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AN INTRINSIC SQUARE FUNCTION ON WEIGHTED

HERZ SPACES WITH VARIABLE EXPONENT
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(Communicated by J. Pečarić)

Abstract. We define new generalized Herz spaces having weight and variable exponent, that is,
weighted Herz spaces with variable exponent. We prove the boundedness of an intrinsic square
function on those spaces under proper assumptions on each exponent and weight.

1. Introduction

The boundedness of the Hardy–Littlewoodmaximal operator M on function spaces
is very important in real analysis because it realizes boundedness of many other oper-
ators, for example, singular integrals, fractional integrals, and commutators involving
BMO functions. Muckenhoupt [21] has established the theory on weights called the
Muckenhoupt Ap theory in the study of weighted function spaces and greatly devel-
oped real analysis.

On the other hand, the theory on function spaces with variable exponent has been
rapidly developed after the work [20] where Kováčik and Rákosnı́k have clarified fun-
damental properties of Lebesgue spaces with variable exponent. On spaces with vari-
able exponent, the boundedness of the operator M is also a notable problem. As suf-
ficient conditions for the boundedness the log-Hölder continuous conditions have been
established and well known now ([2, 3, 7, 8, 15]).

Recently a generalization of the Muceknhoupt weights in terms of variable expo-
nent has been studied. Diening and Hästö [9] have initially defined the new class of
weights Ap(·) and proved the equivalence between the Ap(·) condition and the bound-
edness of M on weighted Lebesgue spaces with variable exponent. The equivalence
has been independently proved by Cruz-Uribe, Fiorenza and Neugebauer [4]. The first
author and his collaborators have studied the relation between Ap(·) and the wavelet
theory ([14, 16]).

An intrinsic square function is one of the remarkable operators in modern real
analysis. Many researchers have studied characterizations of general function spaces
via intrinsic functions ([12, 25, 26, 27, 28, 29, 30, 31]). In particular we focus on the
work [27] by Wang where the boundedness of some intrinsic functions including Sβ
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on weighted Herz spaces has been proved under proper assumptions on every exponent
and weight. Our aim in this paper is to extend the boundedness of the intrinsic square
function Sβ to the variable exponent case. We will define weighted Herz spaces with
variable exponent having variable integral exponent p(·) and weight w , and prove the
boundedness of Sβ on those spaces based on fundamental facts on general Banach
function spaces.

Throughout this paper we will use the following notation.

1. The symbol C always denotes a positive constant independent of main param-
eters. We remark that the value of C may be different from one occurrence to
another.

2. Given a measurable set S ⊂R
n , we denote the Lebesgue measure of S by |S| . In

addition, χS means the characteristic function of S .

3. A ball is always an open ball in R
n , that is, a ball B is a set given by

B := {y ∈ R
n : |x− y|< r},

using a point x ∈ R
n and a positive number r .

2. Preliminaries

2.1. Lebesgue spaces with variable exponent

We first define Lebesgue space with variable exponent.

DEFINITION 1. Let p(·) : R
n → [1, ∞) be a measurable function. The Lebesgue

space Lp(·)(Rn) with variable exponent p(·) is the set of all complex-valued measur-
able functions f defined on R

n satisfying

ρp( f ) :=
∫

Rn
| f (x)|p(x)dx < ∞.

It is known (cf. [15, 20]) that the Lebesgue space Lp(·)(Rn) becomes a Banach
space equipped with a norm given by

‖ f‖Lp(·)(Rn) := inf

{
λ > 0 : ρp

(
f
λ

)
� 1

}
.

The measurable function p(·) is called a variable exponent in variable exponent anal-
ysis. In order to state variable exponent spaces deeply we define some notations on
variable exponents.

DEFINITION 2.

1. Given a measurable function r(·) : R
n → (0, ∞) , we write

r+ := ‖r(·)‖L∞(Rn), r− :=
{(

1
r(·)
)

+

}−1

.
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2. The set P(Rn) consists of all variable exponents p(·) : R
n → [1, ∞) satisfying

1 < p− � p+ < ∞ .

3. A measurable function r(·) : R
n → (0, ∞) is said to be globally log-Hölder con-

tinuous if it satisfies the following two inequalities

|r(x)− r(y)| � C
− log(|x− y|) (|x− y|� 1/2),

|r(x)− r∞| � C
log(e+ |x|) (x ∈ R

n)

for some real constant r∞ . The set LH(Rn) consists of all globally log-Hölder
continuous functions.

The globally log-Hölder continuous conditions are famous because they ensure
the boundedness of the Hardy–Littlewood maximal operator M , defined by

M f (x) := sup
B :ball,x∈B

∫
B
| f (y)|dy,

on Lebesgue spaces with variable exponent. Hence we often consider those conditions
as standard assumptions in the study of function spaces with variable exponents (cf.
[2, 3, 7, 8, 15]).

2.2. Weighted Banach function spaces

We define Banach function space and state fundamental properties of it based on
the book [1] by Bennett and Sharpley. For further informations on the theory of Ba-
nach function space including the proof of Lemma 1 below we refer to the book. We
additionally show some properties of Banach function spaces in terms of boundedness
of the Hardy–Littlewood maximal operator. We will also consider the weighted case
based on the paper [18] by Karlovich and Spitkovsky.

DEFINITION 3. Let M be the set of all complex-valued measurable functions
defined on R

n , and X a linear subspace of M .

1. The space X is said to be a Banach function space if there exists a functional
‖ · ‖X : M → [0,∞] satisfying the following properties: Let f , g, f j ∈ M ( j =
1, 2, · · ·) , then

(a) f ∈ X holds if and only if ‖ f‖X < ∞ .

(b) Norm property:

i. Positivity: ‖ f‖X � 0.

ii. Strict positivity: ‖ f‖X = 0 holds if and only if f (x) = 0 for almost
every x ∈ R

n .

iii. Homogeneity: ‖λ f‖X = |λ | · ‖ f‖X holds for all complex numbers λ .
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iv. Triangle inequality: ‖ f +g‖X � ‖ f‖X +‖g‖X .

(c) Symmetry: ‖ f‖X = ‖| f |‖X .

(d) Lattice property: If 0 � g(x) � f (x) for almost every x ∈ R
n , then ‖g‖X �

‖ f‖X .

(e) Fatou property: If 0 � f j(x) � f j+1(x) for all j and f j(x)→ f (x) as j →∞
for almost every x ∈ R

n , then lim
j→∞

‖ f j‖X = ‖ f‖X .

(f) For every measurable set F ⊂ R
n such that |F | < ∞ , ‖χF‖X is finite. Ad-

ditionally there exists a constant CF > 0 depending only on F such that for
all h ∈ X , ∫

F
|h(x)|dx � CF‖h‖X .

2. Suppose that X is a Banach function space equipped with a norm ‖ · ‖X . The
associated space X ′ is defined by

X ′ := { f ∈ M : ‖ f‖X ′ < ∞},
where

‖ f‖X ′ := sup
g

{∣∣∣∣
∫

Rn
f (x)g(x)dx

∣∣∣∣ : ‖g‖X � 1

}
.

LEMMA 1. Let X be a Banach function space. Then the following hold:

1. The associated space X ′ is also a Banach function space.

2. (The Lorentz–Luxemberg theorem. ) (X ′)′ = X holds, in particular, the norms
‖ · ‖(X ′)′ and ‖ · ‖X are equivalent.

3. (The generalized Hölder inequality. ) If f ∈ X and g ∈ X ′ , then we have∫
Rn

| f (x)g(x)|dx � ‖ f‖X‖g‖X ′ .

Kováč ik and Rákosnı́k [20] have proved that the generalized Lebesgue space
Lp(·)(Rn) with variable exponent p(·) is a Banach function space and the associate
space is Lp′(·)(Rn) with norm equivalence, where p′(·) is the conjugate exponent given
by 1

p(·) + 1
p′(·) = 1.

If we assume some conditions for boundedness of the Hardy–Littlewood maximal
operator M on X, then the norm ‖ · ‖X has properties similar to the Muckenhoupt
weights.

LEMMA 2. Let X be a Banach function space. Suppose that the Hardy–Littlewood
maximal operator M is weakly bounded on X , that is,

‖χ{M f>λ}‖X � Cλ−1‖ f‖X (1)

is true for all f ∈ X and λ > 0 . Then we have

sup
B:ball

1
|B|‖χB‖X‖χB‖X ′ < ∞. (2)
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The proof of Lemma 2 is found in the first author’s paper [14, Lemmas 2.4 and
2.5] and [17, Lemmas G’ and H].

REMARK 1. If M is bounded on X , that is,

‖M f‖X � C‖ f‖X

holds for all f ∈ X , then we can easily check that (1) holds. On the other hand, if M is
bounded on the associate space X ′ , then Lemma 1 shows that (2) is true.

Below we define weighted Banach function space and give some properties of it.
Let X be a Banach function space. The set Xloc(Rn) consists of all measurable function
f such that f χE ∈ X for any compact set E with |E| < ∞ . Given a function W such
that 0 < W (x) < ∞ for almost every x ∈ R

n , W ∈ Xloc(Rn) and W−1 ∈ (X ′)loc(Rn) ,
we define the weighted Banach function space

X(Rn,W ) := { f ∈ M : fW ∈ X} .

Then the following hold.

LEMMA 3.

1. The weighted Banach function space X(Rn,W ) is a Banach function space equip-
ped the norm

‖ f‖X(Rn,W) := ‖ fW‖X .

2. The associate space of X(Rn,W ) is also a Banach function space and equals to
X ′(Rn,W−1) .

The properties above naturally arise from those of usual Banach function spaces
and the proof is found in [18].

2.3. Muckenhoupt weights with variable exponent

A locally integrable and positive function defined on R
n is called a weight. We

define fundamental classes of weights known as the Muckenhoupt classes in terms of
variable exponent.

DEFINITION 4. Suppose p(·)∈P(Rn) . A weight w is said to be an Ap(·) weight
if

sup
B:ball

1
|B|‖w

1/p(·)χB‖Lp(·)(Rn)‖w−1/p(·)χB‖Lp′(·)(Rn) < ∞.

The set Ap(·) consists of all Ap(·) weights.

REMARK 2. Our symbol Ap(·) differs from that in the papers [4, 9]. If p(·) ∈
P(Rn) equals to a constant p ∈ (1, ∞) , then the definition above is equivalent to the
well known Muckenhoupt Ap weights ([21]).
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We shall give the definitions of the Muckenhoupt classes Ap with p = 1, ∞ .

DEFINITION 5.

1. A weight w is said to be a Muckenhoupt A1 weight if Mw(x) �Cw(x) holds for
almost every x ∈ R

n . The set A1 consists of all Muckenhoupt A1 weights. For
every w ∈ A1 , the finite value

[w]A1 := sup
B:ball

{
1
|B|
∫

B
w(x)dx · ‖w−1‖L∞(B)

}

is said to be a Muckenhoupt A1 constant.

2. A weight belonging to the set

A∞ :=
⋃

1<p<∞
Ap

is said to be a Muckenhoupt A∞ weight.

REMARK 3.

1. We note that if w ∈ A1 , then

1
|B|
∫

B
w(x)dx � [w]A1 inf

x∈B
w(x)

holds for all balls B .

2. It is known that the monotone property Ap ⊂ Aq ⊂ A∞ holds for every constants
1 � p < q < ∞ .

We will use a classical result on the Muckenhoupt weights. Below we write

w(S) :=
∫

S
w(x)dx

for a measurable set S and a weight w .

LEMMA 4. (Chapter 7 in [10]) If w∈A1 , then there exist positive constants δ < 1
and C depending only on n and [w]A1 such that for all balls B and all measurable sets
E ⊂ B,

w(E)
w(B)

� C

( |E|
|B|
)δ

.

Diening and Hästö [9] have pointed out that Definition 4 does not directly imply
the monotone property of the Muckenhoupt class Ap(·) . In order to obtain the property
they have generalized the Muckenhoupt class as follows:
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DEFINITION 6. (Diening and Hästö [9]) Suppose p(·) ∈ P(Rn) . A weight w is
said to be an Ãp(·) weight if

sup
B:ball

|B|−pB‖wχB‖L1(Rn)‖w−1χB‖Lp′(·)/p(·)(Rn) < ∞,

where pB is the harmonic average of p(·) over B , namely,

pB :=
(

1
|B|
∫

B

1
p(x)

dx

)−1

.

The set Ãp(·) consists of all Ãp(·) weights.

Based on the definition Ãp(·) Diening and Hästö [9, Lemma 3.1] have proved the
next monotone property.

THEOREM 1. Suppose p(·), q(·) ∈ P(Rn)∩LH(Rn) and p(·) � q(·) . Then we
have

A1 ⊂ Ap− ⊂ Ãp(·) ⊂ Ãq(·) ⊂ Aq+ ⊂ A∞.

Before we state the relation between the generalized Muckenhoupt condition and
boundedness of the Hardy–Littlewood maximal operator, we define explicitly weighted
Lebesgue spaces with variable exponent.

DEFINITION 7. Let p(·) ∈ P(Rn) and w be a weight. The weighted Lebesgue
space with variable exponent Lp(·)(w) is defined by

Lp(·)(w) := Lp(·)(Rn, w1/p(·)).

Namely the space Lp(·)(w) is a Banach function space equipped with the norm

‖ f‖Lp(·)(w) := ‖ f w1/p(·)‖Lp(·)(Rn).

THEOREM 2. Suppose p(·) ∈ P(Rn)∩LH(Rn) . Then the following three condi-
tions are equivalent:

(A) w ∈ Ap(·) .

(B) w ∈ Ãp(·) .

(C) The Hardy–Littlewood maximal operator is bounded on the weighted variable
Lebesgue space Lp(·)(w) .

Cruz-Uribe, Fiorenza and Neugebauer [4] have proved (A) ⇔ (C) . On the other
hand, Diening and Hästö [9] have proved (B) ⇔ (C) . By Theorem 2 we can identify
Ap(·) and Ãp(·) , provided that p(·) ∈ P(Rn)∩LH(Rn) . Moreover Theorem 1 gives us
the following monotone property.
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COROLLARY 1. Suppose p(·), q(·) ∈ P(Rn)∩LH(Rn) and p(·) � q(·) . Then
we have

A1 ⊂ Ap− ⊂ Ap(·) ⊂ Aq(·) ⊂ Aq+ ⊂ A∞.

REMARK 4. Based on Diening and Hästö [9, Proposition 3.1], we can construct
weights belonging to Ap(·) as follows: Let p(·) ∈ P(Rn)∩LH(Rn) and w1, w2 ∈ A1 .

Then we have that w1w
1−p(·)
2 ∈ Ap(·) .

3. Main result

3.1. Definition of the intrinsic function and Herz spaces

We first define the intrinsic square function Sβ f (x) .

DEFINITION 8. Given a point x ∈ R
n , we define a set

Γ(x) := {(y,t) ∈ R
n+1
+ : |x− y|< t},

where R
n+1
+ = R

n × (0,∞) . Let 0 < β � 1 be a constant. The set Cβ consists of all
functions ϕ defined on R

n such that

1. suppϕ ⊂ {|x| � 1} ,

2.
∫
Rn ϕ(x)dx = 0,

3. |ϕ(x)−ϕ(x′)| � |x− x′|β for x, x′ ∈ R
n .

For every (y, t)∈R
n+1
+ we write ϕt(y) = t−nϕ

( y
t

)
. Then we define a maximal function

for f ∈ L1
loc(R

n) ,

Aβ f (y,t) := sup
ϕ∈Cβ

| f ∗ϕt(y)|
(
(y,t) ∈ R

n+1
+
)
.

Using above, we define the intrinsic square function with order β by

Sβ f (x) :=
(∫ ∫

Γ(x)
Aβ f (y,t)2 dydt

tn+1

)1/2

.

In order to define weighted Herz spaces with variable exponent, we use a local
weighted Lebesgue spaces with variable exponent.

DEFINITION 9. Let Ω ⊂ R
n be a measurable set, p(·) : Ω → [1,∞) a measur-

able function and w a positive and locally integrable function defined on Ω . The set

Lp(·)
loc (Ω,w1/p(·)) consists of all functions f satisfying the following condition: for all

measurable subsets E ⊂ Ω there exists a constant λ > 0 such that

∫
E

∣∣∣∣ f (x)λ

∣∣∣∣
p(x)

w(x)dx < ∞.
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We additionally use the following notation.

1. For every integer k , we write Bk := {|x|� 2k} , Dk := Bk \ Bk−1 and χk := χDk .

2. For every non-negative integer m , we write Cm := Dm if m � 1 and C0 := B0 .

Now we are ready to define the Herz spaces.

DEFINITION 10. Let α ∈ R , 0 < q < ∞ , p(·) ∈ P(Rn) and w be a weight.

1. The homogeneous weighted Herz space K̇α ,q
p(·)(w) with variable exponent is de-

fined by

K̇α ,q
p(·)(w) := { f ∈ Lp(·)

loc (Rn \ {0},w1/p(·)) : ‖ f‖K̇α,q
p(·)(w) < ∞},

where

‖ f‖K̇α,q
p(·)(w) :=

(
∞

∑
k=−∞

2αkq‖ f χk‖q
Lp(·)(w)

)1/q

.

2. The non-homogeneous weighted Herz space Kα ,q
p(·)(w) with variable exponent is

defined by

Kα ,q
p(·)(w) := { f ∈ Lp(·)

loc (Rn,w1/p(·)) : ‖ f‖Kα,q
p(·)(w) < ∞},

where

‖ f‖Kα,q
p(·)(w) :=

(
∞

∑
m=0

2αmq‖ f χCm‖q
Lp(·)(w)

)1/q

.

3.2. Key lemmas

Lemmas 5 and 6 below have been proved by the first author [13, Proposition 2.4]
in the case X = Lp(·)(Rn) . His proof of Lemma 6 is due to Diening’s work [8]. Recently
a self-contained proof based on the Rubio de Francia algorithm [22, 23, 24] has given
by Cruz-Uribe, Hernández and Martell [5, Proof of Lemma 3.3]. Based on [13, 5] we
will give the complete proofs of those lemmas.

LEMMA 5. Let X be a Banach function space. Suppose that the Hardy–Littlewood
maximal operator M is weakly bounded on X . Then we have that for all balls B ⊂ R

n

and all measurable sets E ⊂ B,

|E|
|B| � C

‖χE‖X

‖χB‖X
. (3)
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Proof. Take a ball B , a measurable set E ⊂ B and a number 0 < λ < |E|/|B|
arbitrarily. Then we see that M(χE)(x) > λ for almost every x ∈ B . Hence we have

‖χB‖X � ‖χ{M(χE)>λ}‖X � Cλ−1 ‖χE‖X .

Therefore we get inequality (3) because 0 < λ < |E|/|B| is arbitrary. �

LEMMA 6. Let X be a Banach function space. Suppose that M is bounded on
the associate space X ′ . Then there exists a constant 0 < δ < 1 such that for all balls
B ⊂ R

n and all measurable sets E ⊂ B,

‖χE‖X

‖χB‖X
� C

( |E|
|B|
)δ

. (4)

Proof. Let A := ‖M‖X ′→X ′ and define a function

Rg(x) :=
∞

∑
k=0

Mkg(x)
(2A)k (g ∈ X ′), (5)

where

Mkg :=

⎧⎪⎨
⎪⎩
|g| (k = 0),
Mg (k = 1),
M(Mk−1g) (k � 2).

For every g ∈ X , the function Rg satisfies the following properties:

1. |g(x)| � Rg(x) for almost every x ∈ R
n .

2. ‖Rg‖X ′ � 2‖g‖X ′ , namely the operator R is bounded on X ′ .

3. M(Rg)(x)� 2ARg(x) , that is, Rg is a Muckenhoupt A1 weight such that [Rg]A1 �
2A .

Thus by applying Lemma 4 to Rg , we can take positive constants C and δ < 1 so that
for all balls B and all measurable sets E ⊂ B ,

Rg(E)
Rg(B)

� C

( |E|
|B|
)δ

.

Now we fix g ∈ X ′ with ‖g‖X ′ � 1 arbitrarily. By virtue of generalized Hölder’s in-
equality we have ∫

Rn
|χE(x)g(x)|dx � Rg(E)

� C

( |E|
|B|
)δ

·Rg(B)

� C

( |E|
|B|
)δ

· ‖χB‖X‖Rg‖X ′

� C

( |E|
|B|
)δ

‖χB‖X .
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Therefore by the duality we get

‖χE‖X � C sup
g

{∣∣∣∣
∫

Rn
χE(x)g(x)dx

∣∣∣∣ : g ∈ X ′, ‖g‖X ′ � 1

}
� C

( |E|
|B|
)δ

‖χB‖X .

This completes the proof of the lemma. �

Wilson [30] has proved the following boundedness of the square function on
weighted Lebesgue spaces.

THEOREM 3. Let 0 < β � 1 , 1 < p < ∞ and w ∈ Ap . Then the square function
Sβ is bounded on the weighted Lebesgue space Lp(w) .

The next extrapolation theorem on weighted Lebesgue spaces has recently proved
by Cruz-Uribe and Wang [6, Theorem 2.6].

THEOREM 4. Suppose that there exists a constant 1 < p0 < ∞ such that for ev-
ery w0 ∈ Ap0 , the inequality ‖ f‖Lp0 (w0) � C‖g‖Lp0(w0) holds for all f ∈ Lp0(w0) and
all measurable functions g. Let p(·) ∈ P(Rn) and w be a weight. If the Hardy–

Littlewood maximal operator M is bounded on Lp(·)(w) and on Lp′(·)(w− 1
p(·)−1 ) , then

we have the inequality ‖ f‖Lp(·)(w) � C‖g‖Lp(·)(w) holds for all f ∈ Lp(·)(w) and all
measurable functions g.

REMARK 5. For general variable exponent p(·) ∈ P(Rn) , it is not proved that
the assumption w ∈ Ap(·) implies the equivalence of the following two conditions

(a) M is bounded on Lp(·)(w) .

(b) M is bounded on Lp′(·)(w− 1
p(·)−1 ) .

If we additionally suppose that p(·) ∈ LH(Rn) , then (a) is immediately true. We note
that p(·) ∈ LH(Rn)∩P(Rn) implies p′(·) ∈ LH(Rn)∩P(Rn) . Thus (b) is also true.

Combing the two theorems above, we have the following boundedness of the in-
trinsic square function on weighted Lebesgue spaces with variable exponent.

COROLLARY 2. Let 0 < β � 1 , p(·) ∈ LH(Rn)∩P(Rn) and w ∈ Ap(·) . Then

the intrinsic square function Sβ is bounded on Lp(·)(w) .

In order to prove the main theorem we will additionally use the following Hardy
type inequality.

LEMMA 7. Let {gk}∞
k=−∞ be a positive sequence, 0 < q < ∞ and δ > 0 . We

denote

Gj :=
∞

∑
k=−∞

2−|k− j|δ gk
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for each j ∈ Z . Then the inequality(
∞

∑
j=−∞

Gq
j

)1/q

=

(
∞

∑
j=−∞

(
∞

∑
k=−∞

2−|k− j|δ gk

)q)1/q

� C

(
∞

∑
k=−∞

gq
k

)1/q

holds.

The proof of Lemma 7 is found in [11, Lemma A.2.1]. We remark that Kempka
and Vybı́ral [19, Lemma 8] have proved the Hardy type inequality for general function
spaces case.

3.3. Statement of the main result

THEOREM 5. Let 0 < β � 1 , p(·) ∈ LH(Rn)∩P(Rn) , 0 < q < ∞ , 1/p− < r <
1 , w ∈ Arp(·) and −nδ < α < n(1− r) , where 0 < δ < 1 is a constant satisfying

‖χBk‖Lp(·)(w)

‖χBl‖Lp(·)(w)
� C2δn(k−l)

for all k, l ∈Z with k � l . Then the intrinsic square function Sβ is bounded on K̇α ,q
p(·)(w)

and on Kα ,q
p(·)(w) .

Proof. We prove the boundedness on the homogeneous space K̇α ,q
p(·)(w) . The proof

similar to below is valid for the non-homogeneous space Kα ,q
p(·)(w) . We decompose

f ∈ K̇α ,q
p(·)(w) as f = f χBk+1 \Bk−2

+ f χBk−2 + f χRn \Bk+1
. Thus we obtain

‖Sβ f‖K̇α,q
p(·)(w) � C

{(
∞

∑
k=−∞

2αkq‖Sβ ( f χBk+1 \Bk−2
)χk‖q

Lp(·)(w)

)1/q

+

(
∞

∑
k=−∞

2αkq‖Sβ ( f χBk−2)χk‖q
Lp(·)(w)

)1/q

+

(
∞

∑
k=−∞

2αkq‖Sβ ( f χRn \Bk+1
)χk‖q

Lp(·)(w)

)1/q}

=: C(T1 +T2 +T3).

For each i = 1, 2, 3 we start the estimate Ti .
We first consider T1 . Using the boundedness of Sβ on Lp(·)(w) we get

T1 �
(

∞

∑
k=−∞

2αkq‖Sβ ( f χBk+1 \Bk−2
)‖q

Lp(·)(w)

)1/q

� C

(
∞

∑
k=−∞

2αkq‖ f χBk+1 \Bk−2
‖q

Lp(·)(w)

)1/q

� C‖ f‖K̇α,q
p(·)(w).
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Next we estimate T2 . By the definition of the operator Sβ we have

T2 =

⎛
⎝ ∞

∑
k=−∞

2αkq

∥∥∥∥∥Sβ (
k−2

∑
l=−∞

f χl)χk

∥∥∥∥∥
q

Lp(·)(w)

⎞
⎠

1/q

�
(

∞

∑
k=−∞

2αkq

(
k−2

∑
l=−∞

∥∥Sβ ( f χl)χk

∥∥
Lp(·)(w)

)q)1/q

. (6)

Now we take k ∈ Z , l � k−2, x ∈ Dk and (y,t) ∈ Γ(x) . For every ϕ ∈ Cβ we have

|( f χl)∗ϕt(y)| =
∣∣∣∣
∫

Dl

ϕt(y) f (z)dz

∣∣∣∣ � Ct−n
∫
{z∈Dl : |y−z|<t}

| f (z)|dz.

Using a point z ∈ Dl with |y− z|< t we obtain

t =
1
2
(t + t) >

1
2
(|x− y|+ |y− z|) � 1

2
|x− z| � 1

2
(|x|− |z|)

� 1
2
(|x|−2l) � 1

2
(|x|−2k−2) � 1

2
(|x|−2−1|x|) =

|x|
4

.

Hence we get

∣∣Sβ ( f χl)(x)
∣∣=
⎛
⎝∫ ∫

Γ(x)

(
sup

ϕ∈Cβ

|( f χl)∗ϕt(y)|2 dydt
tn+1

)2
⎞
⎠

1/2

� C

(∫ ∞

|x|
4

∫
{y : |x−y|<t}

(
1
tn

∫
{z∈Dl : |y−z|<t}

| f (z)|dz

)2 dydt
tn+1

)1/2

� C

(∫
Dl

| f (z)|dz

)(∫ ∞

|x|
4

(∫
{y : |x−y|<t}

dy

)
dt

t3n+1

)1/2

= C

(∫
Dl

| f (z)|dz

)(∫ ∞

|x|
4

dt
t2n+1

)1/2

= C

(∫
Dl

| f (z)|dz

)
|x|−n.

Applying the generalized Hölder inequality and Lemma 2, we have∣∣Sβ ( f χl)(x)
∣∣ � C |x|−n

∥∥∥ f w1/p(·)χl

∥∥∥
Lp(·)(Rn)

·
∥∥∥w−1/p(·)χl

∥∥∥
Lp′(·)(Rn)

� C |x|−n
∥∥∥ f w1/p(·)χl

∥∥∥
Lp(·)(Rn)

·
∥∥∥w−1/p(·)χBl

∥∥∥
Lp′(·)(Rn)

= C |x|−n
∥∥∥ f w1/p(·)χl

∥∥∥
Lp(·)(Rn)

· ‖χBl‖(Lp(·)(w))′

� C |x|−n
∥∥∥ f w1/p(·)χl

∥∥∥
Lp(·)(Rn)

· |Bl|‖χBl‖−1
Lp(·)(w)

.
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We note that x ∈ Dk implies |x| > 2k−1 , that is |x|−n < C|Bk|−1 . Thus we get

∣∣Sβ ( f χl)(x)
∣∣� C · |Bl|

|Bk| ‖ f χl‖Lp(·)(w)‖χBl‖−1
Lp(·)(w)

. (7)

Combing (6) and (7), we obtain

T2 � C

(
∞

∑
k=−∞

2αkq

(
k−2

∑
l=−∞

|Bl|
|Bk|

‖χk‖Lp(·)(w)

‖χBl‖Lp(·)(w)
‖ f χl‖Lp(·)(w)

)q)1/q

� C

(
∞

∑
k=−∞

2αkq

(
k−2

∑
l=−∞

|Bl|
|Bk|

‖χBk‖Lp(·)(w)

‖χBl‖Lp(·)(w)
‖ f χl‖Lp(·)(w)

)q)1/q

.

For every k, l ∈ Z such that k � l +2, we see that Bl ⊂ Bk . We also note that rp(·) ∈
LH(Rn)∩P(Rn) . Thus by virtue of Lemma 5 with X = Lrp(·)(w) we have

‖χBk‖Lp(·)(w)

‖χBl‖Lp(·)(w)
=

(‖χBk‖Lrp(·)(w)

‖χBl‖Lrp(·)(w)

)r

� C

( |Bk|
|Bl|

)r

= C2(k−l)nr.

Hence we have

T2 � C

(
∞

∑
k=−∞

2αkq

(
k−2

∑
l=−∞

2n(r−1)(k−l)‖ f χl‖Lp(·)(w)

)q)1/q

. (8)

We shall continue the estimate remarking the range of q carefully.
Now let us suppose that 0 < q � 1. For general non-negative sequence {aλ}λ∈Λ ,

it is well known that the inequality

(
∑

λ∈Λ
aλ

)q

� ∑
λ∈Λ

aλ
q (9)

holds. Applying (9) to (8), we have

T2 � C

(
∞

∑
k=−∞

2αkq
k−2

∑
l=−∞

2qn(r−1)(k−l)‖ f χl‖q
Lp(·)(w)

)1/q

= C

(
∞

∑
l=−∞

2α lq‖ f χl‖q
Lp(·)(w)

∞

∑
k=l+2

2q(k−l)(α−n(1−r))

)1/q

= C

(
∞

∑
l=−∞

2α lq‖ f χl‖q
Lp(·)(w)

)1/q

= C‖ f‖K̇α,q
p(·)(w),

where we have used the condition that α < n(1− r) .
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We next consider the case 1 < q < ∞ . Because we have supposed that α < n(1−
r) , we can take a constant 1 < s < ∞ so that α < n

s (1− r) . Using the usual Hölder
inequality, for every k ∈ Z we get

(
k−2

∑
l=−∞

2n(r−1)(k−l)‖ f χl‖Lp(·)(w)

)q

=

(
k−2

∑
l=−∞

2(l−k)· ns (1−r)2−α l ·2(l−k)· n
s′ (1−r)2α l‖ f χl‖Lp(·)(w)

)q

�
(

k−2

∑
l=−∞

2((l−k)· ns (1−r)−α l)q′
)q/q′( k−2

∑
l=−∞

2(l−k)· nq
s′ (1−r)2α lq‖ f χl‖q

Lp(·)(w)

)

=

(
k−2

∑
l=−∞

2(l( n
s (1−r)−α)−k· ns (1−r))q′

)q/q′( k−2

∑
l=−∞

2(l−k)· nq
s′ (1−r)2α lq‖ f χl‖q

Lp(·)(w)

)

= C ·2−kαq

(
k−2

∑
l=−∞

2(l−k)· nq
s′ (1−r)2α lq‖ f χl‖q

Lp(·)(w)

)
.

Applying this estimate to (8) we get

T2 � C

(
∞

∑
k=−∞

2αkq ·2−kαq

(
k−2

∑
l=−∞

2(l−k)· nq
s′ (1−r)2α lq‖ f χl‖q

Lp(·)(w)

))1/q

= C

(
∞

∑
l=−∞

2α lq‖ f χl‖q
Lp(·)(w)

∞

∑
k=l+2

2(l−k)· nq
s′ (1−r)

)1/q

= C

(
∞

∑
l=−∞

2α lq‖ f χl‖q
Lp(·)(w)

)1/q

= C‖ f‖K̇α,q
p(·)(w).

Finally we estimate T3 . We note that

T3 �
(

∞

∑
k=−∞

2αkq

(
∞

∑
l=k+2

‖Sβ ( f χl)χk‖Lp(·)(w)

)q)1/q

.

For every k ∈ Z , x ∈ Dk , l � k + 2, (y,t) ∈ Γ(x) and z ∈ Dl with |y− z| < t , we see
that

t =
1
2
(t + t) >

1
2
(|x− y|+ |y− z|)� 1

2
|x− z|� 1

2
(|z|− |x|) >

1
2
(2l−1−2k) � 2l−3.
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Thus we have

|Sβ ( f χl)(x)| =

⎛
⎝∫ ∫

Γ(x)

(
sup

ϕ∈Cβ

|( f χl)∗ϕt(y)|
)2

dydt
tn+1

⎞
⎠

1/2

� C

(∫ ∫
Γ(x)

(
t−n

∫
{z∈Dl : |y−z|<t}

| f (z)|dz

)2 dydt
tn+1

)1/2

� C

(∫ ∞

2l−3

∫
{y : |x−y|<t}

t−3n−1
(∫

Dl

| f (z)|dz

)2

dydt

)1/2

= C

(∫
Dl

| f (z)|dz

)(∫ ∞

2l−3
t−2n−1 dt

)1/2

= C |Bl|−1
∫

Dl

| f (z)|dz.

By virtue of the generalized Hölder inequality and Lemma 2, we have

|Sβ ( f χl)(x)| � C |Bl |−1‖ f w1/p(·)χl‖Lp(·)(Rn)‖w−1/p(·)χl‖Lp′(·)(Rn)

� C‖ f w1/p(·)χl‖Lp(·)(Rn) · |Bl|−1‖w−1/p(·)χBl‖Lp′(·)(Rn)

� C‖ f χl‖Lp(·)(w) · ‖χBl‖−1
Lp(·)(w)

.

Hence we obtain

T3 � C

(
∞

∑
k=−∞

2αkq

(
∞

∑
l=k+2

‖ f χl‖Lp(·)(w)

‖χk‖Lp(·)(w)

‖χBl‖Lp(·)(w)

)q)1/q

� C

(
∞

∑
k=−∞

2αkq

(
∞

∑
l=k+2

‖ f χl‖Lp(·)(w)

‖χBk‖Lp(·)(w)

‖χBl‖Lp(·)(w)

)q)1/q

� C

(
∞

∑
k=−∞

2αkq

(
∞

∑
l=k+2

‖ f χl‖Lp(·)(w)2
δn(k−l)

)q)1/q

. (10)

Applying Lemma 7 to (10), we get

T3 � C

(
∞

∑
k=−∞

(
∞

∑
l=k+2

2−(α+δn)|l−k|2α l‖ f χl‖Lp(·)(w)

)q)1/q

� C

(
∞

∑
l=−∞

2α lq‖ f χl‖q
Lp(·)(w)

)1/q

= C‖ f‖K̇α,q
p(·)(w).

Consequently we have finished all estimates and proved the theorem. �
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[9] L. DIENING AND P. HÄSTÖ, Muckenhoupt weights in variable exponent spaces, preprint, available at
http://www.helsinki.fi/∼hasto/pp/p75 submit.pdf.

[10] J. DUOANDIKOETXEA, Fourier Analysis, Graduate Studies in Math. 29, Amer. Math. Soc., Provi-
dence, RI, 2001.

[11] M. FRAZIER AND B. JAWERTH, A discrete transform and decompositions of distribution spaces, J.
Funct. Anal. 93 (1990), 34–170.

[12] V. GULIYEV, M. OMAROVA AND Y. SAWANO, Boundedness of intrinsic square functions and their
commutators on generalized weighted Orlicz-Morrey spaces, Banach J. Math. Anal. 9 (2015), 44–62.

[13] M. IZUKI, Boundedness of sublinear operators on Herz spaces with variable exponent and application
to wavelet characterization, Anal. Math. 36 (2010), 33–50.

[14] M. IZUKI, Remarks on Muckenhoupt weights with variable exponent, J. Anal. Appl. 11 (2013), 27–41.
[15] M. IZUKI, E. NAKAI AND Y. SAWANO, Function spaces with variable exponents – an introduction,

Sci. Math. Jpn. 77 (2014), 187–315.
[16] M. IZUKI, E. NAKAI AND Y. SAWANO, Wavelet characterization and modular inequalities for

weighted Lebesgue spaces with variable exponent, Ann. Acad. Sci. Fenn. Math. 40 (2015), 551–571.
[17] M. IZUKI, Y. SAWANO AND Y. TSUTSUI, Variable Lebesgue norm estimates for BMO functions, II,

Anal. Math. 40 (2014), 215–230.
[18] A. YU. KARLOVICH AND I. M. SPITKOVSKY, The Cauchy singular integral operator on weighted

variable Lebesgue spaces, Concrete operators, spectral theory, operators in harmonic analysis and
approximation, 275–291, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel, 2014.
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