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Abstract. The paper has a number of aims. The first is to demonstrate the use of the compari-
son theorem for quasi-linear means to see how mean inequalities, and other apparently unrelated
inequalities, can be seen from the perspective of quasi-linear means. Second, we will be gener-
alizing some means, such as the identric mean, by observing its representation as a quasi-linear
mean. Finally, we will generalize the quasi-linear mean comparison theorem which provides
an extension to the Jensen-Steffensen-Boas inequality for a strictly increasing concave function.
This allows for new inequalities to be introduced.

1. Introduction

The quasi-linearmean ([3]) of distribution function F on [a,b] , written as M(φ ,F) ,
is given, for some strictly monotone (which we will always take to be increasing) and
continuous function φ(·) , by

M(φ ,F) = φ−1
(∫ b

a
φ(t)F(dt)

)
. (1)

For a historical perspective on the quasi-linear mean and a collection of the key results,
see [12]. Recent applications have been in measures of income inequality, see [10],
where the form of (1) is shown to follow as a consequence of a number of axioms, or
properties, a mean should possess.

There is also by now a vast literaure on mean inequalities. The most elementary of
these being the geometric-arithmetic mean inequality; for positive and finite numbers a
and b ,

G(a,b) � A(a,b) where G(a,b) =
√

ab and A(a,b) = 1
2 (a+b).

There are by now many such inequalities relating to different means, such as the identric
mean, the logarithmic mean, the harmonic mean, the Lehmer mean, the power mean,
and so on. We provide a few references here, but there are many such articles; see [2],
[16], and [7], for example.

There are also articles on inequalities which at first sight have no apparent connec-
tion to mean inequalities, yet can be demonstrated to be such; see [15]. The paper [15]
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makes use of quasi-linear means to look at a number of mean inequalities. The relevant
result; i.e. the comparison theorem for quasi-linear means, is that

M(φ1,F) � M(φ2,F) ∀ distributions F on [a,b] ⇐⇒ φ1 ◦φ−1
2 is concave on [a,b].

(2)
So it is (2), specifically the sufficiency part, which provides many of the mean inequal-
ities, and other ones beside. Once (φ1,φ2) have been set, the check is the concavity of
φ1 ◦ φ−1

2 , in order to obtain a mean inequality, which is in most cases an easier check
that a direct study of the inequality. A proof of (2) is given in [9], and see also [14]. A
novel proof using the Neyman-Pearson lemma is given later in the paper, and this new
proof allows a generalization of (2).

Now [5] use (2) for establishing inequalities involving the digamma function and
[15] use (2) for inequalities involving polygamma functions. As we have mentioed, the
ease of proving proposed inequalities is reduced to checking the concavity of φ1 ◦φ−1

2 ,
which is equivalent to φ1 being more concave than φ2 . On the other hand, when the
same φ(t) is used, if F1 � F2 then

M(φ ,F1) � M(φ ,F2)

providing another source of mean inequalities.
There are a number of generalizations of (1), for example [18] describe the gener-

alized weighted quasi-linear mean

M(φ ,F,g) = φ−1
(∫ b

a
φ(g(t))F(dt)

)
,

where g is a real Lebesgue integrable function on [a,b] . On the other hand, [11] study
a more general version

M(φ ,F,g) = φ−1

(
n

∑
i=1

∫ b

a
φ(gi(t))Fi(dt)

)
.

The extension considered in the present paper is to allow F in (1) to be more gen-
eral than a distribution function. While F still takes values in [0,1] and F(b) = 1,
there are no other restrictions. Then we can show that (2) still holds for such F and
consequently this allows generalizations of inequalities in the literature. Moreover, the
Jensen inequality which drives (2) and the ensuing inequalities is no longer available
once we allow F to move away from a distribution function. This extension and new
inequalities are the main contribution of the paper.

The layout of the paper is as follows; in Section 2 we characterize some well
known means in terms of quasi-linear means. Some known and some new represen-
tations. The sub-section 2.1 uses such characterizations to introduce new general-
ized means to the literature and sub-section 2.2 highlights the full extent of the use
of the quasi-linear mean comparison theorem by presenting inequalities realted to the
polygamma functions. Section 3 then sets about generalizing the comparison theorem,
using the Neyman-Pearson lemma. In particular, a new generalization of the Jensen
inequality is given for a strictly increasing concave function and illustrations are pre-
sented in Section 4.
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2. Basic means and inequalities

First we will list some means in the form of (φ ,F) for pairs (a,b) , so F is a
probability distribution on the interval [a,b] . We will also use f to denote the density
function corresponding to F . In the following U(a,b) denotes the uniform distribution
on [a,b] .

1. φ(t) = s and F = U(a,b) gives the arithmetic mean A(a,b) = 1
2 (a+b) . This can

also follow from φ(t) = t and f (t) = 1
2 at t = a and f (t) = 1

2 at t = b .

2. φ(t) = logt and F = U(a,b) gives the identric mean

I(a,b) = e−1
(

bb

aa

)1/(b−a)

.

3. φ(t) = logt and f (t) = 1
2 at t = a and f (t) = 1

2 at t = b yields the geometric
mean G(a,b) =

√
ab .

4. φ(t) = −1/t and F = U(a,b) yields the logarithmic mean

L(a,b) =
b−a

logb− loga
.

5. φ(t) = tr and f (t) = 1
2 at t = a and f (t) = 1

2 at t = b yields the power mean

Pr(a,b) =
( 1

2 (ar +br)
)1/r

.

6. φ(t) = −1/t and f (t) = 1
2 at t = a and f (t) = 1

2 at t = b yields the harmonic
mean

H(a,b) = (1/a+1/b)−1 .

7. φ(t) = tr and F = U(a,b) yields the general logarithmic mean

Lr(a,b) =
(

br+1−ar+1

(r+1)(b−a)

)1/r

.

8. We conclude such examples with the Lehmer mean,

Lh(a,b) =
ar+1 +br+1

ar +br ,

which becomes the arithmetic mean with r = 0. While φ(t) = t , the density
function f (t) is more exotic; an extended beta density on [a,b] , given by

f (t) = c(α,β )(t −a)α−1(b− t)β−1
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where c(α,β ) is the normalizing constant. Then∫ b

a
t f (t)dt = a+(b−a)

α
α + β

= a
β

α + β
+b

α
α + β

and hence we recover the Lehmer mean with β = ar and α = br .

Let us first consider the example 5 and the well known power means inequality, which
is that

Pr1(a,b) � Pr2(a,b) for r1 � r2.

Now if φ1(t) = tr1 and φ2(t) = tr2 then φ1 ◦ φ−1
2 (t) = tr1/r2 which is concave for

r1/r2 � 1. Hence, the power means ordering follows from (2). The geometric mean-
arithmetic mean inequality follows from the fact that logt is concave.

Other inequalities which have been published include

L(a,b) � I(a,b) � A(a,b),

the first inequality following from the fact that −e−t is concave and the second inequal-
ity follows from the fact that log t is concave. Also known is that

H(a,b) � G(a,b)

which again follows from −e−t being concave. Also published, see for example [7], is
the inequality

G(a,b) � L(a,b). (3)

To prove this using quasi-linear means we need to find an alternative version for the
logarithmic mean.

THEOREM 1. It is that, with b > a,

L(a,b) = exp

(∫ b

a
logt FL(dt)

)
where

fL(t) = wδa(t)+ (1−w)δb(t)

with

w = 1−
log λ−1

logλ

logλ
,

and λ = b/a and 0 < w < 1
2 .

Proof. This is quite straightforward to show by equating

w loga+(1−w) logb = log
b−a

logb− loga
= loga+ log

λ −1
logλ

,
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from which w follows. That 0 < w < 1
2 follows from the inequality

1
2 <

log λ−1
logλ

logλ
< 1

which follows from the two inequalities, for λ > 1,
√

λ logλ < λ − 1 and λ − 1 <
λ logλ . �

Theorem 1 could be proven directly, but it is insightful to see it working via the
quasi-linear means. Now

G(a,b) = exp

(∫ b

a
log t FG(dt)

)
where fG(t) = 1

2 δa(t)+ 1
2 δb(t) . So FL � FG which implies, see for example [10], that

M(φ ,FG) � M(φ ,FL) , proving (3).
So it is possible to run through all the combinations checking for the concavity

of φ1 ◦ φ−1
2 , or a common φ with F1 � F2 , to establish orderings of means. Recall

φ1 ◦ φ−1
2 is concave means that φ1 is more concave than φ2 and if � denotes “more

concave than”, then
−t−1−r �−t−r � logt � tr � tr+1

with r > 0.

2.1. New means

Most of the means in common use, or the ones which are well known, are derived
from either F = U(a,b) or f (t) = 1

2 at t = a and f (t) = 1
2 at t = b , though the latter

could be replaced by f (t) = w at t = a and f (t) = 1−w at t = b for any 0 < w < 1.
An F which provides new means to the literature has density function on [a,b] given
by

fr(t) =
(1+ r)tr

br+1−ar+1 (4)

for r � 0. For example, we can generalize the identric mean to

Ir(a,b) =
(1+ r)

∫ b
a logt tr dt

br+1−ar+1 ,

and, since∫ b

a
log t tr dt =

1
r+1

[
br+1 logb−ar+1 loga− (br+1−ar+1)/(1+ r)

]
,

the generalized identric mean is given by

Ir(a,b) = exp{−1/(1+ r)}
(

bb1+r

aa1+r

)1/(br+1−ar+1)

.
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A general arithmetic mean is given by

Ar(a,b) =
r+1
r+2

br+2−ar+2

br+1−ar+1 .

We could also derive the same generalized arithmetic mean by applying fr(t) with
φ(t) = −1/t .

Finally, we can apply fr(t) with φ(t) = tq yielding the mean

Lr,q(a,b) =
(

r+1
r+q+1

br+q+1−ar+q+1

br+1−ar+1

)1/q

.

Now it is easy to check that Fr(t) is decreasing in r for all t and so the means just
given; i.e. Ir(a,b) , Ar(a,b) and Lr,q(a,b) , are all increasing with r .

2.2. Inequalities involving the gamma and modified Bessel functions

In this sub-section we first look at inequalities involving the digamma function,
specifically using Ψ(t) , since this is known to be a strictly monotone increasing func-
tion. The idea here then is that for any strictly increasing continuous function φ , we
have

1
b−a

∫ b

a
Ψ(t)dt =

1
b−a

log
(
Γ(b)/Γ(a)

)
� Ψ

(
φ−1

(
1

b−a

∫ b

a
φ(t)dt

))
(5)

whenever Ψ◦φ−1 is concave.
Now [15] use φ(t) = log t since Ψ(et) is concave and the corresponding inequality

becomes

exp(Ψ(I(a,b))) �
(

Γ(b)
Γ(a)

)1/(b−a)

.

It is also known that (
Γ(b)
Γ(a)

)1/(b−a)

� exp(Ψ(L(a,b))) ,

which follows from the fact that −1/t is more concave than Ψ(t) .
Here we see the extent of the use of the quasi-linear mean comparison theorem

for results which involve the di-gamma and tri-gamma functions. Now, the tri-gamma
function, Ψ(1)(t) , is convex, non-negative and strictly decreasing for t > 0, and so
−Ψ(1)(t) is concave and strictly increasing for t > 0. Hence

Ψ̃(1)
(

1
b−a

∫ b

a
−Ψ(1)(t)dt

)
� A(a,b),

where Ψ̃(1) denotes the inverse of the negative of the tri-gamma function. Thus

Ψ(1)(A(a,b)) � Ψ(b)−Ψ(a)
b−a

. (6)
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This, and more (improved) results like it, are documented in [6] and [15], the former
extending results in [8] and the latter developing work in [4].

Using the comparison theorem we can work some results for the modified Bessel
functions and we start with the modified Bessel function of the first kind Iα(t) and
specifically with I0(t) . In the following, the functions can be found in [17], for example.
Let

Lν(t) = ( 1
2 t)ν+1

∞

∑
k=0

( 1
2 t)2k

Γ(k+3/2)Γ(k+ ν +3/2)

be the modified Struve function and

Φ(t) = 1
2 π t [I0(t)L1(t)− I1(t)L0(t)] ,

which is listed in [17]. Then

d
dt

[tI0(t)+ Φ(t)] = I0(t)

and so, since −I0(t) is concave and strictly increasing for t > 0, we have, in a similar
manner to (6), that

I0
(
A(a,b)

)
� bI0(b)−aI0(a)+ Φ(b)−Φ(a)

b−a
.

The interesting aspect to this type of function is that there are known forms for∫ b

a
I0(t)tr dt

and hence we can obtain mean inequalities using fr(t) given in (4). If we define Dr(x)
by dDr(x)/dx = xr I0(x) , then

Ĩ0

(∫ b

a
−I0(t) fr(t)dt

)
�
∫ b

a
t fr(t)dt

where Ĩ0 is the inverse of −I0 . The resulting inequality is

I0 (Ar(a,b)) � (1+ r)
Dr(b)−Dr(a)
br+1−ar+1 .

There would appear to be unlimited access to inequalities by using suitable special
functions and suitable density functions on [a,b] . Moreover, inequalities which would
appear to be unrelated to quasi-linear means, such as the connection between identric
mean and polygamma functions, can indeed be understood from this perspective.

3. Generalizing the comparison theorem

The aim for the remainder of the paper is first to prove (2) using the Neyman-
Pearson lemma ([13]). The Neyman-Pearson lemma is a piece of theory related to most
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powerful tests of statistical hypotheses. The structure which allows us to do this then
permits a generalization of (2) in which F can be a non-monotone function on [a,b] .
That is, we have

D = {F : F(b) = 1 and F(t) ∈ [0,1]}

so we aim to prove that

M(φ1,F) � M(φ2,F) ∀ F ∈ D ⇐⇒ φ1 ◦φ−1
2 is concave on [a,b]. (7)

This then allows for the introduction of new inequalities of the type already set out in
the paper.

We first take φ(t) to be a distribution function on [a,b] and then relax this assump-
tion by connecting the distribution φ(t)(= φD(t)) by its more general counterpart φ(t)
using the transform

φD(t) =
φ(t)−φ(a)
φ(b)−φ(a)

.

We denote by ψ the derivative function corresponding to φ .

3.1. The Neyman-Pearson lemma

This is a fundamental result relating to most powerful tests. To set the scene,
suppose there is a single (observable) random variable T ∈ [a,b] , with distribution
function φ(t) , and the aim is to test

H0 : φ = φ1 vs H1 : φ = φ2.

The test proceeds via a test function δ : [a,b] → {0,1} with

δ (t) =

⎧⎨⎩
1 if t ∈C

0 if t /∈C,
(8)

i.e., δ (t) = 1(t ∈C) , for some critical set C , and H0 is rejected if T ∈C . The type I
error of the test is given by

α =
∫ b

a
δ (t)ψ1(t)dt = φ1(C)

and the power of the test, the probability of rejecting H0 when it is not true, is given by

β =
∫ b

a
δ (t)ψ2(t)dt = φ2(C).

A most powerful test δ ∗ is a test function for which; if∫ b

a
(φ −φ∗)(t)ψ1(t)dt � 0
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then ∫ b

a
(δ − δ ∗)(t)ψ2(t)dt � 0

for any δ of the form (8).
A well known result relating to most powerful tests is that if δ ∗(t) = 1(t > t∗) ;

i.e. the critical region is C = (t∗,b] for some t∗ , then (ψ1/ψ2)(t) is decreasing. The
critical region is equivalently given by (ψ1/ψ2)(T ) < λ for some λ > 0. This forms
a part of the Neyman-Pearson lemma. Now we state and prove a minor modification of
the standard presentation of the Neyman-Pearson lemma which starts with (ψ1/ψ2)(t)
decreasing.

LEMMA 1. Let H(t) be a function defined on D . If (ψ1/ψ2)(t) is decreasing on
[a,b] , then:

φ1(t∗) �
∫ b

a
H(t)ψ1(t)dt

implies

φ2(t∗) �
∫ b

a
H(t)ψ2(t)dt,

where H(t) = 1−H(t) .

Proof. Since ψ1/ψ2 is decreasing we know there exists a 0 < k < ∞ for which

ψ2(t) > kψ1(t) if and only if t > t∗.

Now consider
ξ (t) = [1(t > t∗)−H(t)] [ψ2(t)− kψ1(t)].

It is easy to show that ξ (t) � 0. Hence,
∫ b
a ξ (t)dt � 0 and so

1−φ2(t∗)−
∫ b

a
H(t)ψ2(t)dt � k

[
1−φ1(t∗)−

∫ b

a
H(t)ψ1(t)dt

]
,

and thus the lemma is proved. �

The lemma is usually proven with H(t) = δ (t) . The fact that it works for any H ∈ D ,
which does not help for testing purposes, is, however, what allows us to make the
general comparisons of quasi-linear means

The Neyman-Pearson lemma works around ψ1/ψ2 being decreasing and the order
of the quasi-linear means works around φ1 ◦ φ−1

2 being concave. Ultimately, the con-
nection between the ordering of quasi-linear means and the Neyman-Pearson lemma
relies on the fact that

ψ1

ψ2
decreasing ⇐⇒ φ1 ◦φ−1

2 concave. (9)
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That (9) holds true is a simple consequence of the fact that

d
d z

φ1 ◦φ−1
2 (z) =

ψ1

ψ2
(φ−1

2 (z))

and that φ−1
2 (z) is increasing in z .

We now use the above theory for most powerful tests to obtain a general result
relating to ordered quasi-linear means.

3.2. Main results

The main results of the paper are the following theorem and corollaries; and these
generalize (2).

THEOREM 2. For distribution functions φ1 and φ2 , it is that

φ−1
1

(∫ b

a
φ1(t)F(dt)

)
� φ−1

2

(∫ b

a
φ2(t)F(dt)

)
,

for all F ∈ D if, and only if, φ1 ◦φ−1
2 is concave.

Proof. Given that φ(a) = 0 and φ(b) = 1 and F(b) = 0, where F = 1−F , we
can show that ∫ b

a
F(t)ψ(t)dt =

∫ b

a
φ(t)F(dt). (10)

Let us start by assuming that

M(φ1,F) � M(φ2,F) (11)

for all F ∈ D , which includes all distribution functions F on [a,b] and thus φ1 ◦ φ−1
2

is concave.
Now assume that φ1 ◦φ−1

2 is concave. Thus usual appeal to the Jensen inequality
is no longer valid since F is not necessarily a distribution function. The concavity of
φ1 ◦φ−1

2 implies ψ1/ψ2 is decreasing which, in turn, implies, using Lemma 1, that

φ1(t∗) =
∫ b

a
F(t)ψ1(t)dt ⇒ φ2(t∗) �

∫ b

a
F(t)ψ2(t)dt

for all F ∈ D . We can rewrite this as

φ1(t∗) =
∫ b

a
φ1(t)F(dt) ⇒ φ2(t∗) �

∫ b

a
φ2(t)F(dt),

which is equivalent to

t∗ = φ−1
1

(∫ b

a
φ1(t)F(dt)

)
� φ−1

2

(∫ b

a
φ2(t)F(dt)

)
.
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Thus, (11) holds for all F ∈ D . �
This theorem gives us a comparison theorem when φ is a distribution function and

F ∈ D . To see how the result looks when we take a general increasing φ we switch

φ(t) → φ(t)−φ(a)
φ(b)−φ(a)

.

COROLLARY 1. For continuous and strictly increasing functions φ1 and φ2 on
[a,b] , it is that

φ−1
1

(∫ b

a
φ1(t)F(dt)+ φ1(a)F(a)

)
� φ−1

2

(∫ b

a
φ2(t)F(dt)+ φ2(a)F(a)

)
,

for all F ∈ D if, and only if, φ1 ◦φ−1
2 is concave.

COROLLARY 2. For a continuous concave function φ on [ξ (a),ξ (b)] , where
ξ (t) is a strictly increasing continuous function on [a,b] , it is that∫ b

a
φ ◦ ξ (t)F(dt)+ φ ◦ ξ (a)F(a) � φ

(∫ b

a
ξ (t)F(dt)+ ξ (a)F(a)

)
,

for all F ∈ D .

This follows by taking φ(t) = φ1 ◦ φ−1
2 (t) and ξ (t) = φ2(t) in Corollary 1. This

is a stronger result than the Jensen-Steffensen-Boas inequality (see for example [1])
which requires F(a) � F(t) for all t ∈ [a,b] . That is, F a distribution function on
[a,b] , i.e. F(a) = 0, gives the Jensen inequality, whereas F ∈ D with F(a) � F(t) for
all t ∈ [a,b] gives the Jensen-Steffensen-Boas inequality. See in particular Theorem 1
in [1], where the λ (t) in [1], which needs λ (a) � λ (t) for all t ∈ [a,b] , is related to
the F(dt) here by

F(dt) =
dλ (t)∫ b
a dλ (s)

for t ∈ [a,b] .

4. Illustrations and new inequalities

In this section we illustrate the result in Section 3.

EXAMPLE 1. Here we use φ1(t) = logt and φ2(t) = t . Consequently, ψ1(t) = 1/t and
ψ2(t) = 1. Then we take the F ∈ D , which is not a distribution function on [a,b] , and
neither has F(a) � F(t) for all t ∈ [a,b] , to be

F(t) = 1− (b− t)(t−a)
(b−a)2 .

It is easy to verify in both cases that∫ b

a
F(t)ψ j(t)dt =

∫ b

a
φ j(t) f (t)dt
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where f (t) = F ′(t) . The general comparison theorem then yields

φ−1
1

(∫ b

a
F(t)ψ1(t)dt + φ1(a)

)
� φ−1

2

(∫ b

a
F(t)ψ2(t)dt + φ2(a)

)
;

which after some algebra gives the inequality,

exp

{
1
2

a+b
b−a

}(
b
a

)−ab/(b−a)2

� 5+b/a
6

.

Many other such new inequalities can be derived through different choices of φ1 and
φ2 and F .

EXAMPLE 2. In our second example we retain the same F(t) as in Example 1 but
now consider φ(t) = tr . Then based on the concavity orderings, we have, after some
algebra, that[

1
(b−a)2

1
(r+1)(r+2)

{
r(br+2−ar+2)− (r+2)ab(br−ar)

}
+ar

]1/r

is increasing in r .

EXAMPLE 3. We retain φ(t) = tr but now take

F(t) =

⎧⎨⎩
c−t
c−a for a � t � c

t−c
b−c for c � t � b

with c = 1
2 (a + b) . So F(a) is not smaller than F(t) for all t ∈ [a,b] . Again, after

some algebra, we have that[
2

b−a
1

r+1

{
br+1 +ar+1−2cr+1}+ar

]1/r

is increasing in r .

EXAMPLE 4. We retain the same F(t) as in Example 3 but now take φ(t) = Ψ2(t) , so
ψ(t) = Ψ1(t) , are polygamma functions. Using∫ β

α
t Ψ1(t)dt = β Ψ(β )−αΨ(α)− log(Γ(β )/Γ(α)) and

∫ β

α
Ψ1(t)dt = Ψ(β )−Ψ(α)

and the fact that Ψ2(t) is concave for t > 0, we have the inequality

2
b−a

[
2cΨ(c)−aΨ(a)−bΨ(b)+ log{Γ(a)Γ(b)/Γ(c)2}]+ Ψ2(a)

� Ψ2

(
1

b−a

(
b2 +a2−2c2)+a

)
for all 0 < a < b < ∞ .

Acknowledgements. The author is grateful to an Editor for pointing out related
work. The authors work is partially supported by NSF DMS grants Nos. 1506879 and
1612891.



INEQUALITIES FROM GENERAL QUASI-LINEAR MEANS 665

RE F ER EN C ES
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[6] N. ELEZOVIĆ, C. GIORDANO AND J. PEČARIĆ, The best bounds in Gautschi’s inequality, Math.

Inequal. Appl. 3 (2000), 239–252.
[7] S. GAO, Inequalities for the Seiffert’s means in terms of the identric mean, J. Math. Sci. Adv. Appl.

10 (2011) 23–31.
[8] W. GAUTSCHI, Some elementary inequalities relating to the gamma and incomplete gamma function,

J. Math. Phys. 38 (1959), 77–81.
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