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(Communicated by S. Li)

Abstract. We obtain certain sharp Lp bounds for the generalized parametric Marcinkiewicz in-

tegrals M
(λ)
Ω,h,ρ . The singular kernels are allowed to be rough on the unit sphere as well as in

the radial direction. By the virtue of these estimates along with an extrapolation argument we
obtain some new and improved results on generalized parametric Marcinkiewicz integrals. Our
conditions on Ω and h are known to be the weakest conditions in their respective classes. One
of our main results answers a question posed by Fan and Wu.

1. Introduction

Throughout this paper, let Rn, n � 2, be the n -dimensional Euclidean space and
Sn−1 be the unit sphere in Rn equipped with the normalized Lebesgue surface mea-
sure dσ . Also, we let ξ ′ denote ξ/ |ξ | for ξ ∈ Rn \ {0} and p′ denote the exponent
conjugate to p, that is 1/p+1/p′ = 1.

Let h be a measurable function on R+ and Ω be an integrable function Ω on
Sn−1 satisfying ∫

Sn−1
Ω(y′)dσ(y′) = 0. (1.1)

The generalized parametric Marcinkiewicz integral operator M
(λ )
Ω,h is given by

M
(λ )
Ω,h,ρ f (x) =

(∫ ∞

0

∣∣∣∣ 1tρ

∫
|u|�t

f (x−u)
Ω(u′)
|u|n−ρ h(|u|)du

∣∣∣∣λ dt
t

)1/λ

,

where λ > 1, ρ = α + iβ (α,β ∈ R with α > 0) and f ∈ S (Rn), the space of
Schwartz functions.

If h ≡ 1, ρ = 1 and λ = 2, M
(2)
Ω,1,1 is the classical Marcinkiewicz integral op-

erator, which was first introduced by E. Stein in [25], as an extension of the notion
of Marcinkiewicz function from one dimension to higher dimensions. In [25], Stein

proved that if Ω∈Lipα(Sn−1) (0 < α � 1), then M
(2)
Ω,1,1 is of type (p, p) for 1 < p � 2
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and of weak type (1,1). In [7], Benedek, Calderón, and Panzone proved that M
(2)
Ω,1,1

is of type (p, p) for p ∈ (1,∞) if Ω ∈C1
(
Sn−1

)
. In [15], Hörmander proved that the

parametric Marcinkiewicz operator M
(2)
Ω,1,ρ is of type (p, p) for p ∈ (1,∞) if ρ > 0

and Ω∈ Lipα (Sn−1) (0 < α � 1). Later on, the study of M
(2)
Ω,h,ρ and some of its exten-

sions has attracted the attention of many authors. Readers may consult [29], [11], [2],
[1], [6], [3], [4], [21], [22], among a large number of references for their development
and applications.

On the other hand, the study of the generalized Marcinkiewicz integral operator

M
(λ )
Ω,h,1 was first introduced in [9] and later it has attracted the attention of many authors

(see for example, [19], [13], [5], [21], among others). Let us now recall the following
results which will be relevant to our current study.

(1) If h ≡ 1, ρ = 1 and Ω ∈ L(logL)1/2
(
Sn−1

)
, then M

(2)
Ω,1,1 is bounded on

Lp(Rn) for 1 < p < ∞ . Moreover, the exponent 1/2 is the best possible (see [29] for
p = 2 and [6] for 1 < p < ∞).

(2) If h ≡ 1 and Ω ∈ B
(0,− 1

2 )
q (Sn−1) , then M

(2)
Ω,1,1 is bounded on Lp(Rn) for

1 < p < ∞ . Moreover, the exponent −1/2 is the best possible (see [2]) .
(3) If 1 < λ < ∞, h ≡ 1 and Ω ∈ Lq(Sn−1) for some q > 1,∥∥∥M (λ )

Ω,h,1( f )
∥∥∥

Lp(Rn)
� C‖ f‖

F̈0,λ
p (Rn)

(1.2)

for 1 < p < ∞ (see [9]).
(4) If 1 < λ < ∞, h ∈ Δmax{λ ′,2}(R+) and Ω ∈ L(logL)(Sn−1) , then (1.2) holds

for 1 < p < ∞ (see [19]).
(5) If h≡ 1 and Ω∈ L(logL)1/λ (Sn−1) for λ � 2, then (1.2) holds for 1 < p < ∞ .

However, if 1 < λ < 2 and Ω ∈ L(logL)1/λ+ε(Sn−1) for any ε > 0, then (1.2) holds
for 1 < p < ∞ (see [13]).

(6) If 1 < λ < ∞,1 < p < ∞, γ > 1
2 max{ p̃, q̃} with η̃ = max{η ,η ′}, h ∈

Δmax{2,γ}(R+) and Ω ∈ L(logL)(Sn−1) , then (1.2) holds (see [21]).
In view of the above results, the following questions are very natural:

QUESTION 1. Determine whether the ε in the condition L(logL)1/λ+ε(Sn−1) in
(5) can be removed?

In fact, this question was formally raised by the authors in [13]. Also, in view of
results in (4) and (6) above (see [19] and [21]), we notice in one hand that the condi-
tion Ω ∈ L(logL)(Sn−1) falls short of the natural condition L(logL)1/λ (Sn−1),while
on the other hand the conditions on h which is h ∈ Δmax{λ ′,2}(R+) in [19] and h ∈
Δmax{γ,2}(R+) in [21] are too restrictive. So the second question is the following:

QUESTION 2. Determine whether the inequality (1.2) holds if h ∈ Δγ(R+) for
some γ > 1 and Ω ∈ L(logL)1/λ (Sn−1)?

One of our main purposes in this paper is to answer the above questions in the
affirmative. In fact, we shall prove even more. To be able to state our results, we need
to recall the following definition. For 1 � γ � ∞, let Δγ (R+) denote the collection of
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all measurable functions h : [0, ∞) −→ C satisfying

‖h‖Δγ
= sup

k∈Z

(∫ 2k+1

2k
|h(t)|γdt/t

)1/γ
< ∞

and Lγ(R+) denote the collection of all measurable functions h : [0, ∞) −→ C satis-
fying

Lγ(h) = sup
k∈Z

(∫ 2k+1

2k
|h(t)|(log(2+ |h(t)|))γdt/t

)
< ∞.

Also, we let Nγ(R+) denote the class of all measurable functions h on R+ such that

Nγ (h) = ∑
m=1

mγ2mdm(h) < ∞,

where dm(h)= supk∈Z 2−k |E(k,m)| with E(k,m)=
{
t ∈ (2k,2k+1] : 2m−1 < |h(t)| � 2m

}
for m � 2 and E(k,1) =

{
t ∈ (2k,2k+1] : |h(t)| � 2

}
.

We remark that Δγ (R+)⊂Nα(R+) ⊂ Lα(R+) for any γ � 1,α > 0 and for a given
α > 1, Lγ+α(R+) ⊂ Nγ(R+) for any γ > 0.

The statement of our main results of this paper are the following:

THEOREM 1.1. Suppose that Ω satisfies (1.1), Ω ∈ Lq(Sn−1) for some q ∈ (1,2]
and h ∈ Δγ (R+) for some γ ∈ (1,2]. Then∥∥∥M (λ )

Ω,h,ρ f
∥∥∥

Lp(Rn)
�Cp(q−1)−

1
λ (γ−1)−

1
λ ‖Ω‖Lq(Sn−1) ‖h‖Δγ

‖ f‖
F̈0,λ

p (Rn)
if λ � p < ∞

(1.3)
and∥∥∥M (λ )

Ω,h,ρ f
∥∥∥

Lp(Rn)
�Cp(q−1)−1(γ −1)−1 ‖Ω‖Lq(Sn−1) ‖h‖Δγ

‖ f‖
F̈0,λ

p (Rn)
if 1 < p < λ ,

(1.4)
where Cp is a positive constant independent of γ,q,Ω and h.

We notice in Theorem 1.1 that the exponent −1 is not sharp in the case 1 < p < λ .
However if h ∈ Δγ (R+) for some γ > 2 we have the following sharper result:

THEOREM 1.2. Suppose that Ω satisfies (1.1), Ω ∈ Lq(Sn−1) for some q ∈ (1,2]
and h ∈ Δγ (R+) for some γ > 2. Then∥∥∥M (λ )

Ω,h,ρ f
∥∥∥

Lp(Rn)
� C(q−1)−1/λ ‖h‖Δγ

‖Ω‖Lq(Sn−1) ‖ f‖
F̈0,λ

p (Rn)

for 1 < p < λ if 2 < γ < ∞ and λ ′ � γ, and∥∥∥M (λ )
Ω,h,ρ f

∥∥∥
Lp(Rn)

� C(q−1)−1/λ ‖h‖Δγ
‖Ω‖Lq(Sn−1) ‖ f‖

F̈0,λ
p (Rn)

for γ ′ < p < ∞ if 2 < γ � ∞ and λ ′ < γ, where Cp is a positive constant independent
of γ,q,Ω and h.

By the estimates in Theorems 1.1–1.2 and applying extrapolation we obtain the
following results:
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THEOREM 1.3. Suppose that Ω satisfies (1.1).
(a) If Ω ∈ L(logL)1/λ (Sn−1

)
and h ∈ N1/λ (R+), then∥∥∥M (λ )

Ω,h,ρ f
∥∥∥

Lp(Rn)
� Cp

(
1+‖Ω‖L(logL)1/λ(Sn−1)

)
(1+N1/λ (h))‖ f‖

F̈0,λ
p (Rn)

for λ � p < ∞;
(b) If Ω ∈ L(logL)

(
Sn−1

)
and h ∈ N1(R+), then∥∥∥M (λ )

Ω,h,ρ f
∥∥∥

Lp(Rn)
� Cp

(
1+‖Ω‖L(logL)(Sn−1)

)
(1+N1(h))‖ f‖

F̈0,λ
p (Rn)

,

for 1 < p < λ , where the constant Cp is independent of Ω and h.

THEOREM 1.4. Suppose that Ω satisfies (1.1).

(a) If Ω ∈ B
(0, 1

λ −1)
q

(
Sn−1

)
for some q > 1 and h ∈ N1/λ (R+), then

∥∥∥M (λ )
Ω,h,ρ f

∥∥∥
Lp(Rn)

� Cp

(
1+‖Ω‖

B
(0, 1

λ −1)
q (Sn−1)

)
(1+N1/λ(h))‖ f‖

F̈0,λ
p (Rn)

for λ � p < ∞;

(b) If Ω ∈ B(0,0)
q
(
Sn−1

)
for some q > 1 and h ∈ N1(R+), then∥∥∥M (λ )

Ω,h,ρ f
∥∥∥

Lp(Rn)
� Cp

(
1+‖Ω‖

B
(0,0)
q (Sn−1)

)
(1+N1(h))‖ f‖

F̈0,λ
p (Rn)

for 1 < p < λ , where the constant Cp is independent of Ω and h.

THEOREM 1.5. Suppose that Ω satisfies (1.1) and h ∈ Δγ (R+) for some γ > 2.

(a) If Ω ∈ L(logL)1/λ (Sn−1
)
, then, for some positive constant Cp that is inde-

pendent of Ω and h, the following inequality holds∥∥∥M (λ )
Ω,h,ρ f

∥∥∥
Lp(Rn)

� Cp

(
1+‖Ω‖L(logL)1/λ(Sn−1)

)
‖h‖Δγ

‖ f‖
F̈0,λ

p (Rn)

for 1 < p < λ if 2 < γ < ∞ and λ ′ � γ, and for γ ′ < p < ∞ if 2 < γ � ∞ and λ ′ < γ.

(b) If Ω∈B
(0, 1

λ −1)
q

(
Sn−1

)
, then, for some positive constant Cp that is independent

of Ω and h, the following inequality holds∥∥∥M (λ )
Ω,h,ρ f

∥∥∥
Lp(Rn)

� Cp

(
1+‖Ω‖L(logL)1/λ(Sn−1)

)
‖h‖Δγ

‖ f‖
F̈0,λ

p (Rn)

for 1 < p < λ if 2 < γ < ∞ and λ ′ � γ, and for γ ′ < p < ∞ if 2 < γ � ∞ and λ ′ < γ.

REMARKS.

1. We notice that by Theorem 1.5 (ii) if h ∈ L∞(0,∞) and Ω ∈ L(logL)1/λ (Sn−1
)
,

then M
(λ )
Ω,h,ρ is bounded on Lp for the full range (1,∞) and hence we get a

complete answer to Question 1 which in turn answers a question posed in [13].
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2. We notice that Theorems 1.3 and 1.5 improve greatly the results in [13], [19] and
[21].

3. Theorems 1.3–1.5 generalize very much the main results in [2], [3], [4] and [6].

4. It is known that the conditions Ω ∈ B(0,−1/2)
q

(
Sn−1

)
(q > 1) and Ω ∈

L(logL)1/2
(
Sn−1

)
are optimal for the L2 boundedness of M

(2)
Ω,1,1 to hold in the

sense that 1/2 cannot be replaced by any smaller number. Also, the conditions
imposed on h in Theorems 1.3–1.5 are the weakest known conditions.

Throughout the rest of the paper the letter C denotes a positive whose value may
be different at each appearance.

2. Some definitions and lemmas

The class L(logL)
α
(Sn−1) (for α > 0) denotes the class of all measurable func-

tions Ω on Sn−1 which satisfy

‖Ω‖L(logL)α (Sn−1) =
∫

Sn−1
|Ω(y)| log

α
(2+ |Ω(y)|)dσ(y) < ∞.

Now we recall the definition of the block space B(0,υ)
q (Sn−1). This space was

introduced by Jiang and Lu (see [20]) in their study of the mapping properties of homo-
geneous singular integral operators and it is defined as follows: A q−block on Sn−1 is
an Lq (1 < q � ∞) function b(x) that satisfies (i) supp(b) ⊂ I; (ii) ‖b‖Lq � |I|−1/q′ ,
where |I|= σ(I), and I = B(x′0,θ0) = {x′ ∈ Sn−1 :

∣∣x′ − x′0
∣∣< θ0} is a cap on Sn−1 for

some x′0 ∈ Sn−1 and θ0 ∈ (0,1]. The block space B(0,υ)
q (Sn−1) is defined by

B(0,υ)
q (Sn−1) =

{
Ω ∈ L1(Sn−1) : Ω =

∞

∑
μ=1

λμ bμ ,M(0,υ)
q

({λμ}
)

< ∞

}
,

where each λμ is a complex number; each bμ is a q−block supported on a cap Iμ on

Sn−1 , υ > −1 and

M(0,υ)
q

({λμ}
)

=
∞

∑
μ=1

∣∣λμ

∣∣{1+ log(υ+1)(
∣∣Iμ

∣∣−1)
}

.

Let ‖Ω‖
B(0,υ)

q (Sn−1)
= N(0,υ)

q (Ω) = inf{M(0,υ)
q

({λμ}
)
: Ω = ∑∞

μ=1 λμ bμ and each bμ is

a q -block function supported on a cap Iμ on Sn−1} . Then ‖·‖
B

(0,υ)
q (Sn−1)

is a norm on

the space B(0,υ)
q (Sn−1) and (B(0,υ)

q (Sn−1),‖·‖
B(0,υ)

q (Sn−1)
) is a Banach space.
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REMARK. For any q > 1 and 0 < υ � 1, the following inclusions hold and are
proper:

Lq(Sn−1) ⊂ L(logL)(Sn−1) ⊂ H1(Sn−1) ⊂ L1(Sn−1),⋃
r>1

Lr(Sn−1) ⊂ B(0,υ)
q (Sn−1) for any −1 < υ and q > 1,

L(logL)
β
(Sn−1) ⊂ L(logL)

α
(Sn−1) if 0 < α < β ,

L(logL)
α
(Sn−1) ⊂ H1(Sn−1) for all α � 1.

Regarding the relationship between L(logL)
α
(Sn−1) and H1(Sn−1) for 0 < α < 1, it

is known that neither one is contained in the other. Here, H1(Sn−1) is the Hardy space
on the unit sphere in the sense of Coifman and Weiss [8]. The question with regard

to the relationship between B(0,υ−1)
q (Sn−1) and L(log+ L)

υ
(Sn−1) (for υ > 0) remains

open.
Now we recall the definition of the Triebel-Lizorkin spaces Ḟα ,q

p (Rn) . For 1 <
p,q < ∞ and α ∈ R, the homogeneous Triebel-Lizorkin space Ḟα ,q

p (Rn) is defined by
the space of all tempered distributions f ∈ S ′(Rn) satisfying

Ḟα ,q
p (Rn) =

⎧⎪⎨⎪⎩ f ∈ S ′(Rn) : ‖ f‖Ḟα,q
p (Rn) =

∥∥∥∥∥∥
(

∑
k∈Z

2kαq |Ψk ∗ f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

< ∞

⎫⎪⎬⎪⎭ ,

where S ′(Rn) denotes the tempered distribution class on Rn,Ψ̂k(ξ ) = Φ(2−kξ ) for
k ∈ Z and Φ ∈C∞

0 (Rn) is a radial function satisfying the following conditions:
(i) 0 � Φ � 1;
(ii) supp Φ ⊂ {ξ : 1

2 � |ξ | � 2
}

;
(iii) Φ(ξ ) � c > 0 if 3

5 � |ξ | � 5
3 ;

(iv) ∑ j∈Z Φ(2− jξ ) = 1 (ξ 	= 0) .
It is well-known that S (Rn) is dense in Ḟα ,q

p (Rn) and that the following hold:

(1) Lp(Rn) = Ḟ0,2
p (Rn);

(2)
(
Ḟα ,q

p (Rn)
)∗ = Ḟ−α ,q′

p′ (Rn);
(3) Ḟα ,q1

p (Rn) ⊂ Ḟα ,q2
p (Rn) if q1 � q2.

Let {ak : k ∈ Z} be a lacunary sequence of positive numbers in the sense that
ak+1
ak

� a > 1 for each k ∈ Z. A sequence {Φk : k ∈ Z} of C∞(Rn) functions is said to
be a partition of unity adapted to {ak : k ∈ Z} if

SuppΦ̂k ⊂ {ξ ∈ Rn : ak−1 � |ξ | � ak+1}(k ∈ Z),

∑
k∈Z

Φ̂k(ξ ) = 1 (ξ ∈ Rn \ {0} ),

and ∣∣∣ξ α∂ β Φ̂k(ξ )
∣∣∣� Cβ
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for any multi-index β . Let P be the set of all polynomials on Rn. Let 1 < p,q < ∞
and α ∈ R. For f ∈ S ′(Rn)/P,we define the norm ‖ f‖Ḟα,q

p ({Φk}k∈Z,Rn) by

‖ f‖Ḟα,q
p ({Φk}k∈Z,Rn) =

∥∥∥∥∥∥
(

∑
k∈Z

aαq
k |Φk ∗ f |q

)1/q
∥∥∥∥∥∥

Lp(Rn)

.

The following result is stated in Proposition 1 in [21] for α 	= 0, but the proof of this
part works also for α = 0 as pointed in [27].

LEMMA 2.1. Let α ∈ R and 1 < p,q < ∞ . Let {ak : k ∈ Z} be a lacunary
sequence of positive numbers with ak+1

ak
� a > 1 (k ∈ Z) . Then ‖ f‖Ḟα,q

p ({Φk}k∈Z,Rn)
is equivalent to the usual homogeneous Triebel-Lizorkin space norm ‖ f‖Ḟα,q

p (Rn) if
ak+1
ak

� d (k ∈ Z) for some d � a.

Let θ � 2. For a suitable measurable function h : R+ −→C and Ω : Sn−1 → R,
we define the family of measures {σt,Ω,h : t ∈ R+} and the related maximal operators
σ∗

Ω,h and MΩ,h,θ on Rn by∫
Rn

f dσt,Ω,h =
1
tρ

∫
1
2 t<|x|�t

Ω(x)h(|x|)
|x|n−ρ f (x)dx ;

σ∗
Ω,h( f ) = sup

t∈R+

∣∣∣∣σt,Ω,h
∣∣∗ f
∣∣ ,

MΩ,h,θ f (x) = sup
k∈Z

∫ θ (k+1)

θ k

∣∣∣∣σt,Ω,h

∣∣∗ f (x)
∣∣dt/t.

We shall need the following lemma from [4].

LEMMA 2.2. Let h ∈ Δγ (R+) for some 1 < γ � 2, Ω ∈ Lq(Sn−1) for some 1 <

q � 2 and θ = 2q′γ ′
. Then for every p,1 < p � ∞, there exists a positive constant Cp

which is is independent of h,Ω,q and γ such that∥∥MΩ,h,θ ( f )
∥∥

p � Cp(q−1)−1(γ −1)−1‖Ω‖Lq(Sn−1) ‖h‖Δγ
‖ f‖p ; (2.1)∥∥σ∗

Ω,h( f )
∥∥

p
� Cp(q−1)−1(γ −1)−1‖Ω‖Lq(Sn−1) ‖h‖Δγ

‖ f‖p (2.2)

for every f ∈ Lp(Rn).

LEMMA 2.3. Let h ∈ Δγ (R+) for some 1 < γ � 2, Ω ∈ Lq(Sn−1) for some 1 <

q � 2 and θ = 2q′γ ′
. Let λ be a real number with λ > 1. Then there exists a positive

constant Cp which is independent of q,γ,Ω and h such that the following inequalities∥∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk
∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

Lp(Rn)

� Cp(q−1)−
1
λ (γ−1)−

1
λ ‖Ω‖Lq(Sn−1) ‖h‖Δγ

∥∥∥∥∥∥
(

∑
k∈Z

|gk|λ
)1/λ

∥∥∥∥∥∥
Lp(Rn)

for λ � p < ∞;

(2.3)



770 H. AL-QASSEM, L. CHENG AND Y. PAN

and ∥∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

Lp(Rn)

� Cp(q−1)−1(γ −1)−1‖Ω‖Lq(Sn−1) ‖h‖Δγ

∥∥∥∥∥∥
(

∑
k∈Z

|gk|λ
)1/λ

∥∥∥∥∥∥
Lp(Rn)

for 1 < p < λ

(2.4)

hold for arbitrary functions {gk(·)}k∈Z on Rn.

Proof. Let us first consider the case p � λ . By duality there exists a nonnegative
function b in L(p/λ )′(Rn) with ‖b‖(p/λ )′ � 1 such that

∥∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

λ

Lp(Rn)

=
∫

Rn
∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk(x)
∣∣λ b(x)

dt
t

dx. (2.5)

By Hölder’s inequality we get

∣∣σt,Ω,h ∗ gk(x)
∣∣λ � C‖h‖(λ/λ ′)

Δ1

(
‖Ω‖L1(Sn−1)

)(λ/λ ′)

×
(∫ t

1
2 t

∫
Sn−1

|gk(x− sy)|λ |Ω(y)| |h(s)|dσ(y)ds/s

)
.

Therefore, by a change of variable we have∥∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

λ

Lp(Rn)

� C‖h‖(λ/λ ′)
Δ1

(
‖Ω‖L1(Sn−1)

)(λ/λ ′) ∫
Rn

(
∑
k∈Z

|gk(x)|λ
)

M|Ω|,|h|,θ b̃(−x)dx, (2.6)

where b̃(x) = b(−x). Thus, by Lemma 2.2 , (2.6) and Hölder’s inequality we get (2.3)
for λ < p < ∞. Now if p = λ , we have∥∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

λ

Lp(Rn)

= ∑
k∈Z

∫
Rn

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk(x)
∣∣λ dt

t
dx.
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By Hölder’s inequality we have

∥∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

λ

Lp(Rn)

� C‖h‖(λ/λ ′)
Δ1

(
‖Ω‖L1(Sn−1)

)(λ/λ ′)

× ∑
k∈Z

∫
Rn

∫ θ (k+1)

θ k

(∫ t

1
2 t

∫
Sn−1

|gk(x− sy)|λ |Ω(y)| |h(s)|dσ(y)ds/s

)
dt/tdx

� C(q−1)−1(γ −1)−1‖h‖(λ/λ ′+1)
Δ1

(
‖Ω‖L1(Sn−1)

)(λ/λ ′+1) ∫
Rn

(
∑
k∈Z

|gk(x)|λ
)

which in turns implies (2.3) for the case p= λ . Let us now prove (2.4). By duality, there

exist functions f = fk(x,t) defined on Rn×R+ with
∥∥∥∥∥∥‖ fk‖Lλ ′ ([θ k,θ k+1],dt/t)

∥∥∥
lλ ′

∥∥∥
Lp′ �

1 such that

∥∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ gk
∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

p

=
∫

Rn
∑
k∈Z

∫ θ (k+1)

θ k

(
σt,Ω,h ∗ gk(x)

)
fk(x,t)

dt
t

dx

� Cp(q−1)−
1
λ (γ −1)−

1
λ

∥∥∥∥∥∥
(

∑
k∈Z

|gk|λ
)1/λ

∥∥∥∥∥∥
p

∥∥∥(H( f ))1/λ ′∥∥∥
p′

, (2.7)

where

H f (x) = ∑
k∈Z

∫ θ (k+1)

θ k

∣∣σt,Ω,h ∗ fk(x,t)
∣∣λ ′

dt/t.

Now, since p′ > λ ′, there exists a function F ∈ L(p′/λ ′)′(Rn) such that

‖H( f )‖p′/λ ′ = ∑
k∈Z

∫
Rn

∫ θ (k+1)

θ k

∣∣ fk(x,t)∗σt,Ω,h

∣∣λ ′ dt
t

F(x)dx. (2.8)
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By a similar argument as above, the choice of fk(x,t) and (2.2) we have

‖H( f )‖p′/λ ′ � C‖h‖(λ ′/λ)
Δ1

(
‖Ω‖L1(Sn−1)

)(λ ′/λ)

×
∫

Rn
σ∗
|Ω|,|h|(F̃)(−x)

(
∑
k∈Z

∫ θ (k+1)

θ k
| fk(x, t)|λ

′
dt/t

)
dx

� C‖h‖(λ ′/λ)
Δγ

(
‖Ω‖L1(Sn−1)

)(λ ′/λ)
∥∥∥∥∥
(

∑
k∈Z

∫ θ (k+1)

θ k
| fk(·, t)|λ

′
dt/t

)∥∥∥∥∥
p′/λ ′

×
∥∥∥σ∗

|Ω|,|h|(F)
∥∥∥

(p′/λ ′)′

� C(q−1)−1(γ −1)−1‖h‖(1+λ ′/λ)
Δγ

(
‖Ω‖Lq(Sn−1)

)(1+λ ′/λ)‖F‖(p′/λ ′)′

which when combinedwith (2.7) yields (2.4). The proof of Lemma 2.3 is complete. �

LEMMA 2.4. Let h ∈ Δγ (R+) for some 2 � γ < ∞, Ω ∈ Lq(Sn−1) for some 1 <

q � 2 and φ = 2q′ . Let λ be a real number such that λ ′ � γ. Then there exists a positive
constant Cp which is independent of q,γ,Ω and h such that the following inequalities∥∥∥∥∥∥

(
∑
k∈Z

∫ φ (k+1)

φ k

∣∣σt,Ω,h ∗ gk
∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

Lp(Rn)

� Cp(q−1)−
1
λ ‖Ω‖Lq(Sn−1)

∥∥∥∥∥∥
(

∑
k∈Z

|gk|λ
)1/λ

∥∥∥∥∥∥
Lp(Rn)

(2.9)

holds for 1 < p < 2 and for arbitrary functions {gk(·)}k∈Z on Rn.

Proof. As in the proof of Lemma 2.3, by duality, there exist functions f = fk(x,t)
defined on Rn×R+ with

∥∥∥∥∥∥‖ fk‖Lλ ′ ([φ k,φ k+1],dt/t)

∥∥∥
lλ ′

∥∥∥
Lp′ � 1 such that∥∥∥∥∥∥

(
∑
k∈Z

∫ φ (k+1)

φ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

p

=
∫

Rn
∑
k∈Z

∫ φ (k+1)

φ k

(
σt,Ω,h ∗ gk(x)

)
fk(x, t)

dt
t

dx

� Cp(q−1)−
1
λ

∥∥∥∥∥∥
(

∑
k∈Z

|gk|λ
)1/λ

∥∥∥∥∥∥
p

∥∥∥(H( f ))1/λ ′∥∥∥
p′

, (2.10)

where

H f (x) = ∑
k∈Z

∫ φ (k+1)

φ k

∣∣σt,Ω,h ∗ fk(x,t)
∣∣λ ′

dt/t.
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Now, since p′ > λ ′, there exists a function F ∈ L(p′/λ ′)′(Rn) such that

‖H( f )‖p′/λ ′ = ∑
k∈Z

∫
Rn

∫ φ (k+1)

φ k

∣∣ fk(x,t)∗σt,Ω,h
∣∣λ ′ dt

t
F(x)dx. (2.11)

By Hölder’s inequality we get

∣∣σt,Ω,h ∗ fk(x, t)
∣∣γ ′

� C

(∫ t

t/2
|h(s)|λ ds

s

) λ ′
λ (‖Ω‖L1(Sn−1)

) λ ′
λ

×
(∫ φ (k+1)

φ k

∫
Sn−1

|Ω(y)| | fk(x− sy, t)|λ ′
dσ(y)

ds
s

)
. (2.12)

Now, since γ � 2 and λ ′ � γ we have λ � γ ′ � γ . Thus by Hölder’s inequality we have(∫ t
t/2 |h(s)|λ ds

s

) λ ′
λ � C‖h‖λ ′

Δγ
and hence by (2.11)–(2.12) and Hölder’s inequality we

get

‖H( f )‖p′/λ ′ � C‖h‖(λ ′/γ)
Δγ

(
‖Ω‖L1(Sn−1)

)(λ ′/λ)

×
∥∥∥∥∥
(

∑
k∈Z

∫ φ (k+1)

φ k
| fk(·,t)|λ

′
dt/t

)∥∥∥∥∥
p′/λ ′

∥∥∥σ∗
|Ω|,1(F)

∥∥∥
(p′/λ ′)′

. (2.13)

Now, by switching to polar coordinates we have∣∣σt,Ω,1
∣∣∗ | f | (x) �

∫
Sn−1

|Ω(y)|
∫ t

1
2 t
| f (x− sy)| ds

s
dσ(y)

� C
∫

Sn−1
|Ω(y)|My f (x)dσ(y),

where

My f (x) = sup
ρ∈R

1
ρ

∫ ρ

0
| f (x− sy)|ds

is the Hardy-Littlewood maximal function of f in the direction of y. Since My is
bounded on Lp(Rn) , 1 < p < ∞ with bound independent of y, we get∥∥σ∗

Ω,1( f )
∥∥

p
� C

∫
Sn−1

|Ω(y)|∥∥My( f )
∥∥

p dσ(y)

� C‖Ω‖L1(Sn−1) ‖ f‖p for 1 < p < ∞. (2.14)

Thus by (2.13) and (2.14) we obtain

‖H( f )‖p′/λ ′ � C‖h‖(1+λ ′/γ)
Δγ

(
‖Ω‖Lq(Sn−1)

)(1+λ ′/λ) ‖F‖(p′/λ ′)′ (2.15)

which when combined by (2.10) implies get (2.9). �
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LEMMA 2.5. Let h ∈ Δγ (R+) for some γ � 2, Ω ∈ Lq(Sn−1) for some 1 < q � 2

and φ = 2q′ . Let λ be a real number such that λ ′ < γ. Then for any p satisfying
γ ′ < p < ∞ and f ∈ Lp (Rn) , there exists a positive constant Cp which is independent
of q,γ,λ ,Ω and h such that the inequality∥∥∥∥∥∥

(
∑
k∈Z

∫ φ (k+1)

φ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt/t

)1/λ
∥∥∥∥∥∥

Lp(Rn)

� Cp(q−1)−
1
λ ‖Ω‖Lq(Sn−1) ‖h‖Δγ

∥∥∥∥∥∥
(

∑
k∈Z

|gk|λ
)1/λ

∥∥∥∥∥∥
Lp(Rn)

(2.16)

holds for arbitrary functions {gk(·)}k∈Z on Rn.

Proof. We follow a similar argument as in the proof of Lemma 2.3 in [14]. By a
change of variable, we have(

∑
k∈Z

∫ φ (k+1)

φ k

∣∣σt,Ω,h ∗ gk

∣∣λ dt
t

)1/λ

�
(

∑
k∈Z

∫ φ

1

∣∣∣σφ kt,Ω,h ∗ gk

∣∣∣λ dt
t

)1/λ

. (2.17)

By Hölder’s inequality we get∣∣∣σφ kt,Ω,h ∗ gk(x)
∣∣∣γ ′

� C‖h‖γ ′
Δγ

(
‖Ω‖L1(Sn−1)

) γ ′
γ

(∫ φ kt

1
2 φ kt

∫
Sn−1

|Ω(y)| |gk(x− sy)|γ ′
dσ(y)

ds
s

)
. (2.18)

Let γ ′ < p < ∞ and let d = p/γ ′. By duality, there is a nonnegative function f ∈
Ld′(Rn) satisfying ‖ f‖Ld′ (Rn) � 1 such that

∥∥∥∥∥∥
(

∑
k∈Z

∫ φ

1

∣∣∣σφ kt,Ω,h ∗ gk

∣∣∣γ ′ dt
t

)1/γ ′∥∥∥∥∥∥
γ ′

Lp(Rn)

=
∫

Rn
∑
k∈Z

∫ φ

1

∣∣∣σφ kt,Ω,h ∗ gk(x)
∣∣∣γ ′ dt

t
f (x)dx. (2.19)

Therefore, by (2.18) and a change of variable we get∥∥∥∥∥∥
(

∑
k∈Z

∫ φ

1

∣∣∣σθ kt,Ω,h ∗ gk

∣∣∣γ ′ dt
t

)1/γ ′∥∥∥∥∥∥
γ ′

Lp(Rn)

� C‖h‖γ ′
Δγ

(
‖Ω‖L1(Sn−1)

) γ ′
γ
∫

Rn
∑
k∈Z

|gk(x)|γ
′
σ∗

Ω,1 f̃ (−x)dx, (2.20)
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where f̃ (x) = f (−x). By Hölder’s inequality, we obtain∥∥∥∥∥∥
(

∑
k∈Z

∫ φ

1

∣∣∣σφ kt,Ω,h ∗ gk

∣∣∣γ ′ dt
t

)1/γ ′∥∥∥∥∥∥
γ ′

Lp(Rn)

� C(q−1)−1‖h‖γ ′
Δγ

(
‖Ω‖L1(Sn−1)

) γ ′
γ

∥∥∥∥∥∥
(

∑
k∈Z

|gk|γ
′
)1/γ ′

∥∥∥∥∥∥
γ ′

Lp(Rn)

∥∥σ∗
Ω,1 f̃

∥∥
Ld′ (Rn) .

By the last inequality and (2.14) we get∥∥∥∥∥∥
(

∑
k∈Z

∫ φ

1

∣∣∣σφ kt,Ω,h ∗ gk

∣∣∣γ ′ dt
t

)1/γ ′∥∥∥∥∥∥
Lp(Rn)

� C(q−1)−1/γ ′ ‖h‖Δγ
‖Ω‖Lq(Sn−1)

∥∥∥∥∥∥
(

∑
k∈Z

|gk|γ
′
)1/γ ′

∥∥∥∥∥∥
Lp(Rn)

(2.21)

for any γ ′ < p < ∞. Now, define the linear operator T on any function g = gk(x) by

T (gk(x)) = σφ kt,Ω,h ∗ gk(x).

Then by (2.21) we have∥∥∥∥∥
∥∥∥∥‖T (g)‖

L
γ ′ ([1,φ ], dt

t )

∥∥∥∥
lγ ′ (Z)

∥∥∥∥∥
Lp(Rn)

� C(q−1)−1/γ ′ ‖h‖Δγ
‖Ω‖Lq(Sn−1)

∥∥∥∥‖g‖l
γ ′ (Z)

∥∥∥∥
Lp(Rn)

(2.22)

for γ ′ < p < ∞. On the other hand, by Hölder’s inequality and since My is bounded on
Lp(Rn) , 1 < p < ∞ with bound independent of y, we get∥∥σ∗

Ω,h( f )
∥∥� C‖h‖Δγ

‖Ω‖Lq(Sn−1) ‖ f‖Lp(Rn) for γ ′ < p < ∞. (2.23)

By (2.23) we have ∥∥∥∥∥sup
k∈Z

sup
t∈[1,φ ]

∣∣∣σφ kt,Ω,h ∗ gk

∣∣∣∥∥∥∥∥
Lp(Rn)

�
∥∥∥∥σ∗

Ω,h(sup
k∈Z

|gk|)
∥∥∥∥

Lp(Rn)

� Cp ‖h‖Δγ
‖Ω‖Lq(Sn−1)

∥∥∥∥sup
k∈Z

|gk|
∥∥∥∥

Lp(Rn)
. (2.24)



776 H. AL-QASSEM, L. CHENG AND Y. PAN

and hence we have ∥∥∥∥∥∥∥‖T (g)‖L∞ ([1,φ ], dt
t )

∥∥∥
l∞(Z)

∥∥∥∥
Lp(Rn)

=
∥∥∥∥∥∥∥‖T (g)‖L∞ ([1,φ ],dt)

∥∥∥
l∞(Z)

∥∥∥∥
Lp(Rn)

� C‖h‖Δγ
‖Ω‖Lq(Sn−1)

∥∥∥‖g‖l∞(Z)

∥∥∥
Lp(Rn)

. (2.25)

Therefore, we can interpolate (2.22) and (2.25) (see [16], p. 481) for the vector-valued
interpolation) to get (2.16). The lemma is proved. �

3. Proof of main results

Proof of Theorem 1.1. Assume Ω∈ Lq(Sn−1) for some q∈ (1,2] and h∈ Δγ (R+)
for some γ ∈ (1,2]. By Minkowski’s inequality we have

M
(λ )
Ω,h,ρ f (x) =

⎛⎝∫ ∞

0

∣∣∣∣∣2−kρ
∞

∑
k=0

σt2−k ,Ω,h ∗ f (x)

∣∣∣∣∣
λ

dt/t

⎞⎠1/λ

�
∞

∑
k=0

2−kα
(∣∣∣σt2−k ,Ω,h ∗ f (x)

∣∣∣λ dt
t

)1/λ
=
(

1
1−2−α

)
S

(λ )
Ω,h f (x), (3.1)

where

S
(λ )

Ω,h f (x) =

⎛⎝∫ ∞

0

∣∣∣∣∣1t
∫

1
2 t<|u|�t

f (x−u)
Ω(u′)h(|u|)

|u|n−1 du

∣∣∣∣∣
λ

dt/t

⎞⎠1/λ

.

Then

S
(λ )

Ω,h f (x) =
(∫ ∞

0

∣∣σt,Ω,h ∗ f
∣∣λ dt

t

) 1
λ

.

Let θ = 2γ ′q′ and let
{

Φ j
}∞
−∞ be a smooth partition of unity in (0, ∞) adapted to the

intervals I j = [θ−( j+1), θ−( j−1)]. More precisely, we require the following:

Φ j ∈ C∞, 0 � Φ j � 1, ∑
j

Φ j (t) = 1;

supp Φ j ⊆ I j;∣∣∣∣dsΦ j (t)
dts

∣∣∣∣ � C
ts

where C can be chosen to be independent of θ . Let Ψ̂k(ξ ) = Φk(|ξ |). Decompose

f ∗σt,Ω,h(x) = ∑
j∈Z

∑
k∈Z

(Ψk+ j ∗σt,Ω,h ∗ f )(x)χ
[θk ,θ (k+1))

(t) := ∑
j∈Z

Fj(x,t)
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and define

S
(λ )

Ω,h, j f (x) =
(∫ ∞

0

∣∣Fj(x,t)
∣∣λ dt

t

) 1
λ

.

Then
S

(λ )
Ω,h ( f ) � ∑

j∈Z
S

(λ )
Ω,h, j( f ) (3.2)

holds for f ∈ S (Rn).
By (3.1) and (3.2) we notice that (1.3)–(1.4) are proved if we show that∥∥∥S (λ )

Ω,h, j( f )
∥∥∥

Lp(Rn)

� C2−η| j|(q−1)−1/λ(γ −1)−1/λ ‖h‖Δγ
‖Ω‖Lq(Sn−1) ‖ f‖

F̈0,λ
p (Rn)

(3.3)

for λ � p < ∞; and∥∥∥S (λ )
Ω,h, j( f )

∥∥∥
Lp(Rn)

� C2−η| j|(q−1)−1(γ −1)−1‖h‖Δγ
‖Ω‖Lq(Sn−1) ‖ f‖

F̈0,λ
p (Rn)

(3.4)

for 1 < p < λ for some positive constants C and η . Before starting proving (3.3)–(3.4)
we need to get some necessary estimates.

First, by definition,

σ̂t,Ω,h(ξ ) =
1
tρ

∫ t

1
2 t

∫
Sn−1

e−isξ ·xΩ(x)
h(s)
s1−ρ dσ (x)ds

It is easy to see that∣∣σ̂t,Ω,h(ξ )
∣∣� C‖h‖Δγ

‖Ω‖L1(Sn−1) for t ∈ R+, (3.5)

which in turn implies

∫ θ (k+1)

θ k

∣∣σ̂t,Ω,h(ξ )
∣∣2 dt

t
� C(q−1)−1(γ −1)−1‖h‖2

Δγ
‖Ω‖2

Lq(Sn−1) (3.6)

for some positive constant independent of q and γ.
Second, by (1.1) we have

∣∣σ̂t,Ω,h(ξ )
∣∣� ∫ t

1
2 t

∫
Sn−1

∣∣∣e−isξ ·x −1
∣∣∣ |Ω(x)| |h(s)| ds

s
� C |ξ t|‖h‖Δγ

‖Ω‖L1(Sn−1)

which easily implies

∫ θ (k+1)

θ k

∣∣σ̂t,Ω,h(ξ )
∣∣2 dt

t
� C(q−1)−1(γ −1)−1θ 2 ‖h‖2

Δγ
‖Ω‖2

Lq(Sn−1)

∣∣∣θ kξ
∣∣∣2 .
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By the last estimate and (3.6) we get∫ θ (k+1)

θ k

∣∣σ̂t,Ω,h(ξ )
∣∣2 dt

t
� C(q−1)−1(γ −1)−1‖h‖2

Δγ
‖Ω‖2

Lq(Sn−1)

∣∣∣θ kξ
∣∣∣ 2

γ ′q′
. (3.7)

Third, by the proof of Corollary 4.1 of [10],∣∣σ̂t,Ω,h(ξ )
∣∣� C |tξ |−β/2‖h‖Δγ

‖Ω‖Lq(Sn−1)

for some positive constant C and β with βq′ < 1 which in turn implies∫ θ (k+1)

θ k

∣∣σ̂t,Ω,h(ξ )
∣∣2 dt

t
� C(q−1)−1(γ −1)−1

∣∣∣θ kξ
∣∣∣−β ‖h‖2

Δγ
‖Ω‖2

Lq(Sn−1) .

Therefore, by combining the last estimate with the trivial estimate (3.6) we obtain∫ θ (k+1)

θ k

∣∣σ̂t,Ω,h(ξ )
∣∣2 dt

t
� C(q−1)−1(γ −1)−1‖h‖2

Δγ
‖Ω‖2

Lq(Sn−1)

∣∣∣θ kξ
∣∣∣− β

γ ′q′
. (3.8)

We are now ready to prove (3.3). First we start with the case p = λ = 2. By
Plancherel’s theorem we have∥∥∥S (2)

Ω,h, j( f )
∥∥∥2

L2(Rn)
= ∑

k∈Z

∫
Rn

∫ θ (k+1)

θ k

∣∣Ψk+ j ∗σt,Ω,h ∗ f (x)
∣∣2 dt

t
dx

� ∑
k∈Z

∫
Ij+k

(∫ θ (k+1)

θ k

∣∣σ̂t,Ω,h(ξ )
∣∣2 dt

t

)∣∣ f̂ (ξ )
∣∣2 dξ

� C(q−1)−1(γ −1)−1‖h‖2
Δγ

‖Ω‖2
Lq(Sn−1)

× ∑
k∈Z

∫
Ij+k

min

(∣∣∣θ kξ
∣∣∣ 2

γ ′q′
,
∣∣∣θ kξ

∣∣∣− β
γ ′q′
)∣∣ f̂ (ξ )

∣∣2 dξ

� C(q−1)−1(γ −1)−1‖h‖2
Δγ

‖Ω‖2
Lq(Sn−1) 2

−η| j| ∑
k∈Z

∫
Ij+k

∣∣ f̂ (ξ )
∣∣2 dξ

� C(q−1)−1(γ −1)−1‖h‖2
Δγ

‖Ω‖2
Lq(Sn−1) 2

−η| j| ‖ f‖2
L2(Rn) .

Therefore,∥∥∥S (2)
Ω,h, j( f )

∥∥∥
L2(Rn)

� C(q−1)−
1
2 (γ −1)−

1
2 ‖h‖Δγ

‖Ω‖Lq(Sn−1) 2
− η

2 | j| ‖ f‖L2(Rn) (3.9)

and since ‖ f‖
F0,2
2 (Rn) = ‖ f‖L2(Rn) we get (3.3) for the case p = λ = 2.

Now Lemma 2.3 we have∥∥∥S (λ )
Ω,h, j( f )

∥∥∥
Lp(Rn)

� C(q−1)−
1
λ (γ −1)−

1
λ ‖h‖Δγ

‖Ω‖Lq(Sn−1) ‖ f‖
F̈0,λ

p (Rn)
(3.10)

for λ � p < ∞ and∥∥∥S (λ )
Ω,h, j( f )

∥∥∥
Lp(Rn)

� C(q−1)−1(γ −1)−1‖h‖Δγ
‖Ω‖Lq(Sn−1) ‖ f‖

F̈0,λ
p (Rn)

(3.11)
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for p < λ . By interpolating (3.9) with (3.10)–(3.11) we get (3.3)–(3.4) and hence the
proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. Assume Ω∈ Lq(Sn−1) for some q∈ (1,2] and h∈ Δγ (R+)
for some γ > 2. We argue as in the proof of Theorem 1and in this case θ is replaced
by φ . So Theorem 2 is proved if we show that∥∥∥S (λ )

Ω,h, j( f )
∥∥∥

Lp(Rn)
� C2−η| j|(q−1)−1/λ ‖h‖Δγ

‖Ω‖Lq(Sn−1) ‖ f‖
F̈0,λ

p (Rn)
(3.12)

for 1 < p < λ if 2 < γ < ∞ and λ ′ � γ, and∥∥∥S (λ )
Ω,h, j( f )

∥∥∥
Lp(Rn)

� C2−α | j|(q−1)−1/λ ‖h‖Δγ
‖Ω‖Lq(Sn−1) ‖ f‖

F̈0,λ
p (Rn)

(3.13)

for γ ′ < p < ∞ if 2 < γ � ∞ and λ ′ < γ. By Lemmas 2.4 and 2.5 we have∥∥SΩ,λ ,h, j( f )
∥∥

Lp(Rn) � C(q−1)−1/λ ‖h‖Δγ
‖Ω‖Lq(Sn−1) ‖ f‖

F̈0,λ
p (Rn)

(3.14)

for 1 < p < λ if 2 < γ < ∞ and λ ′ � γ, and∥∥SΩ,λ ,h, j( f )
∥∥

Lp(Rn) � C(q−1)−1/λ ‖h‖Δγ
‖Ω‖Lq(Sn−1) ‖ f‖

F̈0,λ
p (Rn)

(3.15)

for γ ′ < p < ∞ if 2 < γ � ∞ and λ ′ < γ. As above, by interpolation between (3.9) and
(3.14)–(3.15) we get (3.12)–(3.13). Theorem 1.2 is proved. �

Proof of Theorem 1.3 and Theorem 1.4. A proof of each of these theorems follows
by Theorems 1.1 and 1.2 and an extrapolation argument. For more details, see [4] and
[23]. �
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