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A FAMILY OF MEROMORPHICALLY MULTIVALENT FUNCTIONS
WHICH ARE STARLIKE WITH RESPECT TO k-SYMMETRIC POINTS

JIN-LIN L1U, H. M. SRIVASTAVA AND YUAN YUAN

(Communicated by S. Hencl)

Abstract. In this paper, two new subclasses % x(4,A,B) and .7, 1 (A,A,B) of meromorphically
multivalent functions starlike with respect to k-symmetric points are studied. Distortion bounds,
inclusion relations and convolution properties for each of these classes are obtained.

1. Introduction, definitions and preliminaries
Thoughout this paper, we assume that
N={1,2,3,...}, keN\{l}, —-1<B<0, B<A<S-B and Az=1. (L.1)
For functions f and g analytic in the open unit disk
U={z:z€C and |¢| < 1},

the function f is said to be subordinate to g, written f(z) < g(z) (z € U), if there exists
an analytic function w in U, with w(0) =0 and |w(z)| < 1, such that f(z) = g(w(z)).
Let X, denote the class of functions of the form:

flo)=z7"+ i a7’ (peN), (1.2)
n=p

which are analytic in the punctured open unit disk Uy =U\ {0}.
A function f € X, is said to be meromorphically starlike with respect to k-

symmetric points, if it satisfies
/!
ER{ zf'(z) } -0,

B fp,k (Z)

where

1 k-1 ip j 2mi
foi(z) = Z Y e/’f(glz) and g =exp ik
=0
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Let

film)=z"+ 2 an;" €X, (j=1,2).
n=p

Then the Hadamard product (or convolution) of f| and f> is defined by
(fixf2)@) =2+ Y angan2z" = (f2% f1)(2)-
n=p
The following lemma will be required in our investigation.

LEMMA. Let f € X, defined by (1.2) satisfy

2 [An(1—B)+p(1—=A)8, p4llan| = p(A—B). (1.3)
Then 1—A)z P —Azf 1+A
p(1-=A)z7"—Azf'(z) | 1+Az (e l), (1.4)
Pfi(z) 1+ Bz
where
2mi
foklz Ze,g”f glz), & =exp <7> (1.5)
and -
0 (2 ¢N),
Onpk = it (1.6)
I (FeN).
Proof. For f €%, defined by (1.2), the function f,; in (1.5) can be expressed as
foa@) =27+ Y, 8y paand” (1.7)
n=p

with it
Z n+17 {0 (Tp gé N) ?
n’p7 k
(32 eN).
In view of (1.1) and (1.6), we see that
ApS, pi+BAn = B(An—pd, 1) =0 (n2p). (1.8)

Let the inequality (1.3) hold true. Then from (1.7) and (1.8) we deduce that

p=M)zP—Azf'(z) - ;
pr «(2) 1 _ n:p(z’n +p6n,p,k)anz +p
A_ pel= l); ”( ?Zf’( 2) P(A—B)+ 37 ,(ApOn px + BAn)ayz"t?
PJlpk\2

;c:p(xn+p5n7p,k)|an|
= p(A=B)+ X7, (ApS, s+ BAn)|ay|
=1 (g =1).
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Hence, by the Maximum Modulus Theorem, we arrive at (1.4). [
We now consider the following two subclasses of %,,.

DEFINITION 1. A function f € X, defined by (1.2) is said to be in the class
Xpi(A,A,B) if and only if it satisfies the coefficient inequality (1.3).

It follows from the Lemma that, if f € %, 1(A,A,B), then the subordination rela-
tion (1.4) holds true.

DEFINITION 2. A function f € X, defined by (1.2) is said to be in the class
Ty k(A,A,B) if and only if it satisfies

=3

S n[An(1—B)+ p(1—A)S, pillas| < p*(A—B). (1.9)
n=p
For f € X, defined by (1.2), we have
27 P+ Zf =z 7+ 2 anz ,
which implies that
» Zf’( )
feZ(A,AB) ifandonlyif 277+ —= € Z,i(A,A,B). (1.10)
If we write
An(1—=B)+p(1—A)0, px n
o = == and B,=-0, (n=p), (1.11)
p(A—B) p p (n2p)
then it is easy to verify that
OBu _ndon o OBu _ndow g OB _mdom
oA pdA JA p odA JdB p dB

Thus we have the following inclusion relations. If
I1SAMSA, —1SB £B<0, B<AS-B and A< A £ -By,
then
Tpk(AAB) C Zpi(A,A,B) C Zpp(A,A1,B1) C Zpi(1,1,-1). (1.12)

Therefore, by the Lemma, we see that each function in the classes %, (A,A,B) and
Ty k(A,A,B) is meromorphically starlike with respect to k-symmetric points. Mero-
morphic (and analytic) functions which are starlike with respect to symmetric points
and related functions have been extensively studied by several authors (see, e.g., [1, 2,
3,6,7,8,9] and [12] to [15]; see also the recent works [10] and [11]).

There are several papers which study the convolution properties of functions in dif-
ferent function classes, and sometimes these questions might turn out to be very difficult
(see, e.g., [5] and the references therein). Also, many authors investigate the distortion
bounds of functions in various function classes (see, e.g., [4] and the references therein).
In the present paper, we obtain distortion bounds, inclusion relations and convolution
properties for each of the above-defined classes %, x(A4,A,B) and 7, x(A,A,B).
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2. Distortion bounds

THEOREM 1. Let 27” € N and suppose that either
(@ 1—-Bz2p(1—A)and L 21 or
(b) 1—B < p(1—A) and A = 21=4).

Then, if we denote
A—B

T Ny

we have the following:
() If f € Zpr(A,A,B), then for z € Uy,

277 = Cilz|” = [f()] = |27+ Ci 2"
(i) If f € T x(A,A,B), then for z € Uy,
p(ld ' =P ) S/ @I p(ld P +al).

The bounds in (2.1) and (2.2) are sharp.

2.1)

(2.2)

Proof. Let 27” €N.Forn=pand 2 € N, wehave n=p+k(m—1) (meN),

Onpi =1, and so

An(1—B)+p(1=A)8upx o A(1—B)+1-A
p(A—B) =" A-B

For n > p and % ¢ N, we have 8, ) x = 8,414 =0 and

An(1—B)+p(1 —A)8,px - Alp+1)(1-B)
p(A—B) - pA-B)

If either (a) or (b) is satisfied, then

Ap+1)(1-B) _ A(1-B)+1-A
p(A-B) ~ A-B '
It
f@) =77+ ad € Zpi(X,A,B),
n=p
then it follows from (1.3) and (2.3) to (2.5) that

A1=B)+1-A
— A Zlwl=t
n=p

Hence we have
> A—-B

@IS 1277+ 2P Y lan| < |77+
n=p

—|Z‘I7
AI—B)+1-A4A

2.3)

2.4)

(2.5)
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and

- A—B
> || 7P — |2|P N [ e N, ) N
[f@)] 2 |2]77 — 2] n§:pla N T ey L

for z € Up.
(ii) If
f@) ="+ Y ad € T,4(A,A,B),
n=p
then it follows from (1.9) and (2.3) to (2.5) that
A1=B)+1-A

nla,| < 1.

This leads to (2.2).
Furthermore, the bounds in (2.1) and (2.2) are sharp for the function

A—B
f(Z) =z 7+ mz” € %JJ&,A,B) C %p7k(A,A,B). O (2.6)

THEOREM 2. Let 271’ € N and suppose that
(1-B)<p(1—-A) and 1SA<—F~

and let =
fR) =27+ ad".
n=p

Then, if we denote

e, - PA=B)—p(A(1—B)+1-A)la|
27 Alp+1)(1-B) ’

we have the following:
() If f € Zpr(A,A,B), then for z € Uy,

7~ a2~ Glel ! < QIS R gyl + R @)
(i) If f € T x(A,A,B), then for z € Uy,
Pl = lapllelP™ = Colzl?) S |F/ )| S p (121777 + lapll2 "~ +Calel?) . (2.8)
The bounds in (2.7) and (2.8) are sharp.
Proof. Notethat 1 S A < % implies that

A(1-B)+1-A_ A(p+1)(1-B)
A-B = p(A_B)

(2.9)
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(i) For f(z) =z P +apz’ +--- € Zpx(A,A,B), it follows from (2.3), (2.4) (used
in the proof of Theorem 1) and (2.9) that

AI-B)+1-A  Ap+D(1-B) & _
A—B ‘ap‘ p(A_B) n:§~,1|an‘:1.

From this we easily have (2.7).
The bounds in (2.7) are sharp for the function

R p(A—B) 1
f(Z) =z 7+ mZFJr S %mk(JL,A,B). (2.10)

(ii) For f(z) =277 +apz +--- € T, x(A,A,B), from (2.3), (2.4) and (2.9) we
deduce that

A(1-B)+1—-A Alp+1)(1-B) &
—_——ap| + 77— nla,| < 1.
A—B P p2(A—B) ngil "
Hence we have (2.8).
The bounds in (2.8) are sharp for the function
2
" MFH T (L.A.B 0 211
@)=z TIprE-B° € pk(A,A,B). 2.11)
THEOREM 3. Let 271’ ¢ N. Then, if we denote
A—B
Ci=———
T 2(1=B)
we have the following:
() If f € Zpr(A,A,B), then for z € Uy,
|2l 7P = Gsl2” = [f(2)] = |2] 77 + Calz|”. (2.12)
(i) If f € T, k(A,A,B), then for z € Uy,
Pl =GP ) S IF @I p(ld P+ Gl ). (2.13)

The bounds in (2.12) and (2.13) are sharp.

Proof. Let 22 ¢ N. For n 2 p and "2 ¢ N, we have 8, ,x = 8, ,x =0 and

An(1=B)+p(1=A)8,,x - A(1—B)
p(A—B) = A-B

(2.14)

For n > p and % € N, we have

Onpk =1, nzk([%} —|—m>—p>p (meN),
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and
An(1—=B)+p(1 —A)0, px S A(1-B)+1-A > A(1—-B)

(1
p(A—B) A—B =~ A-B’
where [a] denotes the integer part of a given real number a.
(W) If f(z) =z P+ 27 an?" € Zpi(A,A,B), then it follows from (2.14) and
(2.15) that

(2.15)

A(1-B) &
_— <1
A _B r;)‘a"| = 5
which leads to (2.12).
() If f(z) =27 P + X7, an?" € T x(A,A,B), then (2.14) and (2.15) give

A(1-B) &
———2 ) nla,| £ 1,
p(A_B)ngp ‘ |_

which yields (2.13).
Furthermore, the function f defined by

A—B
— "€ 7,4, (A,A,B) C %, 1(A,AB 2.16
A(l—B)Z € P,k( )C PJC( ) ( )
shows that the bounds in (2.12) and (2.13) are best possible. [

flo)=z7+

3. Inclusion relations
In this section, we generalize the above-mentioned inclusion relation (1.12)
Tpi(A,A,B) C Zpx(A,A,B) (3.1

as follows.

THEOREM 4. If —1 < D < B, then

%7k(x’7A7B) C%p,k(AwC(D)vD)» (32)
where
C(D)=D+ %. (3.3)

The number C(D) cannot be decreased for each D.

Proof. Since B<A< —Band —1 <D < B <0, we see that
2B(1—D)
1-B
Let f € 7,x(A,A,B). In order to prove that f € %, ;(A,C(D),D), we only need
to find the smallest C (D < C £ —D) and show that it equals to C(D) such that
An(1—D)+p(1—=C)&ypx _ n[An(1—B)+p(1—A)8 p4l
p(C—D) - p*(A-B)

D<C(D)<D <.

(3.4)
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for all n 2 p, that is, that

(An+pé, 1)1 —D) ~n [(An+pd ) (1—B) >
pC-D) ST g o 20
(3.5
For n = p and % € N, (3.5) is equivalent to
1-D
Cz2D+————=0¢(n) (say). (3.6)

n(1-B) n—p

p(A—B)  An+p

Noting that (1.1), a simple calculation shows that ¢(n) (n = p,A = 1) is decreasing in
n. Therefore

me{ oV (en), .
o(n) = .
2 2
o (k([#]+1)-r) (2 21).
where [a] in (3.7) denotes the integer part of a given real number a.
For n > p and % ¢ N, (3.5) becomes
1-D
CzD+ B v(n) (say) (3.8)
p(A—B)
and
v(p+1) (27” € N) ;
w(n) < ) (3.9)
vip) (%¢N).
Consequently, by taking
1-D)(A-B
C=<p(p)=w(p)—D+( 1)_(3 ):C(D), (3.10)
it follows from (3.4) to (3.10) that f € %, x(A,C(D),D).
Furthermore, for 27” € Nand D < Cy < C(D), we have
A(1-D)+1-Cp A—B >7L(1—D)+1—C(D) A—B _q
Co—D A(1-B)+1-A C(D)-D A(1-B)+1-A

which implies that the function f € .7}, ;(A,A,B) defined by (2.6) is not in the class
Rpi(A,Co,D). Also, for 2717 ¢ N and D < Cy < C(D), we have

A(1-D) A-B _A(1-D) A-B

Co—D A(1—B)_ Cc(D)-D A(1—-B)

which implies that the function f € .7}, ;(A,A,B) defined by (2.16) is not in the class
Xp(A,Co,D). The proof of Theorem 4 is thus completed. []
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4. Convolution properties

In this section, we assume that
—1<B;<0 and Bj<A;<-B; (j=1,2).
Furthermore, we denote by A; the rootin (1,+e) of the equation:
h(A) =aA* +bA+c=0
where
—(1=B1)(1-By),

b= (p—1)(1=B1)(1—By)—p[(1—B1)(A2 — B2) + (1 — B2) (A,

= p[(1 —A1)(1 = A2) + (A1 — B1)(A2 — Ba)].

We also denote

~ l—B
A(B) =B+ - > 1-B, | >
(A’—'—I)Hj lA _zjzlAj*Bj—’_)L_-‘rl
and ,
p(1-B) y7A;—Bj
A(B) =B+
(B) 194—1).,1;[1 1—B;

THEOREM 5. Let
fj € ‘%PJ{(A’?ALBJ) (.] = 172)
with
2p

- eN and — 1< B<max{By,B2}.

Then we have the following:
@ IF p(1 = A)(1—A2) £ (1= B)) (1~ By) and A = 1, then

fl *fZ S %p,k(lag(B)vB)'
i) If p(1—A)(1—As) > (1—By)(1—By) and A > Aq, then
fl *fZ S %pk(lag(B)vB)

(i) If p(1—A)(1—Ay) > (1 —By)(1—By) and 1 S A < Ay, then

fixfr € Zpr(A,A(B),B).

—B1)l,

789

4.1)

4.2)

(4.3)

4.4)

In all cases (i)—(iii) the numbers A(B) and A(B) are optimal in the sense that they

cannot be decreased for each B.

Proof. Suppose that —1 < B < max{B;,B>} = B; (j = 1or2). It follows from

(4.1) and (4.4) that
1-B

—B

p+1 2
A(B)-B 1;[ z

2B

>0,
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which implies that B < A(B) £ —B. Also, (4.1) and (4.3) give that

which implies that B < A(B) < —B.
Let 271’ € N and

fi@) =27+ Y an;d" € Bpr(X,A;,Bj) (j=1,2).
n=p

S | A An(1—B))+p(1—A))8, pk
2 {H p(Aj —Bj) }

2 & An(l—B; 1-A))8,
éH{Z n(1—B))+p( >mﬂw@§L “s)
A

Then

p(Aj—B))

)
An(1—B)+p(1—A), px
p(A—B)

lan1an2| = 1. (4.6)

In order to prove Theorem 5, it follows from (4.5) and (4.6) that we need only to find
the smallest A such that

An(1=B)+p(1—A)8,px _ Bj)+p(1—A})8 px
L P (nzp).  47)
PA—B) —U p(A,—E) =)
For n > p and '”Tp € N, (4.7) is equivalent to
AZB+ (An+p 1 B =7 =@(n) (say). (4.3)
Hle 2JlA B+7Ln+p

It can be verified that @;(n) (n = p,?L = 1) is decreasing in n and so, in view of
2 eN
k b

1 —B

@1(n) < @1(p) =B+ T (4.9)
(A’—FI)HJ lA B Z, 1A B -+
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For n > p and % ¢ N, (4.7) becomes

1—B

AzB+M7:wl(n> (say) (4.10)
Hj 1A
and we have {—B
Wl(”)§W1(P+1):B+,1 Y . (4.11)
P Hj lA
Now
()H_l)ﬁl—Bj_il—Bj+ 2 p—|—1 12[ ,
j=1Aj_Bj j:lAj_Bj A‘Fl j=1 Aj—B;j
h(4)
) 4.12
p(A+1)(A1—B1)(A2—B>) (12
where
h(A)=(p—A)(A+1)(1=B1)(1—=B2)—p(A+1)[(1-B1)(A2—Bz)
+ (1= B3)(A1 —B1)]+2p(A1 — B1)(A2 — B)
=al*+bA +c, (4.13)

—(1=By)(1—By),
b= (p—1)(1-=Bi)(1—Ba) —p[(1 = B1)(A2 — B2) + (1 — B2)(A1 — B1)],
¢=p(1-B1)(1-B2)+2p(A;—By)(A2—B2)—p[(1-B1)(A2—B2)+(1—B2) (A1 —By)]
=pl(1=A1)(1-A2) + (A1 — B1)(A2 — By)].

Note that a < 0, h(0) = ¢ >0 and

h(1) =2(p—1)(1 = B1)(1 — B2) —2p[(1 — B1)(A2 — B2) + (1 = B2) (A1 — B1)]
+2p(A1—B1)(A2—Bo)
=2[p(1-A1)(1—-Az) = (1= By)(1-By)]. (4.14)

Therefore, if (i) or (ii) is satisfied, then it follows from (4.7) to (4.14) that h(A) < 0 for

A =2, wi(p+1) £ @i1(p) =A(B), and fi * f> € Z, (2, A(B),B).
Furthermore, for B < Ay < A(B), we have

)L(l B+1—A A;—B; A(1-B)+1-A(B

2
H?L )+l —Aj A(B)—B

Jj=1

2
Ty

j=1
Hence the functions f; defined by

Aj—B;
fj(z)zz_p—i—l(l_ )+1—AZ e Zpr(A,A;,Bj) (j=1,2)
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show that fi * fo & %, 1(A,Ao,B).

(i) If p(1—A;1)(1—A2) > (1—B;)(1—B,) and 1 £ A < Ay, then we have h(A) >
0, ¢1(p) <wyi(p+1)=A(B),and fi * f» € #Z, x(A,A(B),B). Furthermore, the number
A(B) cannot be decreased as can be seen from the functions f;(z) defined by

=+ T A B e g (i=12). O

(p+1)(1-By)
THEOREM 6. Let
fi€ %mk()L,Al,Bl) and f € LZ)’]((A,AQ,BZ)

with

2
TP €N and —1=<B<=max{By,Bs}.

Alsolet A(B), A(B) and Ay be given as in Theorem 5. Then we have the follow-
e @) 1f p(1—A)(1—A2) < (1—B)(1—B>) and A = 1, then
fixfr € Tpx(AA(B),B).
i) If p(1 = A1) (1—A2) > (1—B1)(1—B>) and A = Ay, then
fixfr€ Tpu(A,AB),B).
(i) If p(1— A1) (1 —As) > (1—B)(1 —By) and 1 < A < Ay, then
fix fa € Tpi(A,A(B),B).

In all cases (i)—(iii) the numbers A(B) and A(B) are optimal in the sense that they
cannot be decreased for each B.

Proof. Since [see Eq. (1.10)]

Zfz( )

fleg@I,’k()L,Al,Bl) 2777 4 === %mk(l,Az,Bg)

and

fi(2) * (2 P+Zf2()) 2z—P+27(fl*f)/(Z) (z € Uyp),

an application of Theorem 5 yields the theorem. [

Next, we denote by A, the rootin (1,4-o0) of the equation:

hl(k) = allz +biA+c =0,
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where

(2P+1)( By)(1-B,),
bl ( —2p—1)(1=B1)(1—B2) — p*[(1 = B1)(A2 — B2) + (1 — B2) (A1 — By)],
ct = p*(1=B1)(1=B2) = p*[(1 = B1)(A2 — B2) + (1 — Bo) (A1 — By)]
+2p* (A1 — B1)(A2 — By)
= p[(1 = A1) (1 —A2) + (A1 — B1) (A2 — Bo)].
(4.15)
We also denote

~ 2(1-B) 4 Aj—B;
AI(B):B+p( 3]‘[ Lty (4.16)
THEOREM 7. Let
fi € Zpx(AAL,By) and  fr € T,(A,A2,B)

with 5
TPGN and —1< B < max{B,B)}.

O If pPP(1=A)(1—-A2) £ 2p+1)(1—B))(1 —By) and A = 1, then
fixfo € Zpr(L,A(B),B).

(i) If p>(1 = A1) (1 —Ay) > (2p+1)(1 —By)(1 —By) and A = Ay, then
fi* fr € Zps(L,A(B),B).

(i) If p>(1 =A)) (1 —A2) > 2p+ 1)(1 = By)(1 —By) and 1 £ A < Ay, then
fi* f2 € Rpi(2,A1(B),B).

In all cases (i)—(iii) the numbers A(B) and A, (B) are optimal in the sense that
they cannot be decreased for each B.

Proof. Tt can be verified that

II\/

>0

1-B  Alp+1)? 2 =
B HA B l:[ 2B

A(B)-B P?

and so B <;1v1(B) < —B.
In order to prove Theorem 7, we need only to find the smallest A such that

Al’l(l—B)—Fp(l—A npk 2 z'nl_ ) p(l A)énp,k

P(A—B) =1 p(A;—B)) 17

foralln = p.
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For n > p and % €N, (4.17) is equivalent to

1-B
A>B+ —(n) (say).  (418)
- (}L + n 1-B n+
npnle 5, zle B/+lnfp

Defining the function g(4,x) b

x(Ax+p) 4 1-B;, x & 1-B;  x+p
A.x) = J Ny - -7 >ZpiA=>1),
g( 7x) P2 .l:IA'—B' PJE’IA./—B./—F/lx—l-p (X_p = )
then
dg(A,x) 27Lx+pH 1-B; 1& 1-B; p-1)
ox P2 1Aj—Bj p/~Aj—B; (Ax+p)?
22 12 1-B; 1 (& 1-B & 1-4A; A—1
e LEves 7] VU o i U o R e
P A B P j:lAJ'_Bj j:lAJ'_Bj p(l-i—l)
_uﬁ —B; 1 ﬁl—A,_l Al
B; P —1Aj—B;j p(A+1)?
24 1 A—1
22— === >0 x2ZpAz1),

p p pA+1)?

which implies that ¢@,(n) defined by (4.18) is decreasing in n (n = p). Hence, in view
of 271’ € N, we have

1_
()H'I)HIIA B Z/1A j"’%'

For n > p and '”Tp ¢ N, (4.17) reduces to

1—B
AZB+ ;”12—13 =yn(n) (say)
H/ 1 A;=B;
and, in view of 27” € N, we have
< =B 1-B
W2(n) = lllz(p+ )_ + A(erl)z H2 1-B;: °
P2 j=1 Aj*Bj

hi(4)

(4.19)
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where /(A1) = aiA?>+biA +c; and ay, by, c; are given by (4.15). Note that a; <0,
hl(O) =c¢; >0 and
(1) = [4p*=2(p+1)*|(1=B1)(1—B2)—2p*[(1-B1)(A2—B2)+(1-B2) (A1 —B) )]
+2p*(A1 — B1)(A2 — B)
=2[p’(1-A))(1-42) — (2p+1)(1—B1)(1 - By)].
The remaining part of the proof of Theorem 7 is much akin to Theorem 5 and hence we
omit it. The proof of the theorem is completed. [
By applying Theorem 7, we can derive the following theorem immediately.

THEOREM 8. Let
fj S Z?,k(lvAhBl) (J = 172)

with

2
feN and  —1<B<max{B\,By}.

Also let A(B ), ( ) and Ay be given as in Theorem 7.
@) If pPP(1—A)(1—Ay) £ 2p+1)(1 —By)(1 —By) and A 2 1, then
fl*f2€<7p.,k(a'7g(B)7B)'
(i) If p>(1 = A1) (1 —Ay) > (2p+1)(1 —By)(1 —By) and A = Ay, then

fl *f2 S %k(lag(B)aB)
(i) If p> (1 =A)) (1 —A2) > 2p+ 1)(1 = By)(1 —By) and 1 £ A < Ay, then

fixfe %,k(l,;\vl(B)yB)

In all cases (i)~(iii) the numbers A(B) and A (B) are optimal in the sense that
they cannot be decreased for each B.

Finally, we denote by A3 the rootin (1,+e0) of the equation:
hz(z,) = azz,z +boA +c =0,
where

—(3p*+3p+1)(1—By)(1-By),
by = (p*~3p*—3p—1)(1-By)(1—-Ba)—p*[(1—-B1)(A2—B2)+(1—Ba) (A1 —B1)],
c2=pY[(1-A1)(1—Az)+ (A1 —By) (A2 — By)].

(4.20)
‘We also denote
1_

2
J J
p+1 H (4.21)

Jj=1 J

Ax(B) =
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THEOREM 9. Let
fj € Zxk(LAj»Bj) (.]: 172)

with

2
TP €N and —1=<B<=max{By,Bs}.

O I PP(1—A)N(1—A) <Bp*+3p+1)(1—B))(1—By) and A = 1, then

fixfhe %p7k(/l7g(3)73)~

(i) If pP(1—A1)(1—A2) > 3p*+3p+1)(1 —By)(1 — By) and A = A3, then

fi* fr € Zps(L,A(B),B).

(i) If p(1—A)(1—Ay) > 3p*+3p+1)(1—B))(1—By) and 1 £ A < A3, then

fixfe %p,k(l,;\vz(B)’B)-

In all cases (i)~(iii) the numbers A(B) and A,(B) are optimal in the sense that

they cannot be decreased for each B.

Proof. It can be seen that B < ;\vg (B) < —B. In order to prove Theorem 9, we need

only to find the smallest A such that

An(1=B)+p(1=A)dupi _ (1 £ Bj)+p(1—4))8px
p(A—B) ( ) 1;[ p(Aj—B))

foralln = p.
For n = p and % € N, (4.22) can be written as

l—B

A>B+ =@3(n) (say).

(An+p n2+p?
3 - lA B 2; lA B Pt D)

Since @3(n) (n 2 p,A = 1) is decreasing in n and so

1_
¢3(n) = 3(p) =B+ -
(A"'I)Hj 1A B 2/ 1A e +)LL
— A(B).
For n 2 p and '”TpgéN,(4.22)bec0mes
1-B
A23+—:W3(") (say)

HJ lA B

(4.22)

(4.23)
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and we have B
- B _
l{/3(l’l) = W3(p+ l) =B+ A(p+1)3 H2 1-B;
P’ J=1 A;=B;
Now
2 1-B; & 1-B; 2 Ap+1)Y¥ & 1-B;
(7L+1)H o Iy o (P3 ) H J
j=1Aj—Bj j=1Aj—Bj A+1 )4 j=1Aj_Bj
hy(2)

TP+ )(A B (A By’

where (1) = asA? + byA + ¢, and ay,by, ¢y are given by (4.20).

We note that a, < 0, h,(0) = ¢, >0 and

ho(1) = 2[p*(1 = A1) (1 = A2) — (3p* +3p+1)(1 = B1)(1 - By)].

The remaining part of the proof is similar to that of Theorem 5 and thus we omitit. [J

5. Concluding remarks and observations

In our present investigation, we have introduced and studied several properties

of the two new subclasses %, 1(A,A,B) and .7, (A,A,B) of meromorphically mul-
tivalent functions which are starlike with respect to k-symmetric points. Among the
various properties derived in this paper for each of these classes are obtained, we in-
clude distortion bounds, inclusion relations and convolution properties. Our results are
motivated by a number of recent works (see, for example, [1] to [15]).
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