with the commutator is defined by

[b, 2] (f)(x) = sup
R>0

(b, 18)(£))

Let H be the space
H= {h: ||| = sup|n(R)| < oo}.
R>0
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Then, it is clear that [b,72](f)(x) = |[b(x) - T f(x) = T (bf)(x)|. If § > (n—1)/2,
by the kernel estimates of Tlf, we have

5 R
(B ENN] < c2sup f ) =b e o100y
[b(x) b0 |- 0)
<C2/n ‘X—y‘" d )

where ¢; is an absolute constant independent of f and x € R”. Thus, [b, Tf] satisfies
the condition (1.3). Furthermore, in [15], Liu and Lu established weighted endpoint
estimates of Llog L-type for maximal commutators of the Bochner—Riesz means.

THEOREM 5.13. ([15]) Let 6 > (n—1)/2, we A| and b € BMO(R"). Then for
all o > 0, there is a constant Cy > 0 independent of f and o such that

wﬂﬁeRWHh@Mﬂ@ﬂ>GD<%AQDG%i)w@Mn
where ®(t) =1t(1+log"¢).

THEOREM 5.14. ([15]) Let 6 > (n—1)/2 and b € BMO(R"). Then for all ¢ >
0, there is a constant Cy > 0 independent of f and ¢ such that

" /()]
[{xeR .|[b,Tf](f)(x)}>o}}<co/Rnd>< )dx,

o
where ®(t) =1t(1+1log"t).

As a consequence of Theorem 1.1 and Theorem 1.2, we can prove the following
results:

COROLLARY 5.15. Let § > (n—1)/2, 0<x <1, we Ay and b € BMO(R").
Then for any given ¢ > 0 and any ball B, there exists a constant C > 0 independent
of f, B and o such that

Wéywqgqumnﬂgwﬂ>GH<cM¢G§NL

)
1,x
///LlogL(W)

where ®(t) =1t(1+1log"t).

COROLLARY 5.16. Let 6 > (n—1)/2 and b € BMO(R"). Suppose that © sat-
isfies (2.3) and 1 < D(©) < 2", then for any given ¢ > 0 and any ball B(xy,r), there
exists a constant C > 0 independent of f, B(xg,r) and & such that

% H{xeBxo,r): |[b,T](f)(x)] > 0} < C- H(D<£) H%L'if?gf

where ®(t) =1t(1+log"¢).
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5.5. Fractional integrals

For given o, 0 < a0 < n, the fractional integral operator (or the Riesz potential)
1 is defined by (see [29])

f) 2°mir(9)

1
0= 5 e 1= ")

We also define the associated fractional maximal function with order o by

Mal1)0) = sup—— [ 70)lay,

x€B ‘

where the supremum is taken over all balls containing x. When b € BMO(R"), the
commutators [b,Iy| and [b,M,] are defined as

oLl ) = b03) 1l )~ Fab)0) = [ 10— b0)] L
M )0) = sup e [ [605) =590

In [3, 4], Cruz-Uribe and Fiorenza discussed the unweighted and weighted endpoint
inequalities for commutators of fractional integrals and proved the following:

THEOREM 5.17. Let 0 < ax < n, g=n/(n—a), w? € A| and b € BMO(R").
Then for any given ¢ > 0 and any bounded domain Q C R", there is a constant Cy > 0
which does not depend on f, Q and & such that

Wi ({xeQ: Hb,la}(f)(x)| > G})]l/q < CO/QG) (@) -w(x)dx,
where ®(t) =1t(1+log"t).

THEOREM 5.18. Let 0 < a <n, g=n/(n—a) and b € BMUO(R"). Then for
any given ¢ > 0 and any bounded domain Q C R", there is a constant Cy > 0 which
does not depend on f,  and o such that

fre: ] >0} < [ o (L )ax

where ®(t) =1t(1+log"¢).
Then, from Theorem 1.3 and Theorem 1.4, we immediately get the following:

COROLLARY 5.19. Let 0 < oo <n, g=n/(n—a), 0 <k <1/q, wi € Ay and
b € BMO(R"). Then for any given 6 > 0 and any ball B C R", there exists a constant
C > 0 independent of f, B and ¢ such that

(s it on) e Jo()] .

LlogL w, Wq)

where ®(t) =1t(1+1log"t).



ENDPOINT ESTIMATES FOR COMMUTATORS OF SUBLINEAR OPERATORS 637

COROLLARY 5.20. Let 0< o <n, g=n/(n—a) and b € BUO(R"). Suppose
that © satisfies (2.3) and 1 < D(©) < 2"/4, then for any given ¢ > 0 and any ball
B(xp,r) C R, there exists a constant C > 0 independent of f, B(xo,r) and o such
that

(g o lpriniol=a)l) <o fo( D)

LlogL
where ®(t) =1t(1+log"¢).

If we define the commutator [b,1,]" by

b1l (1)) = [ [) =)

then from the proof of Theorem 1.3 and Theorem 1.4, we know that the conclusions of
Corollaries 5.19 and 5.20 still hold if one has [b,1,]" instead of [b,1I,]. It should be
pointed out that [b,My](f) can be controlled pointwise by [b,1,]"(|f|) for any f(x)
(see [5]). In fact, for any 0 < @ < n, x € R" and r > 0, we have

/)

7‘1,
ey @

bl (100> [ PO, ]

[y=al<r x—y|"= T

[ @ -b0)-1f0)lay.
ly—x|<r
Taking the supremum for all » > 0 on both sides of the above inequality, we get

[b,Mg](f)(x) < [b,1o]) " (If])(x), forallxeR".

Hence, as a direct consequence of the above results, we finally obtain

COROLLARY 5.21. Let 0< oo <n, g=n/(n—a), 0< k< 1/q, wI € A| and
b € BMO(R"). Then for any given 6 > 0 and any ball B C R", there exists a constant
C > 0 independent of f, B and ¢ such that

Gﬂ%awﬂﬁEmeMdumﬂ>chm<CH o) . .

Llo L (wwd)

where ®(t) =1t(1+log"¢).

COROLLARY 5.22. Let 0< o <n, g=n/(n—a) and b € BUO(R"). Suppose
that © satisfies (2.3) and 1 < D(©) < 24, then for any given ¢ > 0 and any ball
B(xp,r) C R, there exists a constant C > 0 independent of f, B(xo,r) and o such
that

(o tretan: bl >a)l) <o Jo( D)

LlogL

where ®(t) =1t(1+log"¢).
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