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ESTIMATIONS OF POWER DIFFERENCE MEAN BY HERON MEAN

MASATOSHI ITO

Abstract. As generalizations of arithmetic and geometric means, for positive real numbers a and

b , power difference means Jq(a,b) = q
q+1

aq+1−bq+1

aq−bq and Heron means Kq(a,b) = (1−q)
√

ab+

q a+b
2 are well known. In this paper, we obtain the greatest value α = α(q) and the least value

β = β(q) such that the double inequality

Kα (a,b) < Jq(a,b) < Kβ (a,b)

holds for any q ∈ R , which includes Xia, Hou, Wang and Chu’s result. Moreover, from this
result, we derive operator inequalities for bounded linear operators on a Hilbert space.
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