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INEQUALITIES WITH APPLICATIONS

INVOLVING k–BETA RANDOM VARIABLE

SHAHID MUBEEN, SANA IQBAL AND ABDUR REHMAN

(Communicated by J. Pečarić)

Abstract. In this paper, we introduce some properties of beta k -distribution defined in [1].
We present some inequalities involving beta k -distribution via some classical inequalities, like
Chebyshev’s inequality for synchronous (asynchronous) mappings and Holder’s inequality. Also,
we discuss the inequalities for harmonic mean, variance and coefficient of variation of βk ran-
dom variable involving the parameter k > 0 . If k = 1 , we get the classical results.

1. Introduction

A process which generates raw data is called an experiment and an experiment
which gives different results under similar conditions, even though it is repeated a large
number of times, is termed as a random experiment. A variable whose values are deter-
mined by the outcomes of a random experiment is called a random variable or simply a
variate. The random variables are usually denoted by capital letters X ,Y and Z while
the values associated to them by corresponding small letters x,y and z . The random
variables are classified into two classes namely discrete and continuous random vari-
ables.

A random variable that can assume only a finite or countably infinite number of
values, is known as discrete random variable while a variable which can assume each
and every value within some interval is called a continuous random variable. The dis-
tribution function of a random variable X is denoted by F(x) . A random variable X
may also be defined as continuous if its distribution function F(x) is continuous and
differentiable everywhere except at isolated points in the given range. Let the deriva-
tive of F(x) be denoted by f (x) i.e., f (x) = d

dxF(x) . Since F(x) is a non-decreasing
function of x , so

f (x) � 0 and F(x) =
∫ x

−∞
f (x)dx , for allx.

Here, the function f (x) is called the probability density function p.d. f or simply a
density function of the random variable X . A probability density function has the
properties

f (x) � 0, for allx and F(x) =
∫ ∞

−∞
f (x)dx = 1.
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A moment designates the power to which the deviations are raised before averaging
them. In statistics, we have three kinds of moments as:

(i) Moments about any value x = A is the rth power of the deviation of variable
from A and is called the rth moment of the distribution about A .

(ii) Moments about x = 0 is the rth power of the deviation of variable from 0 and
is called the rth moment of the distribution about 0.

(iii) Moments about mean i.e., x = x for sample and x = μ for population, is
the rth power of the deviation of variable from mean and is called the rth moment of
the distribution about mean. These moments are also called central moments or mean
moments and are used to describe the set of data.

NOTE. The moments about any number x = A and about x = 0 are denoted by
μ ′

r while about mean position, by μr and μ0 = μ ′
0 = 1.

A link between the moments about arbitrary mean and actual mean of the data can
be established in the following results.

μr =
(

r
0

)
μ ′

r −
(
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1

)
μ ′

r−1μ ′
1 +

(
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)
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(
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)
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r−3μ ′3
1 + . . . . (1.1)

Putting r = 0,1,2,3,4, . . . in the relation (1.1), we get
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Conversely, we have

μ ′
r =

(
r
0

)
μr +

(
r
1

)
μr−1μ ′

1 +
(

r
2

)
μr−2μ ′2

1 +
(

r
3

)
μr−3μ ′3

1 + · · · . (1.2)

For r = 0,1, we get the same results as above . So, putting r = 2,3,4, · · · in the relation
(1.2), we get

μ ′
2 = μ2 +2μ1μ ′

1 + μ ′2
1 μ0 = μ2,

μ ′
3 = μ3 +3μ2μ ′

1 +3μ ′2
1 μ1 + μ ′3

1 ,

...

REMARKS. From the above discussion, we observe that the first moment about
the mean position is always zero while the second moment is equal to the variance.

If a random variable X assumes all the values from a to b , then for a continuous
distribution, the rth moment about the arbitrary number A and mean μ respectively,
are given by

μ ′
r =

∫ b

a
(x−A)r f (x)dx (1.3)

and

μr =
∫ b

a
(x− μ)r f (x)dx. (1.4)
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In a random experiment with n outcomes, suppose a variable X assumes the val-
ues x1, . . . ,xn with corresponding probabilities p1, . . . , pn , then the paring (xi, pi) ,
i = 1,2, . . . is called probability distribution and Σpi = 1 (in case of discrete distri-
butions). Also, if f (x) is a continuous probability distribution function defined on an
interval [a,b] , then

∫ b
a f (x)dx = 1. The expected value of the variate is defined as the

first moment of the probability distribution about x = 0 i.e.,

μ ′
1 = E(X) =

∫ b

a
x f (x)dx (1.5)

and the rth moment about mean of the probability distribution is defined as E(X −μ)r ,
where μ is the mean of the distribution.

NOTE. For discrete probability distribution, all the above results and notations are
same, just replacing the integral sign by the summation sign (∑) . The definitions given
in the introduction are taken from [2–4].

2. βk Function and beta k -distribution

The gamma k -function introduced by Diaz and Teruel [5] is

Γk(x) = lim
n→∞

n!kn(nk)
x
k−1

(x)n,k
, k > 0,x ∈ C\ kZ

− (1.6)

which is the generalization of Γ(x) and the integral form of Γk is given by

Γk(x) =
∫ ∞

0
tx−1e−

tk
k dt, Re(x) > 0. (1.7)

Also, the researchers [6–11] have worked on the generalized k -gamma function and
discussed the following properties:

Γk(x+ k) = xΓk(x), (1.8)

Γk(k) = 1, (1.9)

(x)n,k =
Γk(x+nk)

Γk(x)
(1.10)

where (x)n,k , is the Pochhammer k -symbol and also have the representation (x)n,k =
x(x+ k)(x+2k)(x+3k) · · · (x+(n−1)k) . We obtain the usual Pochhammer’s symbol
(α)n by taking k = 1. The authors [6] defined the k -beta function as

βk(x,y) =
Γk(x)Γk(y)
Γk(x+ y)

, Re(x) > 0, Re(y) > 0 (1.11)

and the integral form of βk(x,y) is

βk(x,y) =
1
k

∫ 1

0
t

x
k−1(1− t)

y
k−1dt. (1.12)
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From the definition of βk(x,y) given in (1.11) and (1.12), we can easily prove that

βk(x,y) =
1
k

β
(x

k
,
y
k

)
. (1.13)

Note that when k → 1, βk(x,y) → β (x,y) and Γk → Γ .
For more details about the theory of special k -functions like, gamma, polygamma,

beta, hypergeometric k -functions, solutions of k -hypergeometric differential equations,
contegious functions relations, inequalities and integral representations with applica-
tions involving gamma and beta k -functions, gamma and beta probability k -distri-
butions and so forth (see [12–17]).

DEFINITION 2.1. Let X be a continuous random variable, then it is said to have a
beta k -distribution with two parameters m and n , if its probability density k -function
(pdk f ) is defined by [1,18]

fk(x) =

{
1

kβk(m,n)x
m
k −1(1− x)

n
k −1, 0 � x � 1; m, n, k > 0

0, elsewhere.
(1.14)

In the above distribution, the k -beta variable is referred to as βk(m,n) and its k -
distribution function Fk(x) is given by

Fk(x) =

⎧⎪⎨
⎪⎩

0, x < 0,∫ 1
0

1
kβk(m,n)x

m
k −1(1− x)

n
k−1, 0 � x � 1; m, n, k > 0

0, x > 1.

(1.15)

REMARKS. We can call the above function an incomplete beta k -function be-
cause, if k = 1, it is an incomplete beta function tabulated in [19].

PROPOSITION 2.2. The beta k -distribution βk(m,n) , m,n,k > 0 satisfies the fol-
lowing properties:

(i) Beta k -distribution is a proper probability distribution i.e., area of βk(m,n) under
the curve fk(z) is unity.

(ii) The mean of this distribution is m
m+n .

(iii) The variance of βk(m,n) in terms of k is mnk
(m+n)2(m+n+k) .

(iv) The harmonic mean of βk(m,n) in terms of k is m−k
m+n−k .

Proof. (i) By using the definition of beta k -distribution, we have

z∫
0

fk(z)dz =
z∫

0

1
kβk(m,n)

z
m
k −1(1− z)

n
k −1dz, 0 � z � 1; m,n > 0.
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By the relation (1.12), we get

z∫
0

fk(z)dz =
1∫

0

1
kβk(m,n)

z
m
k −1(1− z)

n
k −1dz =

βk(m,n)
βk(m,n)

= 1.

(ii) The mean of the k -distribution, denoted by μk, is given by

μk = Ek(Z) =
z∫

0

z fk(z)dz

=
z∫

0

1
kβk(m,n)

z.z
m
k −1(1− z)

n
k −1dz, 0 � z � 1; m,n > 0.

Using the relations (1.11), (1.12) and (1.8), we have

μk =
1∫

0

1
kβk(m,n)

z
m
k (1− z)

n
k −1dz =

βk(m+ k,n)
βk(m,n)

=
Γk(m+ k)Γk(n)Γk(m+n)
Γk(m)Γk(n)Γk(m+n+ k)

=
m

m+n
.

(iii) The variance of βk(m,n) is given by,

σ2
k = Ek(Z2)− (Ek(Z))2 (1.16)

and

Ek(Z2) =
1∫

0

1
kβk(m,n)

z
m
k +1(1− z)

n
k −1dz =

βk(m+2k,n)
βk(m,n)

=
Γk(m+2k)Γk(n)Γk(m+n)
Γk(m)Γk(n)Γk(m+n+2k)

=
m(m+ k)

(m+n)(m+n+ k)
.

Thus, substituting the values of Ek(Z2) and Ek(Z) in equation (1.16) along with some
algebraic calculations we get the desired result.

(iv) Let X be a βk(m,n) variate, then we have the expected value of 1
X as

Ek

(
1
X

)
=

1
kβk(m,n)

1∫
0

1
x
x

m
k −1(1− x)

n
k−1dx =

1
kβk(m,n)

1∫
0

x
m
k −1−1(1− x)

n
k −1dx

which implies that

Ek

(
1
X

)
=

βk(m− k,n)
βk(m,n)

=
Γk(m− k)Γk(n)
Γk(m+n− k)

Γk(m+n)
Γk(m)Γk(n)

=
m+n− k

m− k
.

Now, harmonic mean in terms of k -symbol is given by

H.M =
1

Ek(1/X)
=

m− k
m+n− k

. �
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THEOREM 2.3. The rth moment of the beta k -distribution is given by

(m)r,k

(m+n)r,k
.

Where, (m)r,k shows the Pochhammer k -symbol.

Proof. The rth moment in terms of k > 0, about the origin is

μ ′
r,k = Ek(Xr) =

1
kβk(m,n)

1∫
0

xr.x
m
k −1(1− x)

n
k −1dx

Ek(Xr) =
1

kβk(m,n)

1∫
0

x
m
k +r−1(1− x)

n
k −1dx =

βk(m+ rk,n)
βk(m,n)

(1.17)

=
Γk(m+ rk)Γk(m+n)
Γk(m)Γk(m+ rk+n)

.

Using the relation (x)n,k = Γk(x+nk)
Γk(x)

, in the numerator as well as in the denominator, we
get the desired result. �

3. Applications to beta k -distribution via Chebychev’s integral inequality

In this section, we prove some inequalities which involve beta k -distribution by
using some natural inequalities [20]. The following result is well known in the literature
as Chebychev’s integral inequality for synchronous (asynchronous) functions. Here, we
use this result to prove some k -analog inequalities [21] and some new inequalities.

LEMMA 3.1. Let f , g, h : I ⊆ R → R be such that h(x) � 0 for all x ∈ I and
h, h f g, h f and hg are integrable on I . If f ,g are synchronous (asynchronous) on I,
i.e.,

( f (x)− f (y))(g(x)−g(y)) � (�) = 0 for allx, y ∈ I.

Then, we have the inequality (see [22])∫
I
h(x)dx

∫
I
h(x) f (x)g(x)dx � (�)

∫
I
h(x) f (x)dx

∫
I
h(x)g(x)dx. (1.18)

This lemma can be proved by using Korkine’s identity [23]∫
I
h(x)dx

∫
I
h(x) f (x)g(x)dx−

∫
I
h(x) f (x)dx

∫
I
h(x)g(x)dx

=
1
2

∫
I

∫
I
h(x)h(y)( f (x)− f (y))(g(x)−g(y))dxdy.

DEFINITION 3.2. Two positive real numbers a and b are said to be similarly
(oppositely) unitary if

(a−1)(b−1) � (�)0. (1.19)
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THEOREM 3.3. Let the random variables X and Y be such that X ∼ βk(p,q) and
Y ∼ βk(m,n) , p,q,m,n > 0 . Further, let the random variables U and V be such that
U ∼ βk(p,n) and V ∼ βk(m,q) . If

(p−m)(q−n) � (�)0 (1.20)

then, we have the inequality

Ek(X)rEk(Y )r

Ek(U)rEk(V )r � (�)
βk(p,n)βk(m,q)
βk(p,q)βk(m,n)

, k > 0, r = 1,2, . . . .

Proof. For k > 0, consider the mappings f , g, h : [0,1]→ [0,∞) given by

f (x) = x
p−m

k , g(x) = (1− x)
q−n
k and h(x) = x

r+m
k −1(1− x)

n
k−1.

Now, differentiation of f and g gives

f ′(x) =
(p−m)

k
x

p−m
k −1, g′(x) =

(n−q)
k

(1− x)
q−n
k −1, x ∈ (0,1).

As k > 0, so using the relations (1.19) and (1.20), we see that the mappings f and g
are synchronous (asynchronous) having the same (opposite) monotonicity on [0, 1] and
h is non negative on [0, 1]. Thus, using Chebychev’s integral inequality (1.18) for the
functions f , g, and h defined above, we have∫ 1

0
x

m
k +r−1(1− x)

n
k −1dx.

∫ 1

0
x

m
k +r−1(1− x)

n
k −1x

p−m
k (1− x)

q−n
k dx

� (�)
∫ 1

0
x

m
k +r−1(1− x)

n
k −1x

p−m
k dx.

∫ 1

0
x

m
k +r−1(1− x)

n
k −1(1− x)

q−n
k dx.

This implies

1
k

∫ 1

0
x

m
k +r−1(1− x)

n
k −1dx.

1
k

∫ 1

0
x

p
k +r−1(1− x)

q
k −1dx

� (�)
1
k

∫ 1

0
x

p
k +r−1(1− x)

n
k−1dx.

1
k

∫ 1

0
x

m
k +r−1(1− x)

q
k−1dx. (1.21)

Also, from the moment generating function given in the theorem (2.3), using the rela-
tion (1.17), we observe that

Ek(X)rβk(p,q) =
1
k

∫ 1

0
x

p
k +r−1(1− x)

q
k −1dx, (1.22)

Ek(Y )rβk(m,n) =
1
k

∫ 1

0
x

m
k +r−1(1− x)

n
k −1dx, (1.23)

Ek(U)rβk(p,n) =
1
k

∫ 1

0
x

p
k +r−1(1− x)

n
k −1dx (1.24)

and

Ek(V )rβk(m,q) =
1
k

∫ 1

0
x

m
k +r−1(1− x)

q
k −1dx. (1.25)

Applying the relation (1.22) to (1.25) in (1.21) and rearranging the terms, we get the
required proof. �
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COROLLARY 3.4. For q = p, n = m > 0 , the condition (p−m)(q− n) � (�)0
will become (p−m)2 � 0 and the theorem (3.3) becomes

Ek(X)rEk(Y )r

Ek(U)rEk(V )r � βk(p,m)βk(m, p)
βk(p, p)βk(m,m)

, k > 0, r = 1,2, · · ·

and using the relation (1.11), we obtain

Ek(X)rEk(Y )r

Ek(U)rEk(V )r � Γk(2p)Γk(2m)
Γ2

k(p+m)
, k > 0, r = 1,2, · · · ·

THEOREM 3.5. Let the random variables X and Y be such that X ∼ βk(p,q) and
Y ∼ βk(p,n) . Then, for p,q,m,n > 0 , we have the inequality for beta k -distribution

Ek(X)r

Ek(Y )r � (�)
Γk(p+q)Γk(m+n)
Γk(p+n)Γk(m+q)

, k > 0, r = 1,2, . . .

according as
(p−m)(q−n) � (�)0.

Proof. For k > 0, consider the mappings f , g, h : [0,1]→ [0,∞) given by

f (x) = x
p−m

k +r, g(x) = (1− x)
q−n
k and h(x) = x

m
k −1(1− x)

n
k −1.

Using these mappings in the Chebychev’s inequality, we have∫ 1

0
x

m
k −1(1− x)

n
k −1dx.

∫ 1

0
x

p
k +r−1(1− x)

q
k −1dx

� (�)
∫ 1

0
x

p
k +r−1(1− x)

n
k −1dx.

∫ 1

0
x

m
k −1(1− x)

q
k−1dx. (1.26)

By the definitions of expected values of beta k -distribution given in the relations (1.22)
to (1.25) and k -beta function, inequality (1.26) gives

kβk(m,n).kβk(p,q)Ek(X)r � (�)kEk(Y )rβk(p,n).kβk(m,q).

As k > 0, so, dividing by k2 and rearranging the terms, we get

Ek(X)r

Ek(Y )r � (�)
βk(p,n)βk(m,q)
βk(m,n)βk(p,q)

, r = 1,2, . . . . (1.27)

Applying the relation (1.11), we get the desired proof. �

COROLLARY 3.6. For q = p, n = m > 0 , the theorem (3.5) becomes

Ek(X)r

Ek(Y )r � Γk(2p)Γk(2m)
Γ2

k(p+m)
, k > 0, r = 1,2, . . . .

The following theorem gives an inequality for the harmonic means of the beta
distributed random variables and beta functions in terms of the parameter k > 0.
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THEOREM 3.7. Let the random variables X and Y be such that X ∼ βk(p,q) and
Y ∼ βk(p,n) . Denote the harmonic mean of the random variables X and Y , in terms
of k , respectively by Hk(X) = 1

Ek(1/X) and Hk(Y ) = 1
Ek(1/Y) . Then, for p,q,m,n > 0 ,

we have the inequality for beta k -distribution

Hk(Y )
Hk(X)

� (�)
βk(p,n)βk(m,q)
βk(m,n)βk(p,q)

, k > 0, r = 1,2, . . .

according as
(p−m)(q−n) � (�)0.

Proof. For k > 0, choose the mappings defined by

f (x) = x
p−m

k −r, g(x) = (1− x)
q−n
k and h(x) = x

m
k −1(1− x)

n
k −1.

Using these mappings in the inequality (1.18), we get∫ 1

0
x

m
k −1(1− x)

n
k −1dx.

∫ 1

0
x

p
k −r−1(1− x)

q
k −1dx

� (�)
∫ 1

0
x

p
k −r−1(1− x)

n
k −1dx.

∫ 1

0
x

m
k −1(1− x)

q
k−1dx. (1.28)

From the definition of expected values of beta k -distribution, we observe

Ek

(
1
X

)r

=
1

kβk(p,q)

1∫
0

(
1
x
)rx

p
k −1(1− x)

q
k −1dx =

1
kβk(p,q)

1∫
0

x
p
k −r−1(1− x)

q
k −1dx

and

Ek

(
1
Y

)r

=
1

kβk(p,n)

1∫
0

(
1
x
)rx

p
k −1(1− x)

n
k −1dx =

1
kβk(p,n)

1∫
0

x
p
k −r−1(1− x)

n
k −1dx.

Using these values in the inequality (1.28) we have

kβk(m,n)Ek

(
1
X

)r

.kβk(p,q) � (�) kβk(m,q).kβk(p,n)Ek(
1
Y

)r

which is equivalent to the theorem (3.7). �

COROLLARY 3.8. For q = p, n = m > 0 , the theorem (3.7) becomes

Hk(Y )
Hk(X)

� βk(p,m)βk(m, p)
βk(m,m)βk(p, p)

, k > 0

and by the relation (1.11), we have

HMk(Y )
HMk(X)

� Γk(2p)Γk(2m)
Γ2

k(p+n)
, k > 0.

The following theorem gives an inequality for the variance of the beta distributed
random variables and beta functions in terms of the parameter k > 0.
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THEOREM 3.9. Let the random variables X and Y be such that X ∼ βk(p,q)
and Y ∼ βk(p,n) . Denote the variances of the r.v.X and r.v.Y , in terms of k , respec-
tively by σ2

k (X) = μ ′
2,k(X)− (μ ′

1,k(X))2 and σ2
k (Y ) = μ ′

2,k(Y )− (μ ′
1,k(Y ))2 . Then, for

p,q,m,n > 0 , we have the inequality for beta k -distribution

σ2
k (X)βk(m,n)βk(p,q)−σ2

k (Y )βk(m,q)βk(p,n)

� (�)
βk(m,q)β 2

k (p+ k,n)
βk(p,n)

− βk(m,n)β 2
k (p+ k,q)

βk(p,q)
, k > 0

according as
(p−m)(q−n) � (�)0.

Proof. From the inequality (1.27), taking r = 2, we get

Ek(X)2

Ek(Y )2 � (�)
βk(p,n)βk(m,q)
βk(m,n)βk(p,q)

.

Using the value of μ ′
2,k(·) = Ek(·)2 in terms of σ2

k (·) , we have

[σ2
k (X)+ (μ ′

1,k(X))2]βk(m,n)βk(p,q) � (�) [σ2
k (Y )+ (μ ′

1,k(Y ))2]βk(m,q)βk(p,n)
(1.29)

which implies that

σ2
k (X)βk(m,n)βk(p,q)−σ2

k (Y )βk(m,q)βk(p,n)

� (�)
(

μ ′
1,k(Y )

)2
βk(m,q)βk(p,n)−

(
μ ′

1,k(X)
)2

βk(p,q)βk(m,n).

From the relation (1.17), taking r = 1, we find the value of μ ′
1,k = βk(m+k,n)

βk(m,n) and the
above expression (for the parameters p,q,n ) becomes

� (�)
(βk(p+ k,n)

βk(p,n)

)2
βk(m,q)βk(p,n)−

(βk(p+ k,q)
βk(p,q)

)2
βk(p,q)βk(m,n)

and use of the relation (1.11) will provide the required result. �

THEOREM 3.10. Denote the coefficients of variation of the r.v.X and r.v.Y , in

terms of k , respectively by CVk(X) = and CVk(Y ) , where CVk(·) =

√
σ2

k (·)
μ ′

1,k(·)
. Then, for

p,q,m,n > 0 , we have the inequality

CV 2
k (X)+1

CV 2
k (Y )+1

� (�)
(p+q)Γk(m+n)Γk(p+q+ k)
(p+n)Γk(m+q)Γk(p+n+ k)

, k > 0

according as
(p−m)(q−n) � (�)0.
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Proof. From the inequality (1.29), we have

(μ ′
1,k(X))2

[
σ2

k (X)
(μ ′

1,k(X))2 +1

]
βk(m,n)βk(p,q)

� (�)(μ ′
1,k(Y ))2

[
σ2

k (Y )+1
(μ ′

1,k(Y ))2

]
βk(m,q)βk(p,n)

which implies that

[CV 2
k (X)+1

CV 2
k (Y )+1

]
� (�)

(μ ′
1,k(Y ))2βk(m,q)βk(p,n)

(μ ′
1,k(X))2βk(m,n)βk(p,q)

. (1.30)

From the proposition (2.2), we see that the mean of beta k -distribution with parameters
p , q is μ ′

1,k(X) = Ek(X) = p
p+q and with parameters p , n is μ ′

1,k(Y ) = p
p+n . Thus,

inequality (1.30) along with the relation (1.11) becomes

[CV 2
k (X)+1

CV 2
k (Y )+1

]
� (�)

(p+q)2Γk(p+q)Γk(m+n)
(p+n)2Γk(p+n)Γk(m+q)

and use of the relation (1.8) gives the desired proof. �

COROLLARY 3.11. Using the values of mean and variance of beta distribution in
terms of the parameter k > 0 , from the inequality (1.29), we have the inequality

Γk(p+n+ k)Γk(m+q) � (�)Γk(p+q+ k)Γk(m+n) (1.31)

and

(p+n)[q+ p(p+q+ k)]
(p+q)[n+ p(p+n+ k)]

� (�)
Γk(p+q+2k)Γk(m+n)
Γk(p+n+2k)Γk(m+q)

, k > 0 (1.32)

according as
(p−m)(q−n) � (�)0.

Proof. As proved in the proposition (2.2), the value of mean and variance with
parameters p , q is μ ′

1,k = p
p+q and σ2

k = pqk
(p+q)2(p+q+k) . Thus, using these values along

with some algebraic calculations, inequality (1.29) gives

[qk+ p(p+q+ k)](p+n)2(p+n+ k)Γk(m+q)Γk(p+n)
� (�)[nk+ p(p+n+ k)](p+q)2(p+q+ k)Γk(m+n)Γk(p+q).

By successive use of the relation (1.8) on both sides of the above inequality, we get the
required proof. �
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4. Some results via Holder’s integral inequality

In this section, we prove some results involving the βk random variable via Hölder’s
integral inequality. The mapping βk , for two parameters, is logarithmically convex on
the interval ∈ [0,∞)2 proved in [24] which is k -analog result [22]. Now, we have the
following theorem.

THEOREM 4.1. Let (p,q),(m,n) ∈ [0,∞)2 and a,b � 0 with a + b = 1 . For
k > 0 , define the k -distributed random variables X and Y such that X ∼ βk(ap +
bm,aq+bn) and Y ∼ βk(p,q) . Then, we have the inequality for beta k -distribution

Ek(X)ar

[Ek(Y )r]a
� [βk(p,q)]a[βk(m,n)]b

βk(ap+bm,aq+bn)
, k > 0, r = 1,2, . . . . (1.34)

Proof. For k > 0, choose the mappings defined by

f (t) = [t
p
k +r−1(1− t)

q
k −1]a, g(t) = [t

m
k −1(1− t)

n
k −1]b and h(t) = 1,

for p = 1
a , q = 1

b , ( 1
p + 1

q = 1 and p � 1) . Using these mappings in the Holder’s
integral inequality∫

I
f (t)g(t)h(t) �

(∫
I
{ f (t)} 1

a h(t)dt
)a(∫

I
{g(t)} 1

b h(t)dt
)b

, (1.35)

we have∫ 1

0

(
t

ap
k + bm

k +ar−1(1− t)
aq
k + bn

k −1
)
dt

�
(∫ 1

0
t

p
k +r−1(1− t)

q
k −1dt

)a(∫ 1

0
t

m
k −1(1− t)

n
k −1dt

)b
. (1.36)

From (1.17), we observe that

Ek(X)arβk(ap+bm,aq+bn)=
1
k

∫ 1

0
t

ap+bm
k +ar−1(1− t)

aq+bn
k −1dt

and the inequality (1.36) gives

kEk(X)arβk(ap+bm,aq+bn) � [kEk(Y )rβk(p,q)]a[kβk(m,n)]b, r = 1,2, . . .

which is equivalent to the required result. �

COROLLARY 4.2. Setting r = 1 and Ek(Y ) = p
p+q in the theorem (4.1), we have

Ek(X)a �
(

p
p+q

)a [βk(p,q)]a[βk(m,n)]b

βk(ap+bm,aq+bn)
, k > 0.

Using the relation (1.11), we observe

Ek(X)a �
( pΓk(p)Γk(q)

(p+q)Γk(p+q)

)a [βk(m,n)]b

βk(ap+bm,aq+bn)
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and use of the property (1.8) and (1.11) gives

Ek(X)a �
(Γk(p+ k)Γk(q)

Γk(p+q+ k)

)a [βk(m,n)]b

βk(ap+bm,aq+bn)
=

[βk(p+q,q)]a[βk(m,n)]b

βk(ap+bm,aq+bn)
.

THEOREM 4.3. Let (p,q),(m,n) ∈ [0,∞)2 and a,b � 0 with a+b = 1 . Denote
the variance of the k -beta distributed random variables X ∼ βk(ap+bm,aq+bn) and
Y ∼ βk(p,q) by σ2

k (X) and σ2
k (Y ) respectively. Then, we have the inequality for beta

k -distribution

[σ2
k (Xa)+E2

k (Xa)]βk(ap+bm,aq+bn)

�
[
σ2

k (Y )+
(

p
p+q

)2 ]
[βk(p,q)]a[βk(m,n)]b,k > 0. (1.37)

Proof. Taking r = 2 in the inequality (1.34), we get

[Ek(Xa)2]βk(ap+bm,aq+bn)� [Ek(Y )2]a[βk(p,q)]a][βk(m,n)]b],k > 0.

From the relation (1.16), using the value of Ek(X) in terms of variance and also Ek(X)=
p

p+q provide the desired proof. �

COROLLARY 4.4. As proved in the Proposition (2.2), for the random variable
X ∼ βk(m,n) , Ek(X) = m

m+n and variance is, σ2
k = mnk

(m+n)2(m+n+k) . Now, inequality

(1.37) implies that

σ2
k (Xa)+E2

k (Xa) � p(p+ k)
(p+q)(p+q+ k)

[βk(p,q)]a][βk(m,n)]b

βk(ap+bm,aq+bn)
.
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