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ON ROUGH GENERALIZED PARAMETRIC
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(Communicated by S. Li)

Abstract. We obtain certain sharp L” bounds for the generalized parametric Marcinkiewicz in-
tegrals %/g}? o The singular kernels are allowed to be rough on the unit sphere as well as in
the radial direction. By the virtue of these estimates along with an extrapolation argument we
obtain some new and improved results on generalized parametric Marcinkiewicz integrals. Our
conditions on Q and & are known to be the weakest conditions in their respective classes. One
of our main results answers a question posed by Fan and Wu.

1. Introduction

Throughout this paper, let R", n > 2, be the n-dimensional Euclidean space and
S"~! be the unit sphere in R" equipped with the normalized Lebesgue surface mea-
sure do. Also, we let &' denote &/|&| for & € R”\ {0} and p’ denote the exponent
conjugate to p, thatis 1/p+1/p'=1.

Let 7 be a measurable function on R, and Q be an integrable function  on
S"~! satisfying

Q0 y)do(y') =0. (1.1)

The generalized parametric Marcinkiewicz integral operator ///s(ﬁ) is given by

/A

1 Q') *dt
— _ AluDdul =
1P /|u|<zf(x Y Jul"? () = ’

where A > 1, p=a+ip (o,f € R with o > 0) and f € .7(R"), the space of
Schwartz functions.

Ifh=1,p=1and A =2, ///Q 1.1 is the classical Marcinkiewicz integral op-
erator, which was first introduced by E. Stein in [25], as an extension of the notion
of Marcinkiewicz function from one dimension to hlgher dimensions. In [25], Stein

proved thatif Q €Lip4(S"~!) (0 < a < 1), then ///Ql | isof type (p,p) for 1 <p<2
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and of weak type (1,1). In [7], Benedek, Calderén, and Panzone proved that //{g(fi !
is of type (p,p) for p € (1,e) if Q € C' (§*!). In [15], Hérmander proved that the
parametric Marcinkiewicz operator //lg(fi p is of type (p,p) for p € (1,) if p >0

and Q € Lip,(S"!) (0 < a < 1). Later on, the study of j/((f})l , and some of its exten-
sions has attracted the attention of many authors. Readers may consult [29], [1 1], [2],
[11, [6]1, [3], [4], [21], [22], among a large number of references for their development
and applications.

On the other hand, the study of the generalized Marcinkiewicz integral operator
//fs(z/l;z | was first introduced in [9] and later it has attracted the attention of many authors
(see for example, [19], [13], [5], [21], among others). Let us now recall the following
results which will be relevant to our current study.

(DIf h=1, p=1 and Q € L(logL)"/?(8""!), then ///((22}1 is bounded on
LP(R") for 1 < p < . Moreover, the exponent 1/2 is the best possible (see [29] for
p=2 and [6] for 1 < p < o).

2)If h=1and Q € BEIO’_%)(S"_I), then ///((22}1 is bounded on L?(R") for
1 < p < . Moreover, the exponent —1/2 is the best péssible (see [2]).

B)If 1l <A <o, h=1and Q€ LI(S"!) for some ¢ > 1,

i)

Lr(R?) < CHf”FQ’A(R”) (1.2
for 1 < p < oo (see [9]).

DI 1T <A <oo, h€Apaqaroy(Ry) and Q € L(logL)(S"~1), then (1.2) holds
for 1 < p < oo (see[19]).

(5)If h=1 and Q € L(logL)"/*(S"~!) for A > 2, then (1.2) holds for 1 < p < eo.
However, if 1 <A <2 and Q € L(logL)"/**£(S8"~!) for any & > 0, then (1.2) holds
for 1 < p < oo (see[13]).

O) If 1 <A <ol <p<oo, y>1Imax{p,g} with ) = max{n,n’}, he
Amaxf2.y} (R+) and Q € L(logL)(S"~1), then (1.2) holds (see [21]).

In view of the above results, the following questions are very natural:

QUESTION 1. Determine whether the € in the condition L(logL)!/*+£(§"~1) in
(5) can be removed?

In fact, this question was formally raised by the authors in [13]. Also, in view of
results in (4) and (6) above (see [19] and [21]), we notice in one hand that the condi-
tion Q € L(logL)(S"~') falls short of the natural condition L(logL)"/*(S"~!), while
on the other hand the conditions on /& which is & € Apaxar2y(R4) in [19] and & €
Amax{y2} (R+) in [21] are too restrictive. So the second question is the following:

QUESTION 2. Determine whether the inequality (1.2) holds if 7 € Ay(R,) for
some y> 1 and Q € L(logL)"/*(S"~1)?

One of our main purposes in this paper is to answer the above questions in the
affirmative. In fact, we shall prove even more. To be able to state our results, we need
to recall the following definition. For 1 <y <o, let A (R) denote the collection of
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all measurable functions A : [0, o) — C satisfying

ok+1 1)y
il =sup ([ Ioyae) <
kez \ /2

and .Z,(R) denote the collection of all measurable functions % : [0, o) — C satis-
fying

k41

Ly =sup ([ )| Gogl2 + [0t ) <=

keZ
Also, we let .#(R) denote the class of all measurable functions & on R, such that

Ny(R) =Y, m¥2"d (h) < oo,
m=1

where d,(h) = supycy 2% |E (k,m)| with E (k,m) = {r € (2%, 25" 1] : 2m=1 < |n(1)] < 2}
for m>2 and E(k,1) = {r € (2%,2""1] : |n(1)| < 2}.
We remark that A (R})C A5 (R4) C Zo(R+) forany ¥ > 1,00 > 0 and for a given
o>1, ZyaRy) C A(Ry) forany y> 0.

The statement of our main results of this paper are the following:

THEOREM 1.1. Suppose that Q satisfies (1.1), Q € L4(S" ") for some q € (1,2]
and h € A, (Ry.) for some y € (1,2]. Then

(A) 1 1 .
|51 gy <Cola=DF =1 [ Ul 1 gy 4 <P <
(1.3)
and
A _ _ .
[ 501, gy < Cola =07 0= 1) 1A s Wl 151 g gy 1< P < 2.

(1.4)
where C, is a positive constant independent of 7y,q,2 and h.

We notice in Theorem 1.1 that the exponent —1 is not sharp inthe case 1 <p < A.
Howeverif h € A (R;) for some y>2 we have the following sharper result:

THEOREM 1.2. Suppose that Q satisfies (1.1), Q € LY(S" ") for some q € (1,2]
and h € A (Ry.) for some y > 2. Then

|21

_1)"VA
oy < €@ D7, 1920119

forl<p<lif2<y<ecoand A' >y, and
A _
[ 800 < Ca= D2 bl 101y 1 0 g

for Y/ <p<eoif 2<y<eoand L' <y, where C, is a positive constant independent
of v,q,€2 and h.

By the estimates in Theorems 1.1-1.2 and applying extrapolation we obtain the
following results:

LP(RY)
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THEOREM 1.3. Suppose that Q satisfies (1.1).
(a)If Q € L(logL)"/* (8"~1) and h € A7, (Ry), then

()
| 6500 1 gy < o (1 0 gy 51y ) L MG 1

Jor A < p<eo;
(b)If Q€ L(logL) (S"™') and h € A (R,.), then

()
| 65007 gy < Co (1 190 igsr 1)) NG 1

for 1 < p <A, where the constant C, is independent of Q and h.
THEOREM 1.4. Suppose that Q satisfies (1.1).

1
(a)If Qe BEIO’A D (S"°1) for some g > 1 and h € N5 (Ry), then

™)
"/”Qah=Pf|’m(Rn> i (1 " Q”gé“v“(wl)) N I

Jor A < p<eo;
(b)If Q € BSIO’O) (S”_l) Sor some g > 1 and h € N (Ry), then

(1)
A0, < o (1120 ey ) (4 MAED e

for 1 < p <A, where the constant C, is independent of Q and h.

THEOREM 1.5. Suppose that Q satisfies (1.1) and h € Ay(R) for some y > 2.
(a) If Q € L(logL)'/* (S”_l) , then, for some positive constant C,, that is inde-
pendent of Q and h, the following inequality holds

*)
[ o gy < Co (1 120 gy 1)) WL, 171 o

for1<p<Aif2<y<ecoand A' >y, andfor Yy <p <o if2<y<eoand A'<7.

0,+-1
(b)IfQ e BEI a Y (S"’l) , then, for some positive constant C, that is independent

of Q and h, the following inequality holds

|21

LP(R") < Cp <1 + ||Q||L(logL)l/7L (Sn—l)> HhHAy Hf”F,?)L(R")

for1<p<Aif2<y<ecoand M' >y, andfor Yy <p <o if2<y<eoand A'<7.
REMARKS.

1. We notice that by Theorem 1.5 (i) if & € L(0,e0) and Q € L(logL)'/* (S*~1),

then ///gh) p is bounded on L? for the full range (1,00) and hence we get a
complete answer to Question 1 which in turn answers a question posed in [13].
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2. We notice that Theorems 1.3 and 1.5 improve greatly the results in [13], [19] and
[21].

3. Theorems 1.3—1.5 generalize very much the main results in [2], [3], [4] and [6].

4. It is known that the conditions Q € B,(io’fl/z) (S"') (¢ >1) and Q €

L(logL)'/? (S"~!) are optimal for the L boundedness of ///gi | to hold in the
sense that 1/2 cannot be replaced by any smaller number. Also, the conditions
imposed on 4 in Theorems 1.3—1.5 are the weakest known conditions.

Throughout the rest of the paper the letter C denotes a positive whose value may
be different at each appearance.

2. Some definitions and lemmas

The class L(logL)” (S"~') (for o > 0) denotes the class of all measurable func-
tions Q on 8"~ ! which satisfy

19 gy o1y = [, , 12001 1og” @+ [20) o) < =

Now we recall the definition of the block space B,SO’U)(S”_l). This space was
introduced by Jiang and Lu (see [20]) in their study of the mapping properties of homo-
geneous singular integral operators and it is defined as follows: A g—block on §"~! is
an L7 (1 < g < o) function b(x) that satisfies (i) supp(b) C I; (ii) ||b]|;4 < |I\71/‘1/,
where |I| = o(I), and I = B(x,60) = {x' € $" ' : |x¥' — x| < 6} isacapon S"~! for
some x(, € S"~! and ) € (0,1]. The block space B (8"=1) is defined by

BE]O,U)(Sn—l) _ {Q ELI Sn 1 Z Aﬂbﬂ’M ({A‘ }) < °°}a

where each 4, is a complex number; each b, is a g—block supported on a cap /, on

S ! v>—1and
(A = 3 [ {1 +10g 0, )]
u=1

Let ”QHBS}W(SWU :tho’v)(Q) = inf{M,go’v) ({A.}): @=35_,A,b, and each b, is

a g-block function supported on a cap 1, on §"'}. Then ||-| B0V is a norm on

(s

is a Banach space.

the space B\"")($"1) and (B{"V)($"1), ||.HB£]0~D)(S}171)>
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REMARK. Forany ¢ > 1 and 0 < v < 1, the following inclusions hold and are
proper:

LU(S™) € L(logL)(S" ") c H'(S" 1) c LI (8" 1),

U L' c B,SO’U)(S"_I) forany —1<vandg>1,
r>1

L(logL)’ (S"") € L(logL)"(S" ) if 0 < & < B,

LlogL)“ (8™ c H'(S" ") forall o > 1.

Regarding the relationship between L(logL)“(S"~!) and H'(S"!) for 0 < o < 1, it
is known that neither one is contained in the other. Here, H'(S"~!) is the Hardy space

on the unit sphere in the sense of Coifman and Weiss [8]. The question with regard

to the relationship between B{"" " (8"~1) and L(log" L)" (S"~!) (for v > 0) remains

open.

Now we recall the definition of the Triebel-Lizorkin spaces F,"/(R"). For 1 <
p,q < and a € R, the homogeneous Triebel-Lizorkin space F,fC “I(R") is defined by
the space of all tempered distributions f € .%/(R") satisfying

1/q
Flf"'q(R") = feS"(RY: HfHF';’*"(R") = (Z 2koq ‘Pk*fq> < ooy
keZ @)

where .’(R") denotes the tempered distribution class on R",¥; (&) = ®(27%&) for
k € Z and ® € Cy(R") is a radial function satisfying the following conditions:

Ho<o<L s

(i) supp @ C {& : 3 <§] <2};

(i) @(&) = c>0if 2 <€ <3

(iv) Zjez ®2778) =1 (§ #0).

It is well-known that .%(R") is dense in £;"/(R") and that the following hold:

(1) LP(R") = EJ*(RY);

@ (FIRY) = F % (R");

(3) Fy"'(R") C By 2(R") if g1 < go.

Let {a;:k€Z} be a lacunary sequence of positive numbers in the sense that
“’;—Zl >a> 1 foreach k € Z. A sequence {®; : k € Z} of C*(R") functions is said to
be a partition of unity adapted to {ay : k € Z} if

Supp®; C {E €R" 11 < |&| <arp1} (k€ Z),
YD&) = 1(E R\ {0)),

kel

and

EXPD(E)| < G
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for any multi-index 3. Let & be the set of all polynomials on R”. Let 1 < p,g < oo
and oo € R. For f €.7'(R")/ 2, we define the norm Hf”F;?"’({‘Pk}kez rr) DY

1/q
o
HfHF 1({ Dy} ez RY) (Zaqu)k*ﬂq)
keZ
LP(R?)
The following result is stated in Proposition 1 in [21] for o # 0, but the proof of this
part works also for o = 0 as pointed in [27].
LEMMA 2.1. Let ¢ € R and 1 < p,q < oo. Let {ay:k€Z} be a lacunary
ti ith 9L »
sequence of positive numbers with == > a > 1 (k€Z). Then ||fHF,, 9((®y} g RY)
is equivalent to the usual homogeneous Triebel-Lizorkin space norm ||f|| 2R if
’;—*}{1 <d (k€Z) forsome d>a
Let 0 > 2. For a suitable measurable function h: Ry — C and Q:S"' = R,
we define the family of measures {0; o, 1t € Ry} and the related maximal operators
G&h and Mg 9 on R" by

1 Q(x)h(|x]) )
/R” fdoi o » /%ngt fpf(x)dx ;

Jx["
06 (f)

i

SUP l|o.an]* f]

k+1
Maq o f(x) SUP/ |or.an|* f(x)|dt/t.

We shall need the following lemma from [4].

LEMMA 2.2. Let h € A,(Ry) for some 1 <y<2, Q€ L4(S"1) for some 1 <

qg<2and 0= 297" Then forevery p,1 < p < oo, there exists a positive constant C,
which is is independent of h,Q,q and 7y such that

Mano(A)l, < Cola— D=1 [Qusr s Il 11,5 @D
loaatl, < Cola— 17 =0 Qg Il 11, @2)
Sorevery f € LP(R").

LEMMA 2.3. Let h€ A (Ry) for some 1 <y<2, Q€ L4(S" 1) for some 1 <

g<2and 6= 297 Let A be a real number with A > 1. Then there exists a positive
constant C, which is independent of q,7y,€2 and h such that the following inequalities

gk+1)

1/
(2/ |Gt,9,h*gk|kdt/t>
keZ

1/2
_1 _1
< Cpla=1) H (1) F @ pagrn 1l (zw) for < p<es

keZ
Lr(R")

Lr(RY)

(2.3)
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and

k+1

(51

1/
<Cpla— 1) =) @ er ) Il (2 gm) for1<p<2i
kel
LP(R")

) 1/2
2
|Gr .0 * 8k df/f>
LP(RY)

(24)

hold for arbitrary functions {gk(-)} ez on R".

Proof. Let us first consider the case p > A. By duality there exists a nonnegative
function b in L®/A)(R") with [|b]|(, /5y < 1 such that

s/
Lz

By Holder’s inequality we get

k+1) . A
|61 * 8| df/f>

LP(R")
k+1

)
A dt
01000 % 1) b(x) —~dx. 2.5)

2 A0
aan )" <l (190,

([ L e 100 I o o))

)(W’)

Therefore, by a change of variable we have
k+1) A /2 A
|Gr.n * 8k df/f>

( /e(
2 /.
keZ Lr(®")

/ A2 ~
<l (12 ge) /Rn<zgk<x>*)MQ,h,eb<—x>dx, o)

keZ

where b(x) = b(—x). Thus, by Lemma 2.2, (2.6) and Holder’s inequality we get (2.3)
for L < p <oo. Now if p = A, we have

s/

k+1) k+1

gk+1) d
E/n/ek |0r.an *gk(x)|)b?tdx_

/4|
2
|or.0. * 8| df/’)
kez

LP(R")
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By Holder’s inequality we have

gk+1) . |t
(Z/ |G on * 8| df/t>
kez

LP(RM)
A/ (2/27)
<& (1)

xkezZ/n/:w (/;/s"l gk (x—sy)* |Q(y)||h(s)|d6(y)ds/s) dt Jtdx

<=1 - S (1) [ <2gk )

kel

which in turns implies (2.3) for the case p = A. Let us now prove (2.4). By duality, there

exist functions f = f;(x,#) defined on R"” x R} with HH”kaL’L/([Ok 0K+ it /1)
1 such that

a7

g+1) . 1/
(Z/ | G101 * 8| df/t>
keZ

p

B /n 2/ GhQ,h*gk(x))fk(X,t)%dx
kez,

1/2
<Glg-DEr-174 <Z|gk> [CEDRG )

kel

p/

p

where

k+1 v
Z/ ’GI,Q,h *fk(x,t)’ dt/t.
keZ
Now, since p’ > A’, there exists a function F € L(#'/*)' (R") such that

k+1
IH ()20 = 2/”/9k | fex,t) * ool —F( )dx. (2.8)
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By a similar argument as above, the choice of fi(x,7) and (2.2) we have

HH(f)Hp//A/ CHhH(A /}L) (”Q”Ll g1 )(l /l)

gk+1)

X/ Ol n (F (ke%/ i) d’/f>

A2
<™ (19 )

*|loam®],,..y

g(k+1) Ad
(kezz ] t/z>

P

_ 142//2 (1447/2)
< clg=107 =7 IS (190 ) I sy

which when combined with (2.7) yields (2.4). The proof of Lemma 2.3 is complete.

O

LEMMA 2.4. Let h € A, (Ry) for some 2 <y < oo, Q€ LI(S"!) for some 1 <
qg<2and ¢ = 24" Let A be a real number such that \' > V. Then there exists a positive
constant C, which is independent of q,y,L and h such that the following inequalities

(k+1)

1/
|or.0n *gk|ldf/f>

(z [
k
kez’® (@)

/A
_1 A
< Gp(g—1)77[|Q| a(gn1) (Zlgk )

keZ
LP(R")

holds for 1 < p <2 and for arbitrary functions {gi(-)};cz on R".

(2.9)

Proof. As in the proof of Lemma 2.3, by duality, there exist functions f = fi(x,?)

< 1 such that

e

(k+1)

defined on R” x R, with HH||fk||Ll,([¢k7¢kﬂ]7dt/t)
1/
A
|G * 8| dl/f>

(2 |

~Je Z/ (G nlo)) ) L
keZ
1/
(zm) H |
keZ

Z/ ’Gz,Q,h *fk(x,t)’wdt/z.
keZ

_L
<Gl i

7

where

(2.10)
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Now, since p’ > A’, there exists a function F € L(?'/*)'(R") such that

k+1
| (f Hpmz/n/q)k ety w0l L @.11)

By Holder’s inequality we get

!

/ 4 d. e
st <o [ o)L ) (1) *

(k+1)
2! ds
</¢" /S" Q)i = sy.1)] dG(y)?>. (2.12)

Now, since ¥ > 2 and A’ > v we have A < ¥’ < y. Thus by Holder’s inequality we have

A ’
(ff/z \h(s)|’l %) Y <c ||h||§y and hence by (2.11)—(2.12) and Holder’s inequality we
get

H 50 < I (120 5000)

(2 [ "o dz/t>

o - @13
keZ

/ 2’//
i (v'/2)

Now, by switching to polar coordinates we have
4 ds
ol Uf10) < [ 1900 [, 17— Fdo(y)
2
SC [ QW) Myf(x)da(y),

where

1 [P
My f(x)=sup— [ |f(x—sy)|ds
peR P JO

is the Hardy-Littlewood maximal function of f in the direction of y. Since M, is
bounded on LP(R"), 1 < p < o with bound independent of y, we get

loaull, < [, 100, do)

Sn—1
< C”Q”Ll(snfl) ||JCH17 forl < P < oo, (214)
Thus by (2.13) and (2.14) we obtain
1+A/y (1+7L’/7L)
11y <SS (190 F gy @19

which when combined by (2.10) implies get (2.9). [
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LEMMA 2.5. Let h€ A (Ry) for some y>2, Q € LI(S" 1) for some 1 < q <2

and ¢ = 29 Let A be a real number such that A' < Y. Then for any p satisfying
Y <p<eoand f €LP(R"), there exists a positive constant C, which is independent
of q,7,A,Q and h such that the inequality

(k+1) 1/
(Z/k |07, * 8k| df/’)
keZ
L (RY)

1/2
_1
< Cpla—1)H Qg 1], <2|gﬂ> 2.16)

keZ Lo®Y)
holds for arbitrary functions {gi(-)}cq on R".

Proof. We follow a similar argument as in the proof of Lemma 2.3 in [14]. By a
change of variable, we have

) ; 1/ ) i 1/

2 at t
2/, loonxal =] < Z/ ’o¢k,7g7h*gk’ Y e
kez” o ! ez 4

By Holder’s inequality we get

(k+1)

!

Y

’%M,Q,h * gk(x)

, r / ds
<l (120e) Y(/ 120 lst —sy>|Ydo<y>?>. @.18)

Let Y < p < oo and let d = p/ Y'. By duality, there is a nonnegative function f €
LY (R") satisfying | f|| 1 (gey < 1 such that

6 v a\""|
5 ) fowarcal
keZ
L (RY)
0
= Jo 2 ), lowara
kez /1

Therefore, by (2.18) and a change of variable we get

s
th) 7

(2/ ‘Gehgh*gk I’
kEZ (@)

<l (190e)” / Y a0l op f(-0dv. (220)

keZ

v ﬂf( )dx (2.19)
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where f(x) = f(—x). By Holder’s inequality, we obtain

1 !
o Y dt v
5, || [ovasral T
keZ

, ¥ ||
<Clg-1)" HhHZY (HQHLI(SH)) ! (Z gk|y> 106,11 o (g -

!

14

LP(R")

kEZ @)
By the last inequality and (2.14) we get
1 /
¢ Y dt v
5 ) fowarcal 7
kEZ Lo(®?)
/ 1y
<Clg—1)""" |Ihlly, 1€ osry (2 ng) (2.21)
keZ @)

forany y' < p < e. Now, define the linear operator 7 on any function g = g;(x) by

T(gr(x)) = Opkr.n * gr(x).

Then by (2.21) we have

HHT@”LV’M?w

"' (z) LP(R)

< Clg—1)"7|hlla, 1190 o1y (2.22)

Hg”lyl (Z) LP(R”)

for ¥/ < p < eo. On the other hand, by Holder’s inequality and since M, is bounded on
LP(R"), 1 < p < e with bound independent of y, we get

[oau (N < CllRlla, 121 a1y 11l o ey fory < p <ee. (2.23)

By (2.23) we have

sup sup ‘G¢kt7g7h*gk)

k€Zie(1,0] LP(RY)
< ||oan(sup|gk])
keZ LP(R")
<G ”h”Ay 19| g g1y || sup [8x] (2.24)
keZ LP(R")
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and hence we have

T . -

o (o "

< Cllls, 19 [ Ielmz |, g - (225)

Therefore, we can interpolate (2.22) and (2.25) (see [16], p. 481) for the vector-valued
interpolation) to get (2.16). The lemma is proved. [
3. Proof of main results

Proof of Theorem 1.1. Assume Q € L9(S"~!) for some g € (1,2] and h € A, (R+)
for some y € (1,2]. By Minkowski’s inequality we have

2 1/
. ol =
ot = | [T % 0y £ d
k=0
_ A dt 174 1 2
22 ( Op- th*f()‘ ?) =<1_2a>¢5’é7,1)f(x)7 (3.1)
where
2 1/
~|1 Q(u')h(|ul)
&) :/_/ —u) = gl de )t
Q,hf(x) o |7 %K‘ul@f(x u) M,,_l u /
Then

f&ff(X) = (/ }GtQh*f}}L dt)

Let 0 =277 and let {®;}”_ be a smooth partition of unity in (0, e) adapted to the
intervals [; = [0_(j+1), 6-U _1)]. More precisely, we require the following:

Q; €C”,0<D; <1, Y1) =
j
supp @; C I;;

‘d‘ ®;0) €
drs s

where C can be chosen to be independent of 6. Let ‘f’;(é) = q)k(|§ |). Decompose
froanx) =33 (P *oran+f)x)x X gk k1), =Y Fi(x1)

JEZLZkeEZ JjeZ
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and define
A dt
th (/ ’F )
Then
S (D <X S5 (3.2)
JjezZ
holds for f € .7(R").
By (3.1) and (3.2) we notice that (1.3)—(1.4) are proved if we show that
() H
HyQJW (f) LP(R?)
<2 Mil(g—1) A (y—1)"4 12lla, 11€2] o qsn1y 11 02 ey (3.3)

for L < p < oo; and

(4)
H‘ygvhﬂ' (f) LP(RY)
<c2Mlg—1y-1)~! 172lla, 11211 o sn1y ILF 1 02 gy (34

for 1 < p < A for some positive constants C and 7. Before starting proving (3.3)—(3.4)
we need to get some necessary estimates.
First, by definition,

A 1 ! —isGx h(s
Gan® =5 [, [ QW) " o (1) ds

It is easy to see that
|6.04(E)| <Clhlly, Q1) forr €Ry, (3.5)

which in turn implies

ol 2dt 1 L7112 2
/9 |61.0.4(8)] — SCla=1)7 (v= 1) lIl3, €270 (3.6)

k

for some positive constant independent of ¢ and 7.
Second, by (1.1) we have

16.04(6) / L e = 110001 w15 < c el Ml 194,

which easily implies

olcry 2 dt 1 19217112 2 ke|?
/ek |61.0.4(8)| T SCla=-17(y=1)76%lAli, ||QHLII(S”*1)’6 5‘ :
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By the last estimate and (3.6) we get

olet) 2dt 1 2 2 k2|77
Lo 18an®F T <cla=D7 =17 IR 190ys |04 (3.7)
Third, by the proof of Corollary 4.1 of [10],
A -B/2
|6.04(8)| < Cleg P2 Inly 190 oqsn)
for some positive constant C and 8 with B¢’ < 1 which in turn implies
g(k+1) d -B
A 2 at - - 2 2
Lo 18an®F T <cla=n" =17 |0%] IR I90s-
Therefore, by combining the last estimate with the trivial estimate (3.6) we obtain
ole+d 2 dt 1 117112 2 k i
Lo 18an@P T <cla=0" =1 iR, 190 656 77 G8)

We are now ready to prove (3.3). First we start with the case p = A1 = 2. By
Plancherel’s theorem we have

(2) 2 e(k+l) 2dt
Hyg,h,j(f) ey ke%‘/Rn /9k |Wirj* O % f ()] L
6(k+l) d
A 2 dt A 2
<[ ([ lean®P ) IFEf
kez /i \ 70 !
<Cla=D7' (r=17" IR 1Rz
2 __B
X 2/ min(‘@ké v leke| T ) |f(§)’2d§
ez’ i+
_ _ _nli A 2
<Cla= 17 =17 R 190 2 Y [ (7]
kez ! Tj+k
< Cla=0)7' =07 IR 12001y 27" e -
Therefore,
2 _1 1 _ny;
[ 7600 gy < Ca= D=0l 192050122 1 2y B9)

and since Hf||F£)A,z(R,,) =[£Il 2(rm) We get (3.3) for the case p =1 =2.
Now Lemma 2.3 we have

78050

1

_1 _1
<Cla= 1A= Il 190 s 1 0 gy B-10)

LP(R")

for A < p < oo and

|7800)

-1 -1
ey < C@= 17 0= 17 Il IR0y 1 g oy B1D
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for p < A. By interpolating (3.9) with (3.10)—(3.11) we get (3.3)—(3.4) and hence the
proof of Theorem 1.1 is complete. [

Proof of Theorem 1.2. Assume Q € L4(S"~") for some g € (1,2] and h€ A, (Ry)
for some y > 2. We argue as in the proof of Theorem land in this case 6 is replaced
by ¢. So Theorem 2 is proved if we show that

[E]

-nljl(, _ 1)1/
ey < €207 Al 19 1 g gy B12)

forl<p<Aif2<y<ooand A' >y, and

|85y oy €2 g =1 A, [ gy B13)
for Y/ < p<eoif 2<y< e and A’ < y. By Lemmas 2.4 and 2.5 we have
1% D oy < Cla= D7 ]l 1«0 zagsn1) L1 02 gy (3.14)
forl<p<Aif2<y<ooand A'>7, and
1% Ol oy < Ca=1 P llg 190 o) 1l j0r gy (B-15)

for Y < p<eoif 2<y< e and A’ < y. As above, by interpolation between (3.9) and
(3.14)—(3.15) we get (3.12)—(3.13). Theorem 1.2 is proved. [

Proof of Theorem 1.3 and Theorem 1.4. A proof of each of these theorems follows
by Theorems 1.1 and 1.2 and an extrapolation argument. For more details, see [4] and
[23]. O
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