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Abstract. In this article we present a method for proving inequalities of the form

f (x) =
n

∑
i=1

αix
pi sinhqi xcoshri x > 0,

for x ∈ (δ1,δ2) , δ1 � 0 � δ2 ; where αi ∈ R \ {0} , pi,qi,ri ∈ N0 and n ∈ N . The method is
based on the precise approximations of the hyperbolic sine and hyperbolic cosine functions by
Maclaurin polynomials. Using this method we present new proofs of some well-known inequal-
ities, but also we prove some new inequalities. Inequalities involving hyperbolic functions are
much less studied than inequalities involving trigonometric functions. In this paper, the method
described in the article [7] has been adapted to the inequalities involving hyperbolic functions.

1. Introduction

In this article we consider a method for proving inequalities of the form:

f (x) =
n

∑
i=1

αix
pi sinhqi xcoshri x > 0, (1)

for x ∈ (δ1,δ2) , δ1 � 0 � δ2 ; where αi ∈ R\{0} , pi,qi,ri ∈ N0 and n ∈ N . We trans-
form the function f (x) into the mixed hyperbolic-trigonometric polynomial function,
whose monomials are mixed by some variable and hyperbolic sine or hyperbolic cosine
functions applied to the same variable. Our method is compatible with the effective
method from the article [7] and it is based on the direct comparison of the hyperbolic
sine and hyperbolic cosine functions with the corresponding Maclaurin polynomials.
From a computational point of view, automated proving of inequalities is described in
both methods.
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2. The description of the method

2.1. Preliminaries

Let the function ϕ(x) be approximated by Taylor polynomial Tk(x) of degree k in
the neighbourhood of a point a . If there is η > 0 such that in the interval (a−η ,a+η)
it holds:

Tk(x) � ϕ(x),

then we introduce the symbol T
ϕ,a
k (x) = Tk(x) and we call T

ϕ,a
k (x) upward approxi-

mation of the function ϕ(x) in the neighbourhood of the point a . Analogously, if there
is η > 0 such that in the interval (a−η ,a+ η) it holds:

Tk(x) � ϕ(x),

then we introduce the symbol T ϕ,a
k (x) = Tk(x) and we call T ϕ,a

k (x) downward approx-
imation of the function ϕ(x) in the neighbourhood of the point a . Further on, we
consider only the cases when the function ϕ(x) is either sinhx or coshx .

Observing Maclaurin approximations of sinhx and coshx , we get the following
lemmas:

LEMMA 2.1. For the polynomial Tn(t)=
(n−1)/2

∑
i=0

t2i+1

(2i+1)!
, where n = 2k+1 , k∈N0 ,

it is valid:
(∀t � 0) Tn(t) � Tn+2(t) � sinh t, (2)

(∀t � 0) Tn(t) � Tn+2(t) � sinh t. (3)

For t = 0 the inequalities in (2) and (3) turn into equalities.

LEMMA 2.2. For the polynomial Tn(t) =
n/2

∑
i=0

t2i

(2i)!
, where n = 2k , k ∈ N0 ,

it is valid:
(∀t ∈ R) Tn(t) � Tn+2(t) � cosht. (4)

For t = 0 the inequalities in (4) turn into equalities.

Let a = ex , x ∈ R . Then it holds:

coshx =
1
2

(
a+

1
a

)
and sinhx =

1
2

(
a− 1

a

)
. (5)

Let us introduce the following functions:

Rk(a) = ak +
1
ak and Qk(a) = ak − 1

ak , (6)

for k = 1,2, . . . . Then it is:

Rk(a) = 2cosh(kx) and Qk(a) = 2sinh(kx), (7)
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for a = ex and k = 1,2, . . . . Hence, it is easy to prove:

Rn(a) ·Rm(a) = Rn+m(a)+R|n−m|(a) (8)

and
Rn(a) ·Qm(a) = Qn+m(a)+ ν ·Q|n−m|(a), (9)

where ν = sgn(m−n) . Especially, R0(a) = 2 and Q0(a) = 0.
According to [3] we have the representation of powers of hyperbolic functions

in terms of functions of multiples of the argument (angle), depending on the parity of
power n . Hence, the following auxiliary propositions are valid:

LEMMA 2.3. For n ∈ N the following formulas are true:
(i) if n is odd

sinhn x =
1

2n−1

n−1
2

∑
k=0

(−1)k
(

n

k

)
sinh((n−2k)x), (10)

(ii) if n is even

sinhn x =
(−1)

n
2

2n

(
n
n
2

)
+

1
2n−1

n
2−1

∑
k=0

(−1)k
(

n

k

)
cosh((n−2k)x). (11)

LEMMA 2.4. For n ∈ N the following formulas are true:
(i) if n is odd

coshn x =
1

2n−1

n−1
2

∑
k=0

(
n

k

)
cosh((n−2k)x), (12)

(ii) if n is even

coshn x =
1
2n

(
n
n
2

)
+

1
2n−1

n
2−1

∑
k=0

(
n

k

)
cosh((n−2k)x). (13)

Based on the previous two lemmas the following statement holds:

THEOREM 2.5. For n,m ∈ N we have the following cases:
(i) if both n and m are odd

coshn x · sinhm x = 1
2n+m−1

n+m
2 −1

∑
k=0

(−1)k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
sinh

(
(n+m−2k)x

))
,

(14)
(ii) if n is even and m is odd

coshn x · sinhm x = 1
2n+m−1

n+m−1
2

∑
k=0

(−1)k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
sinh

(
(n+m−2k)x

))
,

(15)
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(iii) if n is odd and m is even

coshn x · sinhm x = 1
2n+m−1

n+m−1
2

∑
k=0

(−1)k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
cosh

(
(n+m−2k)x

))
,

(16)
(iv) if both n and m are even

coshn x · sinhm x = 1
2n+m−1

( n+m
2 −1

∑
k=0

(−1)k
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
cosh

(
(n+m−2k)x

)

+ 1
2(−1)

m+n
2

n+m
2

∑
r=0

(−1)r
(

n

r

)(
m

n+m
2 − r

))
.

(17)

Proof. Analogously to the proof of the Theorem 1.5. from the article [7], whereby
for the functions Rk and Qk we use the terms (6), (7), (8) and (9). �

2.2. The method

The aim is to present a method for proving inequalities of the form (1) for x ∈ (0,δ )
and δ = δ2 > 0. We will use the downwardMaclaurin approximations of the hyperbolic
sine and hyperbolic cosine determined in the Lemmas 2.1. and 2.2. Let us notice that
for the functions sinhx and coshx there are only downward approximations in contrast
to the functions sinx and cosx which have both, downward and upward approxima-
tions [7] (Lemma 1.1. and Lemma 1.2.). However, in the article [8] the following
theorem has been proved:

THEOREM 2.6. Suppose f is a real function on (a,b) , n is a positive integer such
that f (k)(a+) , f (k)(b−) , (k ∈ {0,1,2, . . . ,n}) exist and (−1)n f (n)(x) is increasing on
(a,b) , then for all x ∈ (a,b) the following inequality holds:

n−1

∑
k=0

f (k)(b−)
k!

(x−b)k +
1

(a−b)n

(
f (a+)−

n−1

∑
k=0

(a−b)k f (k)(b−)
k!

)
(x−b)n

< f (x) <
n

∑
k=0

f (k)(b−)
k!

(x−b)k.

(18)

Furthermore, if (−1)n f (n)(x) is decreasing on (a,b) , then the reversed inequality of
(18) holds.

Suppose f (n)(x) is increasing on (a,b) , then for all x ∈ (a,b) the following in-
equality holds also:

n−1

∑
k=0

f (k)(a+)
k!

(x−a)k +
1

(b−a)n

(
f (b−)−

n−1

∑
k=0

(b−a)k f (k)(a+)
k!

)
(x−a)n

> f (x) >
n

∑
k=0

f (k)(a+)
k!

(x−a)k.

(19)
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Furthermore, if f (n)(x) is decreasing on (a,b) , then the reversed inequality of (19)
holds.

By this theorem it has been proved the existence of upward approximations for the
functions sinhx and coshx , but only in the finite interval (a,b) .

Let us observe the addend of the sum (1), si(x) = αixpi coshqi xsinhri x, where
αi �= 0 for i = 1, . . . ,n . Let us introduce the symbol

mi =

{ qi+ri
2 −1, when qi and ri are both even or both odd,

qi+ri−1
2 , when qi and ri have different parity.

(20)

According to the Theorem 2.5. the addends si(x) (i = 1,2, . . . ,n) are represented
in four different ways depending on the cases, so the following possibilities are given
in the description of the method:

1. Let ri be odd, then it holds:

si(x) = αixpi coshqi xsinhri x

= αixpi

2qi+ri−1

mi

∑
k=0

(−1)k
k

∑
r=0

(−1)r
(

qi

r

)(
ri

k− r

)
sinh((qi + ri−2k)x)

= xpi

2qi+ri−1

mi

∑
k=0

(
k

∑
r=0

αi(−1)k+r
(

qi

r

)(
ri

k− r

))
sinh((qi + ri−2k)x).

(21)

Let us mark with βk =
k

∑
r=0

αi(−1)k+r
(

qi

r

)(
ri

k− r

)
.

Then, for every sub-addend βk sinh((qi + ri −2k)x) , depending on the sign of βk ,
two cases are possible:

1) if βk > 0:

βk sinh((qi + ri−2k)x) > βkT
sinh,0

2l
(i)
k +1

((qi + ri−2k)x), (22)

2) if βk < 0:
There is a polynomial pn(x) in the finite interval, according to the Theorem 2.6.,

which is an upward approximation for sinh((qi + ri−2k)x , so it holds:

βk sinh((qi + ri−2k)x) > βk pn(x). (23)

2. Let qi be odd and ri even, then it holds:

si(x) = αixpi coshqi xsinhri x

= αix
pi

2qi+ri−1

mi

∑
k=0

(−1)k
k

∑
r=0

(−1)r
(

qi

r

)(
ri

k− r

)
cosh((qi + ri−2k)x)

= xpi

2qi+ri−1

mi

∑
k=0

(
k

∑
r=0

αi(−1)k+r
(

qi

r

)(
ri

k− r

))
cosh((qi + ri−2k)x).

(24)
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Then, for every sub-addend βk cosh((qi + ri−2k)x) , depending on the sign of βk ,
two cases are possible:

1) if βk > 0:

βk cosh((qi + ri−2k)x) > βkT
cosh,0

2l(i)k +0
((qi + ri−2k)x), (25)

2) if βk < 0:
There is a polynomial pn(x) in the finite interval, according to the Theorem 2.6.,

which is an upward approximation for cosh((qi + ri−2k)x , so it holds:

βk cosh((qi + ri −2k)x) > βk pn(x). (26)

3. Let qi and ri be even, then it holds:

si(x) = xpi

2qi+ri−1

(
mi

∑
k=0

(
k

∑
r=0

αi(−1)k+r
(

qi

r

)(
ri

k− r

))
cosh((qi + ri−2k)x)

+ 1
2(−1)

qi+ri
2

qi+ri
2

∑
r=0

(−1)r
(

qi

r

)(
ri

qi+ri
2 − r

))
.

(27)

Further, for every sub-addend βk cosh((qi + ri − 2k)x) , depending on the sign of βk ,
two cases are possible (25) or (26).

Therefore, for every addend si(x) we can find a polynomial τi(x) , which repre-
sents a downward approximation. Comparing all the addends si(x) (i = 1,2, . . . ,n) that
appear in the sum (1), according to the above stated cases, we get the polynomial

P(x) =
n

∑
i=1

τ i(x) (28)

which is a downward approximation of the function f (x) in (1); i.e. it holds:

f (x) > P(x). (29)

On the basis of the previous consideration, the following statement is valid:

THEOREM 2.7. Let the following properties of the polynomial P(x) =
n

∑
i=1

τ i(x)

be true:
(i) there is at least one positive real root of the polynomial P(x);
(ii) P(x) > 0 for x ∈ (0,x∗) , where x∗ is the least positive real root

of the polynomial P(x) .
Then it is valid

f (x) > 0

for x ∈ (0,x∗) ⊆ (0,δ ) .
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REMARK 2.8. Let us notice that hereby the proof of the inequality f (x) > 0 has
been obtained for x ∈ (0,δ2) , where δ2 = x∗ . The previous theorem can be applied for
x ∈ (δ1,0) by introducing the substitute t = −x .

REMARK 2.9. If there is not at least one positive real root of the polynomial P(x)
and P(x) > 0 for x ∈ (0,∞) , then it is valid f (x) > 0 for x ∈ (0,∞) .

The main difference in comparison to the method which has been described in the
article [7], is the fact that upward approximations of the functions sinhx and coshx
exist only in the finite intervals. Consequently, this method can be used either with
inequalities of the type (1) in the finite interval or with inequalities of the same type
in the interval (0,∞) where the coefficients preceding sinhx and coshx are always
positive, i.e. when we only need the downward approximations of these functions.

The completeness of the presented method for the function f (x) from (1) is valid
analogously as for the function ∑n

i=1 αixpi sinqi xcosri x , which has been shown in the
article [7] (Section 2., part II).

REMARK 2.10. Let us emphasise that the previous method can be applied to the
functions of the form f (x) = ∑n

i=1 αihi(x)coshqi xsinhri x for x ∈ (0,δ ) , where hi(x) is
a polynomial. The first possibility is when the polynomial hi(x) is of the constant sign
in the given interval ( hi(x) > 0 or hi(x) < 0 ) , and we do that by analogy with the
previously described procedure. On the other hand, it is possible that the polynomial
hi(x) is not of the constant sign. Then, αihi(x)coshqi xsinhri x can be written as a sum
of addends of the form si(x) , and then we can apply the previously described method
for each of those addends.

Let the indexes l(i)k

(
i∈ {1, . . . ,n} and k ∈ {0, . . . ,mi}

)
, which appear in the poly-

nomial P(x) , be enumerated: l0, l1, . . . , lm ; where m+1 is the overall number of sub-
addends which come from every addend si(x) . Let us notice that depending on the
index ls it holds:

f (x) > P(x, l0, l1, . . . , ls +1, . . . , lm) > P(x, l0, l1, . . . , ls, . . . , lm) (30)

for every index s ∈ {0,1,2, . . . ,m} and ls ∈ N0 . By increasing every index ls , we get
even better and better downward approximations of the function f (x) . The previously
described method defines a procedure which ends when at least one (m+ 1)-tuple of
the indexes (l0, l1, . . . , lm) = (l̂0, l̂1, . . . , l̂m) has been determined for which it is valid:

P(x, l̂0, l̂1, . . . , l̂m) > 0 (31)

for x ∈ (0,δ ) . By completing the procedure, we get a proof of the initial inequality (1).

REMARK 2.11. The method comes down to proving polynomial inequalities of
the form P(x) > 0 for x ∈ (0,δ ) which is a decidable problem according to the results
by Tarski [5].

Using this method it is our aim in this article to prove some well-known results that
have been considered in the lately published articles and to obtain some new results,
concerning the inequalities of the form (1).
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3. Some applications

In this section we consider some applications of the method based on the Theorem
2.7. in some concrete inequalities.

3.1. A proof of an inequality from the article [6]

In the article [6] R. Klen, M. Visuri and M. Vuorinen have proved the following
statement (Theorem 1.2):

THEOREM 3.1. For x ∈ (0,1)

( 1
coshx

)1/2
<

x
sinhx

<
( 1

coshx

)1/4
. (32)

Now we present a proof of the inequality (32).

Proof.
I We prove the inequality:

( 1
coshx

)1/2
<

x
sinhx

(33)

for x ∈ (0,1) . The requested inequality is equivalent to f (x) > 0 for x ∈ (0,1) , where

f (x) = x2 coshx− sinh2 x. (34)

According to the Theorem 2.5., the function f (x) can be written in the following way:

f (x) = x2 coshx+
1
2
− 1

2
cosh2x, (35)

which is a concrete mixed hyperbolic-trigonometric polynomial.
Then, according to the Lemma 2.2. and the description of the method, the inequal-

ity coshy > T cosh,0
k (y) (k = 4) is true, ∀y ∈ R and according to the Theorem 2.6. it is

valid: cosh2y < 1+2y2 +(2cosh2 1−4)y4 , for y ∈ (0,1) .
For x ∈ (0,1) it is valid:

f (x) > x2T cosh,0
4 (x)− x2− (cosh2 1−2)x4 = P6(x), (36)

where P6(x) is the polynomial

P6(x) =
x4

24
(x2 +60−24cosh2 1) =

x4

24
(x2 + c), (37)

where c = 2.853 . . . . Since P6(x) > 0, we conclude that f (x) > 0 for x ∈ (0,1) .
II Now we prove the inequality:

x
sinhx

<
( 1

coshx

)1/4
(38)
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for x ∈ (0,1) . The requested inequality is equivalent to f (x) > 0 for x ∈ (0,1) , where

f (x) = sinh4 x− x4 coshx. (39)

According to the Theorem 2.5., the function f (x) can be written in the following way:

f (x) =
3
8

+
1
8

cosh4x− 1
2

cosh2x− x4 coshx, (40)

which is a concrete mixed hyperbolic-trigonometric polynomial.
Then, according to the Lemma 2.2. and the description of the method, the inequal-

ity coshy > T cosh,0
k (y) (k = 6) is true, ∀y ∈ R and according to the Theorem 2.6. it

is valid: coshy < 1 + y2

2 + y4

24 + 1
24 (24cosh1− 37)y6 and cosh2y < 1 + 2y2 + 2y4

3 +
1
24(48cosh2 1−112)y6 , for y ∈ (0,1) .

For x ∈ (0,1) it is valid:

f (x) > 3
8 + 1

8T cosh,0
6 (4x)+ 1

2

(
−1−2x2− 2x4

3 − 1
24 (48cosh2 1−112)x6

)
+x4

(
−1− x2

2 − x4

24 − 1
24 (24cosh1−37)x6

)
= P10(x),

(41)

where P10(x) is the polynomial

P10(x) = x6

360
((555−360cosh1)x4−15x2 +916−360cosh2 1)

=
x6

360
P4(x).

(42)

A real numerical factorization of the polynomial P4(x) , has been determined via
Matlab software, and given with

P4(x) = α(x− x1)(x− x2)(x2 + px+q), (43)

where α = −0.509 . . . ,x1 = 1.871 . . . ,x2 = −x1, p = 0,q = 32.971 . . . ; whereby the
inequality p2−4q < 0 is true. The polynomial P4(x) has exactly two simple real roots
with a symbolic radical representation and the corresponding numerical values x1 and
x2 . Since P4(x) > 0 for the values x ∈ (0,1) ⊂ (x2,x1) , finally we can conclude that

P10(x) > 0 for x ∈ (0,1) =⇒ f (x) > 0 for x ∈ (0,1). (44)

Hence, the proof of the inequality (32) is completed. �

3.2. A proof of an inequality from the article [2]

In the article [2] C. Barbu and L. Piscoran have proved the following statement
(Theorem 13):
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THEOREM 3.2. Let x ∈ R\ {0} . Then the following inequality

sinhx
x

>
1

cosh x
3

(45)

holds.

Now we present a proof of the inequality (45).

Proof. First we prove (45) for x ∈ (0,∞) . The requested inequality is equivalent

to F(x) =
sinhx

x
− 1

cosh
x
3

> 0 which is equivalent to f (x) > 0 for x ∈ (0,∞) , where

f (x) = sinhxcosh
x
3
− x. (46)

Let us define the function

ϕ(x) = f (3x) = sinh3xcoshx−3x. (47)

Now we have that f (x) > 0 for x∈ (0,∞) is equivalent to ϕ(x) > 0 for x∈ (0,∞) . The
function ϕ(x) can be written in the following way:

ϕ(x) =
1
2

sinh4x+
1
2

sinh2x−3x, (48)

which is a concrete mixed hyperbolic-trigonometric polynomial.
Then, according to the Lemma 2.1. and the description of the method, the inequal-

ity sinhy > T sinh,0
k (y) (k = 3,k = 5) is true for y ∈ (0,∞) .

For x ∈ (0,∞) it is valid:

ϕ(x) >
1
2

T sinh,0
3 (4x)+

1
2

T sinh,0
5 (2x)−3x = P5(x), (49)

where P5(x) is the polynomial

P5(x) = 2x3

15
(x2 +45). (50)

Since P5(x) > 0 for x ∈ (0,∞) , we can conclude that ϕ(x) > 0 for x∈ (0,∞) , therefore
f (x) > 0 for x ∈ (0,∞) .

For x ∈ (−∞,0) the inequality (45) is valid on the basis of the even property of
the function F(x) . Therefore, the inequality (45) is true for x ∈ R\ {0} . �

3.3. A proof of a new double inequality

As we have already mentioned in the first paragraph of 2.2., if we use upward
approximations of sinhx and coshx , then inequalities can be proved only in the finite
interval (a,b) . According to our knowledge, the following double inequality is new
(it’s not presented in literature).
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THEOREM 3.3. For x ∈ (0,1) it holds:

(
cosh

x
4

)5
<

sinhx
x

<
3coshx+2

5
. (51)

Let us prove the inequality (51).

Proof.
I We prove the inequality:

(
cosh

x
4

)5
<

sinhx
x

(52)

for x∈ (0,1) . The requested inequality is equivalent to F(x) =
sinhx

x
−
(

cosh
x
4

)5
> 0

which is equivalent to f (x) > 0 for x ∈ (0,1) , where

f (x) = sinhx− x
(

cosh
x
4

)5
. (53)

Let us define the function

ϕ(x) = f (4x) = sinh4x−4xcosh5 x. (54)

Now we have that f (x) > 0 for x ∈ (0,1) is equivalent to ϕ(x) > 0 for x ∈ (0, 1
4 ) .

According to the Theorem 2.5., the function ϕ(x) can be written in the following
way:

ϕ(x) = sinh4x− x
4

cosh5x− 5x
4

cosh3x− 5x
2

coshx, (55)

which is a concrete mixed hyperbolic-trigonometric polynomial.
Then, according to the Lemma 2.1. and the description of the method, the inequal-

ity sinhy > T sinh,0
k (y) (k = 5) is true, for y ∈ (0,∞) and according to the Theorem 2.6.,

for y ∈ (0, 1
4) , it is valid:

cosh5y < 1+
25
2

y2 +
625
24

y4 +
1
24

(
1572864cosh5 1

4
− 1966080cosh3 1

4

+491520cosh
1
4
− 185104

)
y6,

cosh3y < 1+
9
2
y2 +

27
8

y4 +
1
24

(
393216 cosh3 1

4
− 294912 cosh

1
4
− 127248

)
y6

and

coshy < 1+
y2

2
+

y4

24
+

1
24

(
98304 cosh

1
4
− 101392

)
y6.
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For x ∈ (0, 1
4 ) it is valid:

ϕ(x) > T sinh,0
5 (4x)− x

4

(
1+ 25

2 x2 + 625
24 x4

+ 1
24(1572864 cosh5 1

4 − 1966080cosh3 1
4 + 491520cosh 1

4 − 185104)x6
)

− 5x
4

(
1+ 9

2x2 + 27
8 x4 + 1

24 (393216cosh3 1
4 − 294912cosh 1

4 − 127248)x6
)

− 5x
2

(
1+ x2

2 + x4

24 + 1
24 (98304cosh 1

4 − 101392)x6
)

= P7(x),
(56)

where P7(x) is the polynomial

P7(x) =
x3

30

(
(573520− 491520cosh5 1

4)x4 − 69x2 + 20
)

= x3

30
P4(x).

(57)

A real numerical factorization of the polynomial P4(x) , has been determined via Matlab
software, and given with

P4(x) = α(x− x1)(x− x2)(x2 + px+q), (58)

where α = −205.838 . . . ,x1 = 0.431 . . . ,x2 = −x1, p = 0,q = 0.521 . . . ; whereby the
inequality p2−4q < 0 is true. The polynomial P4(x) has exactly two simple real roots
with a symbolic radical representation and the corresponding numerical values x1 and
x2 . Since P4(x) > 0 for the values x ∈ (0, 1

4) ⊂ (x2,x1) , it follows that P7(x) > 0 for
x∈ (0, 1

4 ) . Then we can conclude that ϕ(x) > 0 for x ∈ (0, 1
4 )⇒ f (x) > 0 for x∈ (0,1) .

II Now we prove the inequality:

sinhx
x

<
3coshx+2

5
(59)

for x ∈ (0,1) . The requested inequality is equivalent to f (x) > 0 for x ∈ (0,1) , where

f (x) = 3xcoshx+2x−5sinhx, (60)

which is a concrete mixed hyperbolic-trigonometric polynomial.
According to the Lemma 2.2. and the description of the method, the inequality

coshy > T cosh,0
k (y) (k = 4) is true, ∀y ∈ R and according to the Theorem 2.6. the

inequality sinhy < y+ y3

6 + 1
6 (6sinh1−7)y5 is valid, for y ∈ (0,1) .

For x ∈ (0,1) it is valid:

f (x) > 3xT cosh,0
4 (x)+2x−5

(
x+ x3

6 + 1
6(6sinh1−7)x5

)
= P5(x), (61)

where P5(x) is the polynomial

P5(x) = − x3

24

(
(120sinh1−143)x2−16

)
= 0.082x3(x2 +8.097). (62)

Since P5(x) > 0 for x ∈ (0,1) , we can conclude that f (x) > 0 for x ∈ (0,1) .
Hence, the proof of the inequality (51) is completed. �
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4. Conclusion

The previous method can be applied to some inequalities which correspond to uni-
variate mixed hyperbolic-trigonometric polynomial functions. Concrete results of the
presented method have been obtained in this article through the applications. Some of
the inequalities found in the articles: [2] (Theorem 10, Corollary 14.), [1] (Corollaries
2.1. and 2.2.), [6] (Lemma 3.3.), [4] (Remark 1. from Section 2), can also be proved
by this method. Also, combining this method with the method from the article [7] for
sinx and cosx , we can prove the inequalities in which sine and cosine appear together
with hyperbolic sine and hyperbolic cosine, as for example in the article [2] (Theorem
1. and Corollary 2.).

Acknowledgements. I would like to thank professors Branko Malešević and Ne-
bojša Ikodinović for their valuable comments and suggestions, which were helpful in
improving the article.
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