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ON SOME MULTILINEAR COMMUTATORS
IN VARIABLE LEBESGUE SPACES

JIAN TAN, ZONGGUANG LIU AND JIMAN ZHAO

(Communicated by J. Pecari¢)

Abstract. In this paper, the authors obtain some characterizations of BMO in terms of com-
mutators of multilinear fractional integrals and Caldrén-Zygmund singular integrals on variable
Lebesgue spaces. The corresponding weighted estimates for vector-valued commutators and
multilinear commutators with vector symbol on variable Lebesgue spaces are also considered.

1. Introduction

In 1976, Coifman, Rochberg and Weiss [4] studied the LP boundedness of lin-
ear commutators generated by the Calderén-Zygmund singular integral operator and
b € BMO. Jason [22] and Uchiyama [40] independently established characterization of
BMO in terms of the commutators of singular integral operators. In addition, Chanillo
[3] characterized BMO functions using the commutators of fractional integral oper-
ators. The boundedness of the commutators of multilinear operators has also been
studied already in [11] and [33]. Recently Chaffee [2] characterized BMO in terms of
the boundedness of the commutators of various bilinear singular integral operators with
pointwise multiplication. On the other hand, due to its applications to partial differential
equations and the calculus of variations, variable exponent function spaces theory have
been attracted by many authors, see [10, 19, 23,29, 37, 38, 39] for the theory of function
spaces with variable exponents. We point out that variable Lebesgue spaces were first
established by Orlicz [32] in 1931. In the early 1950’s, Nakano [30, 31] first systemat-
ically studied modular function spaces which include the variable Lebesgue spaces as
specific examples. It is natural to ask whether the boundedness of the commutator on
variable Lebesuge space implys that the function is in BMO. The main purpose of this
paper is to characterize BMO via the boundedness of the commutators of multilinear
fractional and singular integral operators. Using the theory of Rubio de Francia extrap-
olation extended by Cruz-Uribe and Wang [9], some weighted norm inequalities of the
commutators on variable Lebesgue spaces and the vector-valued inequalities are also
considered. Before stating our results, we need some notation.

We denote by Z the set of all C* functions with compact support on R". For a
measurable subset E C R”, we denote p~ (E) = infyep p(x) and p™ (E) = sup,g p(x).
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Especially, we denote p~ = p~ (R") and p* = p™(R"). Let p(-): R" — (0,o0) be
a measurable function with 0 < p~ < p* < e and Z°(R") be the set of all these
p(+). Let & be the set of all measurable functions p(:) : R” — [1,e0) such that 1 <
p~ < pT < oo Let B(X,Y) be the class of all bounded sublinear operators from a
Banach space X to a Banach space Y and let ||A[| (x y) denote the operator norm of
A€ #(X,Y). Especially, we abbreviate [|A|z(x, xx,x..xx,¥) 10 [[Allzqr x.v)-

The variable Lebesgue space L(") is defined as the set of all measurable functions
f for which the quantity [g. |€f(x)|?¥)dx is finite for some & >0 and we define

(x)
||fp(.)=inf{/l>0: A (%)p dxgl}.

As a special case of the theory of Nakano and Luxemberg, we see that L’(") is a quasi-
normed space. Especially, when p~ > 1, LP() is a Banach space.
Given a measurable function w > 0, for 1 < p < eo, it is said that w € A, if

wnfwgﬁgéwww)(géwwkﬁéfA<%

where the supremum is taken over all balls B C R”.
Similarly, w € A () if

SI;P|B|71IIWXBIIp(~)||Wflepr(-> <o,

Given a weight w and p(-) € &2, define the weighted variable Lebesgue space
LP)(w) to be the set of all measurable functions f such that fw € LP(). We say that
T is a bounded operator on LP0) (w) if (T AWl oy < |l fwll o) forall fe LPO)(w).

We say that p(-) € LH , if p(-) satisfies

C
p(x) —p)| < —————, |Jx—y|<1/2
“Tog(x—o])
and
P() — pO)| € ——— . >
p Py = loglx|+e’ M

Let B be the set of p(-) € & such that the Hardy-littlewood maximal operator M
is bounded on LP{). Tt is well known that p(-) € B if p(-) € # NLH. Furthermore,
let W3 be the set of p(-) € &2 such that the Hardy-Littlewood maximal operator M is
bounded on L”()(w). In [9], the authors have proved that p(-) € WB if p(-) € ZNLH.

For any 1 < j < m, we can define the commutator of multilinear integral operator
by

[b7T]j(f)(x) = bT(f)(x) - T(fl: e abfj’ s 7fm>(x)a

where b is a locally integral function and T is an m-linear integral operator.
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-,

Then [b,14];(f) is defined by

A e e

(S ey

while the multilinear fractional integral operator is defined by

W= [ i v

tl|x y‘nma

Throughout this paper, C denotes a positive constant that may vary at each oc-
currence but is independent to the main parameter, and A ~ B means that there are
constants C; > 0 and C, > 0 independent of the the main parameter such that C;B <
A < (,B. Given a measurable set S C R”, |S| denotes the Lebesgue measure and s
means the characteristic function.

First, we characterize BMO via the boundedness of the commutators of multilin-
ear fractional integrals I ( f ) as follows. We note that multilinear fractional integral
operators have been studied by many authors, see [14, 15, 24, 25, 28].

THEOREM 1.1. Suppose that be Ll ., 0 < o <mn and p;(-) ELHN 2, i=
1,2,...,m. Suppose further that q(-) € & satisfies

- 1 o 1
> ——=—=<1, xeR"
! n

For any 1 < j <m, then [b,14); is bounded from LP\) x LP2() x ... x LPn0) 1o L40)
if and only if b € BMO. Furthermore,

”b”* ~ H [bJOC]j”,%(H:ﬁ:lLl’i(-)7Lq(*))'

Next we recall multilinear Calderén-Zygmund operator introduced by Grafakos
and Torres in [17]. Let K(x,y;,...,yn) be a locally integrable function defined away
from the diagonal x =y; = ... = y,,. If for some positive parameters A and &,

A
Sh1—o [y — i)™

IK(y0,---,ym)| < (

and .
Aly;—yjlf

k=0 [k — yi|)rmte

when 0 < j<m and [y; —y}| < 1/2maxo<k<m [y;— k|, then K is an m-linear Calderén-
Zygmund kernel. Now let

‘K(y()avyjavym)_K(yOa?ylj?7ym)| <
(

ﬂﬂ@Z[wﬁxw,JmHﬁ%
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forall fj € Z and all x ¢ N{'supp(f;), where dy =dy...dy,. If

T:LPVx ... xLPm — [P

for some 1 < py,...,pm < o, where }; =", p , T 1is called an m-linear Caldrén-
Zygmund operator. If K(x,y1,...,yn) is of form K(x V1s---X—Ym), then we say the

operator T is of convolution type.

THEOREM 1.2. Suppose be L, pi(:) ELHNZ, i=1,2,....,m, andlet T be
an m-linear Calderdn-Zygmund operator of convolution type such that K(Ayy,...,Aym)
=A7"K(y1,...,Ym). Also suppose that for some ball B in (R")", the Fourier series
of 1/K is absolutely convergent. Let q(-) satisfy

Zo1 1
D =—=<1, xeR"
i1 p,-(x) p(x)
For any 1 < j<m, then [b,T|; is a bounded operator from LP10) s p2() 5 ppm()

to LP) zfand only if b € BMO. Furthermore,

1Bl ~ M2 Tl gy 10100 2000

-,

We also can obtain some boundedness of the following maximal operator T, (f),

where
m

/2'1" be—yi|?> 62 K(xy1,--ooym) Hfi(yi)dy )

i=1

-,

T.(f)(x) = sup

6>0

THEOREM 1.3. Let T, be a maximal Calderén-Zygmund operator and p(-) sat-
isfy
1 1
= xR,

,1pz() p(x)’
Then for pi(-) e LHN 2, i=1,2,..

\gE

, we have

I (Pl CHHﬁHp,

Next we will show that weighted L(") boundenness of the commutator of a linear
operator T and the BMO function.

THEOREM 1.4. Suppose that 1 < pg < eo. The operator T is defined by

Tf(x)= | K(x,y)f(y)dy,

Rn
and the commutator |b,T| of T and b is defined by

B.717(x) = [ () = BO)K () )y
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Given wo € Ap, and p(-) € LHN\Z, if T is bounded on L’ (wy), then for b € BMO
and w € Ay,

1D, TTfwllpy < CllfW (-
Moreover, for every 1 < q < e and sequence {f;},

|| <E[b7T]fjlq> K

Finally, we consider the multilinear commutators with the vector symbol b=
(b1,...,by) defined by

<c (zf,-w) w
J

r() r()

K(x,y)f(y)dy,

i=1

T = [ [ﬁ(bxx) = i)

where K is a Calderén-Zygmund kernel.
Hereafter we consider the following of symbols: for r > 1 and for any b € L, ,
define

Hbuoscexpu = SZP b — bQHexpLﬁQ:
which is the supremum taken over all the cubes Q with sides parallel to the axes. Here

the ®-average of b over a cube Q with respect to the Young function ®(¢) = ¢’ —1 is
defined by

||b||exer7Q:inf{7L ~0: ﬁ/Q(exp(\b(x)\/l)’—l)dxg 1}.

In the particular case of r =1, 0scg,, ;1 coincides with BMO by the John-Nirenberg
theorem. Furthermore, assume that b; = b, then

T = [ (b) = b)) K () ().

See the work of Sawano, Sugano and Tanaka [36] for more details on m-fold commu-
tators.

THEOREM 1.5. Let b; € 0SCexprri and r; > 1,1 <i<m. Then for p(-) € LH &
and w € Ap(,), we have

(T AWl S Clfwllp)-
Furthermore, for every 1 < q < oo and sequence {(Tyf;, f;)},

1/q 1/q
()] <[(5)"
J J

p() r()
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2. Some preliminaries

In this section, we state some results about the variable L” spaces. The following
generalized Holder inequality on variable Lebesgue spaces can be found in in [6].

LEMMA 2.1. Given exponent function p;(-) € 2, define p(-) € #° by

1 m

plx) ZI

where i =1,2,...,m. Then forall f; € LPi0) and fi € LPY) and

HHfi||p(~) < CHHfini(')'
i=1 i=1

Let 0 < o < n, we define

1
pi(x)’

1
Mo f(x) = SQHBEW/QV@”@'

LEMMA 2.2. ([1]) Given p(-) € LHN 2. Define the exponent function q(-) €

LH by

1 1 o
—=————,xeR",
q(x) px) n

then
[Mafllge)y < CIFlpey-

LEMMA 2.3. ([13]) Suppose that p(-) € LH and 0 < p~ < pT < oo,
(1) Forall cubes (or balls) |Q| < 2" and any x € Q, we have

xoll,p() ~ |07
(2) Forall cubes (or balls) |Q| > 1, we have

xollp(y ~ Q17>
where pe. = limy_,e p(x).

LEMMA 2.4. ([20,21]) If a variable exponent p(-) € LHNZ?, then

1B]|+ ~ sup 7———
o llxollye

holds for all b € BMO. Furthermore,

1(0—bo)xollp()

1
15]]« ~ sup inf ———— (b~ ¢) %ol
o <<C xoll,0) ellz()

holds for all b € BMO.
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LEMMA 2.5. ([9]) Let .% denote a family of ordered pairs of non-negative mea-
surable functions (f,g). Assume that for some po with 0 < py < e and every weight
wo € APO s

L reroweds < [ [g@Pwods, (r.8) € F
If p(-) € LHN 2, then for any (f,g) € .F and f € LPU)(w), we have

”fW”LP(-) < CHgW”LI’(')'

3. Proofs of main results

First, we prove Theorem 1.1.

Proof. To show Theorem 1.1, we need the following sharp maximal estimate,

o (.10, (x)gc:b*[( (a7 +HMa,s,|fz|S')“S'(>

=1

where Y o =0, 0 < 0; <n, 1<s,<pj,1<r<q andi=1,2,---,n.
To do this, denote that f} = f;x20 and f7° = f;— f}. Fix a cube Q and set

b, 1] (F) () = /( . [(b(’“)‘b% (be j’(;f,,? I17.i07) H "

= (b(x) = b)la(F)(X) = Ia(fi, -, (b= bQ)f,7 o fm) ()
= (b(x) = b)la(F) () = I ([, (b=bQ) [, i) (x)
_Ia(fl ). (b_bQ)f;o7 .f;:)(x)

=D Ia(fi' o (b=bQ)f{ s ) ()
= A — A2—A3—A4,

where in the last sum each 7; = 0 or e« and in each term there is at least one r; = 0 and
rp = oo,
By Holder’s inequality, we have

1 1 ; l/r’< . )l/r
— A dz < | — b(z) —bo|" d Ia d
0l J, i@z < <|Q/Q (%) =0l Z) IACGEIC

< Cb)l-M(1a(F)D)" ().

Since 1 <s; < pj ,wecan choose 7, Bl > 1 suchthat rB; =s;. Thus 1 < ff; < p; -
Then there exists u > 1 such that % =" 1F — 2. In fact, we can choose f3; and

a; such that 0 < F — a’ < .. Applying Holder’s inequality and boundedness of the
multilinear fractional 1ntegrals (see [24]), we have
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L _ 0 u e
2 [ i {|Q ARy A

|Q‘1/uH(b bo) f0||13]HHfOHﬁ,

| ” 1/r'B; 1/rB;
<clo ([ 1p-bo ﬁ’dYJ) ([ lrprean)
1/B;
(/ i |ﬂfdy,)
t#J

m 1 1/rB;
< C||bl[.| Q| (—/ Silyi ’ﬁ"dyl)
54|10 l]} 20] 2QI (i)l

l/S,'
m l 5
< clpllJ] (i [, 'dyi)
i=1 n
C||b||*H(Ma,s,Iles’)l/s’( )-

i=1

Denote by x( the center of Q, then for x € Q and y; € (2Q)¢, then we have
lx—yi| ~[xo —i[ . Since that 1 < s; < e, we can choose 1 <s’; < o such that \i,—ksL =
; CAY

1. We use Holder’s inequality with exponent s; and s’,»:

o (fTs s (D=bo) 7o S ) (%) =L (175, (D= Do) 75 [ ) (x0)]
10" |b(y;) = bol T, |£i ()] ¢
< : dy;
/("\(2Q))m H g

(X o —yif)rm=oet 2

. / 101" |b(y;) — bollf5 (v))]
R1\20

(X Jo — il )it
></ Hi;éj ‘ﬁ(yl 1 H
®RN20)1 (X |x0 — yi \) )Xz ot
< / 01"k (yj) —bol 7 , ) / 1IN, )
S \Urmao (T o —yif )t Y rR\20 (37, xo — i )%
></ Ht#j ‘fi(yz 1 H
®RN20)1 (X |x0 — yi \)" )Xz ot

< Clo] [T (Mo 510

i=1

We now deal with A4. Without loss of generality, we may assume that r; =... =
rg=0and rg | =... =ry =co. When d+1 < j <m, applying the mean value theorem
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and Holder’s inequality, we have

‘IOC( ) (b_bQ)fjrjv"'v r:zm)(x)_Ia(flrlv'"7(b_bQ)f;j7"‘vf;;m)(x0)‘
r; |Q‘1/n|b(yj)_bQ‘H;n:dHfiri(yi) .
< L I Id i
I. I/ U o= (X o —yymoort LAY

" 1O b0) ~ bol T 4.1 7)1
A I e | K

2[+l\2[ i—d+1

< Il TT Moy )5 ).

i=1
When 1 < j <d, similarly we also can obtain

La(fi' oo s (b= bQ)f o ) 0) = La( 1" (0= DQ) [ ) (30)]
CHbH*H(Ma,X,\f,\")l/"( )-

i=1

Note that [|Mf||,.) < C|M* ]|, when p(-) € LH N Z° (see [7]). Thus, if b €
BMO, we have

116, 26];(F)llg) < 1M, 16) ;(Pllg() < ||Mj[b71a}j(f)\\q(.)

Sl|‘f‘l I/XI

< Cllple | [Pmrat7

1 q()

Note that 1 < r < g~. Itiseasy to see that g(-) € LH(R"), then M is of ( 5) , ¥)
The weighted inequalities for multilinear fractional integral operators has been estab-
lished by Moen in [27]. Motivated by this, we consider here the following variable

exponent case,

la(Pllg) < CTTIAllpic)
i=1

where ﬁ = l’-":l%—%,xER" and g,p; > 1.
We can obtain the pointwise estimate of I,. Here we use the techniques of Hed-
bergin [18] and of Welland in [41]. Fix €, e =Y | &, 0 < & < min{a;,n— 0;}. Then

forall f €L} (R") and any Q > x, we have

_ M i) o 2 i) o
Io f(x) _/m( dy+/(R dy

Sy e — iy moyn (1) Jx — yil )=
=141




724 J. TAN, Z. LI1U AND J. ZHAO

Thus
T2 /i (i)l
I / B dy
1< 3 [, o sam TR e
< / |fi(vi)|dy
ey 1
m
< CH‘Q|7M05,-—£,-fi(x) = C|Q‘E HMOCi—Eifi(x)'
i=1 i=1
Similarly,
X i)l o
‘II| S 2/ i m : . mn—ady
=0 ('Q\Z' lQm ._ ‘x—yl‘)
< 27/ H\ft yi)|dy
i—1 21‘Q|*; mn—o. l
<ol ™ HMa,+s,ﬁ x).
By choosing |Q\2n_6 = l_Iir',n,:l%‘17"”’“;’8,We obtain that
i=1Moj—¢; i

1o (f) HMa,+s,ﬁ )3 HMa, e i)',
In order to prove that
o m
e (P lgey < CTTIA i)
i=1

where ﬁ =", p’_#(x) — 2., xeR" and p; > 1. Without loss of generality we may

assume that [| fi|| ,,.) = 1. We recall that || f[| ., < C if and only if [pa lf ) |[PWdy<C,

see ([1]). Since g < oo, it will be sufficient to prove that [g [I(f)(x)|9®dx < C.
Define r(:) : R” — [1,e0) by

2

" e

Then for all x € R"

and
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Fix €, 0 < € < max{a,n— a} such that

2

> 1.
eqgt

-,

Then we have r~ > 1. By the pointwise estimate of I*(f) and then Holder’s inequality
for variable LP with exponents r(-) and /(-), we get

/ ‘Iaf( )|q Jdx < C/ HMaHrs,fl ] [HMOCI s;fl )] dx
m q(-)/2 m q(-)/2
HMOci+8iﬁ‘| lHMaieiﬁ‘|
i=1 i=1

7 () ()

Now we will estimate each term on the righthand side. We may assume that each

is greater than 1, since otherwise it is nothing to prove. It is easy to see (%)’ >1,

1

then we can choose exponent function s;(x) > s; > 1 such that 37" | 5 X) = g and
7 x)gla)

p_#(x) — ﬁ = %4 where i=1,---,m and x € R". By the definition of Luxembourg

norm of variable Lebesgue spaces and Lemmas 2.1 and 2.2, we have

qt/2

m + )
<CIIMaefill? ]
COLICTER

. a()/2
lH Ma,~+£,-fi]
i=1 ,

()

m
HMOci+8iﬁ
i=1

m q+/2
<cIIIAlL 2 <c
i=1

where the first inequality follows from

/ (T2 Moy /i)™ - (I M i) )2
' A - 2240 x

m ' (x)q(x)/2
/ ( Hi:] Mai+£iﬁ(x)) ) ! dx

A2/a"

since for A > 1, A2/4(0) > p2/a"
Similarly, we can also obtain

. q()/2
[HMaieiﬁ‘| < C
i=1
()

Therefore, we have

1M ADD Ny < CNUEEN 0 < CH 17l i) -
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Then we can choose g;(x) > 1 such that =7 q— q.%x) = ﬁ -
Notice that =1 __ O‘"’ , where 1 <i < m. By Lemma 2.1 and 2.2, we get

ai(¥)/si )/s, pi(x)/si

m

[T (Mo i)

i=1

m

< T Mo | £ gy < CTT i) -
3 i=1

q() =1

Thus we have that
115 2]} (Pl gy < CIBITT il -
i=1

Next we will give the proof of the converse part. Its idea of the proof here comes
from Chanillo [3] and Janson [22].
The reciprocal of the convolution kernel K (¥) is smooth away from the ori-
gin. We can choose (y/) = (V|,)},...,¥) € R, & >0 such that in the ball B =
B((y'), 8+/mn). Then we use the similar argument as Shirai [35]. Considering a smooth
cut-off function which equal to 1 on B and equal to 0 outside B D B, 1/K(¥) can be
represented in the ball B as a Fourier series which absolutely converges. That is

| m (mn—ot)/2
12 - v (5)
- i - ae P

whenever y € B. For any cube Q = Q(yo, ), let J; = yo — 5", and Q= Q(¥i,r), where

i=1,2,-,m. Itis easy to see that %(x—yhx—yg,...,x ym) € B for any x € Q and
yi € 0.
Set s(x) = sgn[b(x) — bQ}] and E = {x: b(x) — by # 0}. Then we have
J

b(x) ~bgr| = s()(b(x) ~ bgy)

_s(x) . ,
- /Q _,/_(b(x)—b(y.,))dyj

B s(x) b(x) m . mn—o B

= |Q‘m/ wym (XM |x — i | Yum—o (lzi Vi ) Xo(y)dy

S 50 =b0) tien

=) a6 Ms(x AV
sesio].

Ry (ZfLy [ — il )=

m
_iS iy, =
XH@ lrvly'XQl’,(})i)dy

i=1
Eala mn/ (

=Y ;6 "h(x)—=5[b,14]; X),
S ) okl ()

b(x) — b(y;)

i= 1|.X yl| mn a

Hft vi)d
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where s
Jivi) = e 0 (i),
hu(x) = &7 s ().

Observe that |/;(x)] =1 when x € E and otherwise |/;(x)| = 0, then we obtain
that

16 =bg)xollq)
1

[o|*

\Zaa mn

-,

Zaz5 " hilb, 1ol (f)xE

-,

> a8 "y [b1g)j(f) xEe
1

T
a0 el

L P me,

q(*)

Y

< CW”[b’labH%(]‘['.'LILI’I'(').L‘?('))H HXQ§||p,-(~)~
" = ’ i=1

When |Q| < 1, choose a proper 8 > 0 such that (| 0} # 0, then by Lemma 2.3, then
there exist z € /L, O} # 0 such that

121,16 = bo)xollr) < €Ly 0177 [1[b,1al e, 71 290 HIIXQ;IIP,-(~)

1__a
< C||[b.1a]; BT, LPi0), |Q| " I @
il [b7a}jHe@(nl’.’;lLPi(‘%L‘I('))'

When |Q| > 1, similarly we can get
HQH;(l) H (b - bQ_’,-)%QHq(') < CH [bvla}jHL@(H:?;ILP,'(-)’M(-))'

Thus, Theorem 1.1 is proved according to Lemma 2.4. [
Then we give the proof of Theorem 1.2.

Proof. First we will get the following sharp maximal estimate,
MF([b,T1;(f)) (x) <C||b||*[(M(|T( N +H M) i) |

where %: :-“:1% <land 1<s;<p; withi=1,2,---.n
Denote that f} = fjx20 and f7 = f; — f}. Fix a cube Q and set

TG = [ ()~ bo) + (b —b(3,) Hﬁw

-,

= (0x)=b)T(f)(xX) =T (f1,-- (b=DQ)fjs- -+ ) (%)
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= (b(x) = b)T (F)(x) = T(f},...,(b=bo)f}, ... ) (x)
_T(ffc7 (b_bQ)wa’ 7fr;o)(x)
—S T s (b= b)Y )

=By — 32—33—34,

where in the last sum each r; = 0 or « and in each term there is at least one ; =0 and
T = 0.

By Holder’s inequality, we have

AL '“<|Q/'b ~bol dz>m<|Q/T 'dz>1/s
< bl a(T () o).

Choose 1 < u,q and g; < e such that ug; =s; and 1 =",
Thus applying Holder’s inequality and the boundedness of T (see [17]), we obtain
that

1 1 1/q
5 e < (E/QT(ffn...,(b_bg>ﬁ,...,fg>(z>|qdz)
<101 (T )6 —bo) 71,

i#]
_ym 1
<l ¥ (Hnﬁxmgq,-) 15— bo)aymollype i eymollay
i#j

< Clpll TTM A ).
i=1
Now we denote Q by Q = Q(xo,1(Q)). If y; ¢ 4\/nQ, then

1
ol < g e

for any x € Q. By the smoothness estimates of kernel K, we conclude that

B~ Bl < [ 1K (3~ Ko ) o0)) bQ\H\f“’ yoldy

Alx—xol¢ N .
</ i b(yj) = bol L LI (vi)ldy
( n)m( i=1|x_yl.|)nm+£| ( J) Q|E| ( )‘

o / Q) |(b—bo)fi(v))
S Jmavie eyt

qI[L @i,

"\4/nQ ‘X—Yi‘n+%

dy;

< ClplL T T A5 ).

i=1
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Now we consider By. Here we write (41/nQ)" x (R"\4\/nQ)"~" = R;. Without

loss of generality, we may assume that ry =...=r, =0 and 11| = ... =1, = oo.
When 1 < j <1, by the size estimate of K, we conclude that
|Q‘/ ‘T b bQ)fO 7ﬁ07m177f;)‘(z)dz

<o, /R KIS0 (500 b0 )71 1) o
L AL 507 — bl PO s Gt L )
< bl S e

C 1
< — —_— b —b )d () |y
|Q/Q<|4\/’_1Q A\/EQ‘ 01) = boll )] y’H\4\/_Q\/ [fi(vi)ldy

i#]

‘Q|m , m—I H / |fk yk)‘ dyk)dZ

k=i+1 /RGO |7 — |t 2

< b TTM2( D) ().

i=1

dydx

Similarly, when [+ 1 < j < m, we also can get

|Q‘/IT (b =bo)ff s S St S| @)z < CB L T (LA ().
i=1
Observe that Mg(T(f))(x) S CIIP  Mfi(x) for 0 < 8 < 1/m and all x € R",
where each f; is smooth and with compactly supported (cf. [33]) and |[Mf] ) <
C||M? || ) when p(-) € LHN P (see [7]).
Then applying Lemma 2.1, we can obtain

T oy < IMs(TED oy < IMET Do
< CITTMSillpey < CTTIAN -
i=1 i=1

Thus, for every p;(-) € LHN & we have

1T (H)llper < CTT Il pic-
i=1

Noting that % =Xt L>ym 15" = p%, we have s < p~ . Then we can obtain

16, 71 ()l < HM[b’T]j(f)Hp(-) < UIMEB, T15(F) o

§ (CUADRE

+
' i=1

< clpll | [oaarpn |

p()
< Il Tl i)
1
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where each f; is smooth and with compactly supported and, hence, [b,T]; extends as
a bounded operator from L”10) x ... x LPn() into LP().

Here we use the techniques applied by Chaffee [2] and Janson [22] to prove our
proof of the necessity. Choose (') = (¥|,¥5,...,¥,,) € R™, & > 0 such that in the
ball B = B((y'),8+/mn), ﬁ can be represented as a Fourier series which absolutely
converges. That is

1 i (7
= aeV"(y),
K@) g’

!
whenever y € B. For any cube Q = Q(yo, ), let y; = yo— % ,and Q! = Q(§i;,r), where
i=1,2,...,m. Itis easy to see that %(x—yl,x—yz,...,x—ym) € B for any x € Q and
yi € Q.. Denoting by 7(x) = sgn(b(x) — bQ/,_), we conclude that

b(0) by = 151 [ (60603
J J

_ r*m"l(x)/m Q/_(b(x)—b(yj))d)7

e W K —ynx—yy,.ox—ym)
=5 Z(X)A]ﬁlQ§(b(x)_b(yj))K(a(xryl),5(xry2),.“75(xrym))dy

= Zalsfmnt(x)/ eiéV]'(X*}’l7X*y2,...,x7ym)
7 e

X(b(x) = b(y;))K(x—y1,x = y2,...,.x = ym)dy
= Sab o) /(Rn)m(b(x)—b(yj))l((x— VIX = Y2, X V)

xe,-gvl.(x,xr..,x)ﬁefigv;.y,. Xords
i=1
= T ™ [ 000~ DOKG 11512k )
><h1<x>_1m11ﬁ<yi>dy
= Sad 71
where
fi) = e g (),

hy(x) = €7y (x),
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Applying the boundedness of [b,T]; on variable Lebesgue spaces, we obtain that

-,

16 =bg)xollp) = H2a15"“’1hz [b,T1;(f)
: 1

p()
< Eal5imn H [ba T}j Hgg(ryﬂ_l Lrit) 1p()) H HﬁHpi(~)
] = ’ i=1

< Cl Tl g it 200 I lli0)-
. i=1

When |Q| < 1, we can choose a proper 6 > 0 such that (., O} # 0, then by Lemma
2.3, then there exist z € (/. Q # 0 such that

1015016 = ey xolloy < CIB: Ty, o0 121 T g

clle, o lo| 77 ER A

< Tl e, 10
< C|[p

5 LHL@(H’m:le -).LP(-))'
When |Q| > 1, similarly we can get
101,015 = o) 20l < CIIB Tl sy 1000 1000
Therefore, by Lemma 2.4 we have completed our proof. []

Next, we will prove Theorem 1.3.

Proof. By Theorem 1 in [16] for a maximal Calderén-Zygmund operator T,
choose 0 < n < p~ and all x € R", then we have that

7.7 () <c(<M<|T< ) )Y +HMﬁ )

Thus, by the fact that given p(-) € 22° and p* < oo, then forany s > 0, || 1P lpe) =
Hf||§p(.) and Lemma 2.1, we can obtain that

Il < v <|T<f>|">>l/"||,,(.)+f[Mﬁp<.>>
C(II(M(T(f)”))ll;{.'}/nflﬁllMﬁp,.(.))
< cﬂﬁ||p,-<.>-

It concluded the proof. O
Also, the proof of Theorem 1.4 is given.

Proof. For the proof we need some known results. First, the weighted L” bound-
edness of [b,T] is obtained in [26].
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PROPOSITION 3.1.  Let 1 < pg < oo. Suppose that T is defined as in Theorem
1.4 and satisfies ||T f||1ro(y) < CIlfllLro(wg) for w € As(1 < s < o). Then [b,T] is
bounded on LPO(wy).

The next extrapolation theorem of Rubio de Francia below can be found in [8].

PROPOSITION 3.2.  Given a family %, assume that for some pg, 1 < pg < oo,
and for every wo € Ap,,

£l zro (we) < Cliglzrogwy),  (f58) € F.

Then for every 1 < p,q < e, w € A, and sequence {(fj,g;)} C .F,

H (;w) "

To prove Theorem 1.4, we take s = po. By Proposition 3.1, we have

1/q
<C (ZI&-I”) , (f.9)eZ.
J

LP (wp) LP(wo)

116, T1f ro we) < I Nlro ()

for every w € Ap,. Observe that p(-) € LH(\Z, by Lemma 2.5, for ([b,T]f,f) € F
and f € L?")(w), we have

12, T1AW oy < ClLWH o0

Furthermore, as an immediate consequence of Proposition 3.2, for every 1 < p,g < oo,
wo € A, and sequence {([b,T]fj,f;)} C .F ,we get

1/q 1/q
(Z[M]f;l‘f) <cC <Zf,-|‘f>

L7 (wo) ! L7 (wo)
From this we immediately get vector-valued inequalities for it in the variable exponent
setting. [J

Finally, the proof of Theorem 1.5 is similar to that of Theorem 1.4.

Proof. In the same way as Theorem 1.4, Theorem 1.5 follows immediately from
Lemma 2.5, Proposition 3.2 and Corollary 1.2 in [34]. Here we omit its proof. []
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