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Abstract. As generalizations of arithmetic and geometric means, for positive real numbers a and

b , power difference means Jq(a,b) = q
q+1

aq+1−bq+1

aq−bq and Heron means Kq(a,b) = (1−q)
√

ab+

q a+b
2 are well known. In this paper, we obtain the greatest value α = α(q) and the least value

β = β(q) such that the double inequality

Kα (a,b) < Jq(a,b) < Kβ (a,b)

holds for any q ∈ R , which includes Xia, Hou, Wang and Chu’s result. Moreover, from this
result, we derive operator inequalities for bounded linear operators on a Hilbert space.

1. Introduction

We have been discussed and used the arithmetic and geometric means in various
branches, and also many generalizations and related means are known. For example,
power difference means, Heron means and so on. In what follows, we use the following
notations for several means. For q ∈ R and two positive real numbers a and b ,

A(a,b) =
a+b

2
(arithmetic mean), G(a,b) =

√
ab (geometric mean),

H(a,b) =
2ab
a+b

(harmonic mean), L(a,b) =
a−b

loga− logb
(logarithmic mean),

Jq(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q
q+1

aq+1−bq+1

aq−bq if q �= 0,−1,

a−b
loga− logb

if q = 0,

ab(loga− logb)
a−b

if q = −1,

(power difference mean),
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Kq(a,b) = (1−q)
√

ab+q
a+b

2
(Heron mean).

These means are symmetric, that is, A(a,b) = A(b,a) , G(a,b) = G(b,a) and so on.
We note that Jq(a,a) ≡ lim

b→a
Jq(a,b) = a . It is well known that

H(a,b) � G(a,b) � L(a,b) � A(a,b),
J1(a,b) = K1(a,b) = A(a,b), J0(a,b) = L(a,b),
J−1

2
(a,b) = K0(a,b) = G(a,b), J−2(a,b) = H(a,b),

and also Jq(a,b) and Kq(a,b) are monotone increasing on q ∈ R .
Many researchers investigate estimations of these means. The following relation

is well known.

L(a,b) � Kα(a,b) for all a,b > 0 if and only if α � 1
3
. (1.1)

In [1], Bhatia proved (1.1) by using Taylor expansion. As related results to (1.1), for
example, they obtain matrix norm inequalities in [1, 5, 8], and also operator inequalities
for bounded linear operators on a Hilbert space in [3, 4].

We also have many related numerical inequalities to (1.1), see [7, 12, 13] and so
on. We remark that Jq(a,b) is called the one parameter mean in [7, 12, 13]. In [12],
Xia, Hou, Wang and Chu obtained optimal inequalities between Jq(a,b) and Kq(a,b) .

THEOREM 1.A. ([12]) For all a,b > 0 with a �= b, we have the following inequal-
ities.

(i) If α ∈ (0, 2
3 ) , then J 3α−1

2
(a,b) < Kα (a,b) < J α

2−α
(a,b).

(ii) If α ∈ ( 2
3 ,1) , then J α

2−α
(a,b) < Kα (a,b) < J 3α−1

2
(a,b).

The given parameters 3α−1
2 and α

2−α in either case are best possible.

In Theorem 1.A, they obtain the greatest value p = p(α) and the least value q =
q(α) such that the double inequality

Jp(a,b) < Kα(a,b) < Jq(a,b)

holds for any α ∈ (0,1) . We remark that they proved Theorem 1.A by calculating
derivatives, and also p(α) ∈ (−1

2 ,1) and q(α) ∈ (0,1) in Theorem 1.A.
In this paper, we extend Theorem 1.A by the different way to [12]. In other words,

by using Taylor expansion, we obtain the greatest value α = α(q) and the least value
β = β (q) such that the double inequality

Kα(a,b) < Jq(a,b) < Kβ (a,b)

holds for any q ∈ R . Moreover, from our main result, we derive operator inequalities
for bounded linear operators on a Hilbert space.
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2. Lemmas

In this section, as lemmas to prove our main result, we show two properties of
functions gk(q) for k = 2,3, . . . and q ∈ R defined by

gk(q) ≡ (q+1)2(k−1)−q2(k−1)

∑k
i=2

( 2k−1
2(i−1)

)
q2(k−i)

(2.1)

and gk(0) ≡ 1
2k−1

for convenience’ sake. Here,

(
n
r

)
=

n!
r!(n− r)!

is a binomial

coefficient for nonnegative integers n and r such that 0 � r � n . We remark that

g2(q) =
2q+1

3
in particular.

LEMMA 2.1. The limit g∞(q)≡ lim
k→∞

gk(q) exists and g∞(q) =

⎧⎨
⎩

2q
q+1

(q > 0),

0 (q � 0).

Proof. Firstly, we state the following relation (2.2) which is important to prove
results in this paper. By putting j = k− i ,

2q
k

∑
i=2

(
2k−1
2(i−1)

)
q2(k−i) = 2

k−2

∑
j=0

(
2k−1

2(k− j−1)

)
q2 j+1

= 2
k−1

∑
j=0

(
2k−1
2 j +1

)
q2 j+1−2q2k−1 = (q+1)2k−1 +(q−1)2k−1−2q2k−1.

(2.2)

If q �= 0, the following holds by (2.2).

gk(q) =
(q+1)2(k−1)−q2(k−1)

1
2q {(q+1)2k−1 +(q−1)2k−1−2q2k−1}

=
2q

{
1− ( q

q+1

)2(k−1)
}

q+1+(q−1)
(q−1

q+1

)2k−2−2q
( q

q+1

)2k−2 (if q �= −1) (2.3)

=
2q

{( q+1
q

)2(k−1)−1
}

(q+1)
(q+1

q

)2k−2 +(q−1)
(q−1

q

)2k−2−2q
. (2.4)

Now we divide the range of q into four cases.

Case 1 If q > 0, then −1 < q−1
q+1 < 1 and 0 < q

q+1 < 1. Therefore (2.3) implies

g∞(q) = 2q
q+1 .

Case 2 If −1
2 < q < 0, then q−1

q+1 < −1 and −1 < q
q+1 < 0, so that we have

g∞(q) = 0.
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Case 3 If q < −1
2 , then −1 < q+1

q < 1 and q−1
q > 1. Therefore (2.4) implies

g∞(q) = 0.

Case 4 If q = 0, then gk(0) = 1
2k−1 → 0 as k → ∞ .

Hence the proof is complete. �

LEMMA 2.2. Let gk(q) for q ∈ R as in (2.1). Then the following assertions hold:

(i) If k � 3 , then

g2(q)−gk(q) =
2(q−1)(2q+1)(2q−1)

3∑k
i=2

( 2k−1
2(i−1)

)
q2(k−i) ∑

u,v,w�0
u+v+w=k−3

(q+1)2u(q−1)2vq2w.

(ii) If k � 2 and q > 0 , then

gk(q)−g∞(q) =
(q−1)(2q−1)

(q+1)∑k
i=2

( 2k−1
2(i−1)

)
q2(k−i) ∑

v,w�0
v+w=k−2

(q−1)2vq2w.

Proof. (i) We consider the case q �= 0 since the case q = 0 holds by

g2(0)−gk(0) =
1
3
− 1

2k−1
=

2(k−2)
3(2k−1)

.

Since we get

g2(q)−gk(q) =
2q+1

3
− (q+1)2(k−1)−q2(k−1)

∑k
i=2

( 2k−1
2(i−1)

)
q2(k−i)

=
(2q+1)∑k

i=2

( 2k−1
2(i−1)

)
q2(k−i)−3

{
(q+1)2(k−1)−q2(k−1)

}
3∑k

i=2

( 2k−1
2(i−1)

)
q2(k−i)

,

we have only to show

h1(q) ≡ (2q+1)
k

∑
i=2

(
2k−1
2(i−1)

)
q2(k−i)−3{(q+1)2(k−1)−q2(k−1)}

= 2(q−1)(2q+1)(2q−1) ∑
u,v,w�0

u+v+w=k−3

(q+1)2u(q−1)2vq2w.
(2.5)
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By (2.2), the equation (2.5) holds since

h1(q) = (2q+1)
k

∑
i=2

(
2k−1
2(i−1)

)
q2(k−i)−3{(q+1)2(k−1)−q2(k−1)}

=
2q+1

2q

{
(q+1)2k−1 +(q−1)2k−1−2q2k−1

}
−3{(q+1)2(k−1)−q2(k−1)}

=
1
2q

{
(2q+1)(q+1)(q+1)2k−2+(2q+1)(q−1)(q−1)2k−2

−2q(2q+1)q2k−2−6q(q+1)2k−2+6q ·q2k−2
}

=
1
2q

{
(2q−1)(q−1)(q+1)2k−2+(2q+1)(q−1)(q−1)2k−2−4q(q−1)q2k−2

}
=

q−1
2q

[
(2q−1)

{
(q+1)2(k−1)−q2(k−1)

}
−(2q+1)

{
q2(k−1)−(q−1)2(k−1)

}]
(∗)
= 2(q−1)(2q+1)(2q−1) ∑

u,v,w�0
u+v+w=k−3

(q+1)2u(q−1)2vq2w,

and the last equality (∗) holds since

(2q−1)
{
(q+1)2(k−1)−q2(k−1)

}
− (2q+1)

{
q2(k−1)− (q−1)2(k−1)

}
= (2q−1)

{
(q+1)2−q2

}{
(q+1)2(k−2) + (q+1)2(k−3)q2 + · · ·+(q+1)2q2(k−3) +q2(k−2)

}
−(2q+1)

{
q2−(q−1)2

}{
q2(k−2)+q2(k−3)(q−1)2+ · · ·+q2(q−1)2(k−3)+(q−1)2(k−2)

}

= (2q+1)(2q−1)
k−2

∑
i=1

{
(q+1)2i− (q−1)2i}q2(k−2−i)

= (2q+1)(2q−1)
k−2

∑
i=1

{
(q+1)2− (q−1)2}

×
{
(q+1)2(i−1) + (q+1)2(i−2)(q−1)2 + · · ·+(q−1)2(i−1)

}
q2(k−2−i)

= 4q(2q+1)(2q−1)
k−2

∑
i=1

{
i−1

∑
j=0

(q+1)2 j(q−1)2(i−1− j)

}
q2(k−2−i)

= 4q(2q+1)(2q−1) ∑
u,v,w�0

u+v+w=k−3

(q+1)2u(q−1)2vq2w.

Therefore the desired result holds.
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(ii) We get

gk(q)−g∞(q) =
(q+1)2(k−1)−q2(k−1)

∑k
i=2

( 2k−1
2(i−1)

)
q2(k−i)

− 2q
q+1

=
(q+1)2k−1− (q+1)q2k−2−2q∑k

i=2

( 2k−1
2(i−1)

)
q2(k−i)

(q+1)∑k
i=2

( 2k−1
2(i−1)

)
q2(k−i)

,

so we have only to show

h2(q) ≡ (q+1)2k−1− (q+1)q2k−2−2q
k

∑
i=2

(
2k−1
2(i−1)

)
q2(k−i)

= (q−1)(2q−1) ∑
v,w�0

v+w=k−2

(q−1)2vq2w.
(2.6)

By (2.2), the equation (2.6) holds since

h2(q) = (q+1)2k−1− (q+1)q2k−2−2q
k

∑
i=2

(
2k−1
2(i−1)

)
q2(k−i)

= (q+1)2k−1−q2k−1−q2k−2−
{
(q+1)2k−1 +(q−1)2k−1−2q2k−1

}
= (q−1)

{
q2(k−1)− (q−1)2(k−1)

}
= (q−1)(2q−1)

{
q2(k−2) +q2(k−3)(q−1)2 + · · ·+q2(q−1)2(k−3) + (q−1)2(k−2)

}
= (q−1)(2q−1) ∑

v,w�0
v+w=k−2

(q−1)2vq2w.

Hence the proof is complete. �

3. Main result

Theorem 1.A can be written by the following form as the result estimating power
difference mean by Heron mean, but the estimations are partial.

THEOREM 1.A’. ([12]) For all a,b > 0 with a �= b, we have the following in-
equalities.

(i) If q ∈ (0, 1
2) , then K 2q

q+1
(a,b) < Jq(a,b) < K 2q+1

3
(a,b).

(ii) If q ∈ ( 1
2 ,1) , then K 2q+1

3
(a,b) < Jq(a,b) < K 2q

q+1
(a,b).

(iii) If q ∈ (−1
2 ,0] , then Jq(a,b) < K 2q+1

3
(a,b).

The given parameters 2q+1
3 and 2q

q+1 in either case are best possible.



ESTIMATIONS OF POWER DIFFERENCE MEAN BY HERON MEAN 837

Here, we obtain estimations of power difference mean by Heron mean for all q ∈
R .

THEOREM 3.1. For all a,b > 0 with a �= b, we have the following.

(i) Let q ∈ (0, 1
2 )∪ (1,∞) . Then

K 2q
q+1

(a,b) < Jq(a,b) < K 2q+1
3

(a,b).

(ii) Let q ∈ ( 1
2 ,1) . Then

K 2q+1
3

(a,b) < Jq(a,b) < K 2q
q+1

(a,b).

(iii) Let q ∈ (−1
2 ,0] . Then

G(a,b) = K0(a,b) < Jq(a,b) < K 2q+1
3

(a,b).

(iv) Let q ∈ (−∞, −1
2 ) . Then

K 2q+1
3

(a,b) < Jq(a,b) < K0(a,b) = G(a,b).

The given parameters of Kα(a,b) in each case are best possible.

We remark that equalities hold between Jq(a,b) and Kα(a,b) in the following
cases.

Jq(a,b) = K 2q+1
3

(a,b) = K 2q
q+1

(a,b) for q = 1
2 ,1.

Jq(a,b) = K 2q+1
3

(a,b) = K0(a,b) for q = −1
2 .

To prove Theorem 3.1, we shall show the following propositions.

PROPOSITION 3.2. The following statements hold:

(i) Let q ∈ (−1
2 , 1

2 )∪ (1,∞) . Then

Jq(x,1) < Kα(x,1) for all x > 0 with x �= 1 if and only if α � 2q+1
3 .

(ii) Let q ∈ (−∞, −1
2 )∪ ( 1

2 ,1) . Then

Jq(x,1) > Kα(x,1) for all x > 0 with x �= 1 if and only if α � 2q+1
3 .

PROPOSITION 3.3. The following statements hold:
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(i-1) Let q ∈ (0, 1
2 )∪ (1,∞) . Then

Jq(x,1) > Kα (x,1) for all x > 0 with x �= 1 if and only if α � 2q
q+1 .

(i-2) Let q ∈ (−1
2 ,0] . Then

Jq(x,1) > Kα (x,1) for all x > 0 with x �= 1 if and only if α � 0 .

(ii-1) Let q ∈ ( 1
2 ,1) . Then

Jq(x,1) < Kα (x,1) for all x > 0 with x �= 1 if and only if α � 2q
q+1 .

(ii-2) Let q ∈ (−∞, −1
2 ) . Then

Jq(x,1) < Kα (x,1) for all x > 0 with x �= 1 if and only if α � 0 .

Proof of Proposition 3.2. (i) Let q ∈ (−1
2 , 1

2)∪ (1,∞) . Firstly we show that α �
2q+1

3 ensures

Jq(x,1) =
q

q+1
xq+1−1
xq−1

< (1−α)
√

x+ α
x+1

2
= Kα(x,1)

for all x > 0 with x �= 1.

(3.1)

If q �= 0, by putting x = e2t , (3.1) holds if and only if

q
q+1

e(q+1)t − e−(q+1)t

eqt − e−qt < (1−α)+ α
et + e−t

2
for all t ∈ R\ {0} . (3.2)

Since both sides of (3.2) are even functions, we have only to consider the case t > 0.
Then, since eqt−e−qt

q > 0, (3.2) for t > 0 is equivalent to

f (t) ≡ eqt − e−qt

q

{
(1−α)+ α

et + e−t

2

}
− e(q+1)t − e−(q+1)t

q+1

=
2
q

sinh(qt){(1−α)+ α cosht}− 2
q+1

sinh((q+1)t) > 0 for all t > 0.

(3.3)
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Therefore we prove (3.3). By Taylor expansion, we have

f (t) =
2
q

(
qt +

q3t3

3!
+

q5t5

5!
+ · · ·

){
(1−α)+ α

(
1+

t2

2!
+

t4

4!
+ · · ·

)}

− 2
q+1

{
(q+1)t +

(q+1)3t3

3!
+

(q+1)5t5

5!
+ · · ·

}

= 2

(
t +

q2

3!
t3 +

q4

5!
t5 + · · ·

)(
1+

α
2!

t2 +
α
4!

t4 + · · ·
)

−2

{
t +

(q+1)2

3!
t3 +

(q+1)4

5!
t5 + · · ·

}

= 2
∞

∑
k=2

{
q2(k−1)

(2k−1)!
+

k

∑
i=2

q2(k−i)α
(2i−2)!(2k+1−2i)!

− (q+1)2(k−1)

(2k−1)!

}
t2k−1

= 2
∞

∑
k=2

φk,q(α)t2k−1,

where

φk,q(α) ≡ q2(k−1)

(2k−1)!
+

k

∑
i=2

q2(k−i)α
(2i−2)!(2k+1−2i)!

− (q+1)2(k−1)

(2k−1)!
for k = 2,3, . . . .

(3.4)
Then φk,q(α) > 0 if and only if

α >
(q+1)2(k−1)−q2(k−1)

∑k
i=2

( 2k−1
2(i−1)

)
q2(k−i)

= gk(q).

If q = 0, by the similar argument, we can get

φk,0(α) ≡ α
(2k−2)!

− 1
(2k−1)!

for k = 2,3, . . . , (3.5)

so that φk,0(α) > 0 if and only if α > 1
2k−1 = gk(0) .

By (i) in Lemma 2.2, q∈ (−1
2 , 1

2 )∪(1,∞) ensures that g2(q) > gk(q) for all k � 3.

Therefore, if α � 2q+1
3 = g2(q) , then φ2,q(α) � 0 and φk,q(α) > 0 for all k � 3, that

is, (3.3) holds.
On the other hand, if α < 2q+1

3 = g2(q) , then φ2,q(α) < 0 holds, that is, f (t) < 0

for sufficiently small t > 0. Therefore (3.3) assures α � 2q+1
3 .

We can prove (ii) similarly, so the proof is complete. �

Proof of Proposition 3.3. (i) Let q ∈ (−1
2 , 1

2)∪ (1,∞) . Then by the same way to
the proof of Proposition 3.2, we have only to consider the case that

f (t) = 2
∞

∑
k=2

φk,q(α)t2k−1 < 0 holds for all t > 0, (3.6)
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that is, α < gk(q) for k = 2,3, . . . , where φk,q(α) is defined in (3.4) and (3.5), and also
gk(q) is in (2.1).

(i-1) Let q ∈ (0, 1
2 )∪(1,∞) . By (ii) in Lemma 2.2, q∈ (0, 1

2)∪(1,∞) ensures that

gk(q) > g∞(q) for all k � 2, so that (3.6) holds if α � 2q
q+1 = g∞(q) by Lemma 2.1.

On the other hand, for any ε > 0, there exists a natural number n0 such that
n � n0 implies g∞(q) < gn(q) < g∞(q)+ ε . If αε ≡ g∞(q)+ ε > 2q

q+1 = g∞(q) , then
φn,q(αε) > 0 holds for n � n0 , that is, f (t) > 0 for sufficiently large t . Therefore (3.6)
assures α � 2q

q+1 .

(i-2) Let q ∈ (−1
2 ,0] . Then gk(q) > g∞(q) = 0 for all k � 2 by Lemma 2.1.

Therefore (3.6) holds if α � 0. We can show “only if” part by the same way to (i-1).
We can prove (ii-1) and (ii-2) similarly, so the proof is complete. �

Proof of Theorem 3.1. By putting x = a
b in Propositions 3.2 and 3.3, we immedi-

ately obtain the desired result. �

REMARK. By (3.3) in the proof of Proposition 3.2, we obtain the following in-
equalities on hyperbolic functions. We remark that we can produce related inequalities
from other results in Propositions 3.2 and 3.3.

PROPOSITION 3.4. Let q > 1 . Then the following inequalities hold.

(i) If α � 2q+1
3 , then

(
α − 2q

q+1

)
sinh((q+1)t)+2(1−α)sinh(qt)+ α sinh((q−1)t) > 0

holds for all t > 0 .

(ii)
2q−1
q+1

sinh((q+1)t)+
2q+1
q−1

sinh((q−1)t) > 4sinh(qt) for all t > 0 .

(iii)
sinh((q+1)t)

q+1
− sinh(qt)

q
>

sinh(qt)
q

− sinh((q−1)t)
q−1

for all t > 0 .

Proof. (i) is shown by applying the product-to-sum formula to (3.3). We have (ii)

and (iii) by putting α = 2q+1
3 and α = q

(
> 2q+1

3

)
in (i), respectively. �

4. Operator inequalities

Here, an operator means a bounded linear operator on a Hilbert space H . An
operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all x ∈ H , and
also an operator T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible. A real-valued function f defined on J ⊂ R is said to be operator monotone
if

A � B implies f (A) � f (B)
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for selfadjoint operators A and B whose spectra σ(A),σ(B) ⊂ J , where A � B means
B−A � 0.

Kubo and Ando [10] investigated an axiomatic approach for operator means. In
[10], they obtained that there exists a one-to-one correspondence between an operator
mean M and an operator monotone function f � 0 on [0,∞) with f (1) = 1. We
remark that f is called the representing function of M , and also an operator mean M
can be defined by

M(A,B) = A
1
2 f (A

−1
2 BA

−1
2 )A

1
2 (4.1)

if A > 0 and B � 0.
For A,B > 0, arithmetic mean A(A,B) , geometric mean G(A,B) , harmonic mean

H(A,B) and logarithmic mean L(A,B) are typical examples of operator means, and
their representing functions are

A(x,1) =
x+1

2
, G(x,1) =

√
x, H(x,1) =

2x
x+1

and L(x,1) =
x−1
logx

.

We remark that we often denote A(A,B) , G(A,B) and H(A,B) by A ∇ B , A � B and
A !B , that is,

A ∇B =
A+B

2
, A �B = A

1
2 (A

−1
2 BA

−1
2 )

1
2 A

1
2 and A !B =

(
A−1 +B−1

2

)−1

.

Now it is permitted to consider binary operations given by (4.1) for general real-
valued functions. Power difference mean Jq(A,B) and Heron mean Kq(A,B) are given
by Jq(x,1) and Kq(x,1) , respectively. For −2 � q � 1, it is known in [2, 6, 9, 11] that
Jq(A,B) is increasing on q and Jq(A,B) is an operator mean. Obviously Kq(A,B) is
an operator mean for 0 � q � 1.

Fujii, Furuichi and Nakamoto [3] showed the following result on an estimation of
Heron mean for positive operators.

PROPOSITION 4.A. ([3]) Let A and B be positive invertible operators and r ∈R .
Then the following inequalities hold:

(i) If r � 2 , then rA �B+(1− r)A ∇B� A !B.

(ii) If r � 1 , then rA �B+(1− r)A ∇B� A !B.

The conditions on r is optimal, that is,

inf{r |rA �B+(1− r)A ∇B � A !B} = 2 and

sup{r |rA �B+(1− r)A ∇B � A !B} = 1.

By Propositions 3.2 and 3.3, we can obtain an extension of Proposition 4.A.
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THEOREM 4.1. Let A and B be positive invertible operators.

(i) Let q ∈ (0, 1
2 )∪ (1,∞) . Then

K 2q
q+1

(A,B) � Jq(A,B) � K 2q+1
3

(A,B).

(ii) Let q ∈ ( 1
2 ,1) . Then

K 2q+1
3

(A,B) � Jq(A,B) � K 2q
q+1

(A,B).

(iii) Let q ∈ (−1
2 ,0] . Then

G(A,B) = K0(A,B) � Jq(A,B) � K 2q+1
3

(A,B).

(iv) Let q ∈ (−∞, −1
2 ) . Then

K 2q+1
3

(A,B) � Jq(A,B) � K0(A,B) = G(A,B).

The given parameters of Kα (A,B) in each case are best possible.

Proof. We have Theorem 4.1 by putting x = A
−1
2 BA

−1
2 and applying the standard

operational calculus in Propositions 3.2 and 3.3. �

Theorem 4.1 implies the following inequalities by putting q = 0,−2.

COROLLARY 4.2. Let A and B be positive invertible operators. Then the follow-
ing hold.

(i) G(A,B) = K0(A,B) � L(A,B) � K 1
3
(A,B).

(ii) K−1(A,B) � H(a,b) � K0(A,B) = G(A,B).

The given parameters of Kα (A,B) in each case are best possible.

In Corollary 4.2, the second inequality in (i) is an operator version of (1.1), and
also (ii) is just Proposition 4.A.
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