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INEQUALITIES FROM GENERAL QUASI–LINEAR MEANS

STEPHEN G. WALKER

Abstract. The paper has a number of aims. The first is to demonstrate the use of the compari-
son theorem for quasi-linear means to see how mean inequalities, and other apparently unrelated
inequalities, can be seen from the perspective of quasi-linear means. Second, we will be gener-
alizing some means, such as the identric mean, by observing its representation as a quasi-linear
mean. Finally, we will generalize the quasi-linear mean comparison theorem which provides
an extension to the Jensen-Steffensen-Boas inequality for a strictly increasing concave function.
This allows for new inequalities to be introduced.
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[5] N. ELEZOVIĆ AND J. PEČARIĆ, Differential and integral f -means and applications to digamma

function, Math. Inequal. Appl. 3 (2000), 189–196.
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