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IMPROVEMENTS OF BOUNDS FOR THE

q–GAMMA AND THE q–POLYGAMMA FUNCTIONS

AHMED SALEM AND FARIS ALZAHRANI

(Communicated by G. Nemes)

Abstract. In this paper, the complete monotonicity property of functions involving the q -gamma
function is proven and used to establish sharp inequalities for the q -gamma and the q -polygamma
functions for all q > 0 . These bounds for the q -gamma and the q -polygamma functions refine
those given by Salem [17].

1. Introduction

The q -gamma function is defined as [1]

Γq(x) = |1−q|1−xq
x(x−1)

2 H(q−1)
∞

∏
n=0

1− q̂n+1

1− q̂n+x , 1 �= q > 0 (1.1)

where | · | is the absolute value, H(·) denotes the Heaviside step and

q̂ =

{
q if 0 < q � 1,

q−1 if q � 1.

The close connection between two branches of the q -gamma function when 0 < q < 1
and q � 1 is given by

Γq(x) = q
(x−1)(x−2)

2 Γq−1(x), q � 1. (1.2)

The logarithmic derivative of the q -gamma function is called the q -digamma function
ψq(x) defined as

ψq(x) =
d
dx

(logΓq(x)) =
Γ′

q(x)
Γq(x)

. (1.3)

The n th derivatives of the q -digamma function are the so-called the q -polygamma

functions denoted by ψ(n)
q (x); n ∈ N . The q -digamma function ψq(x) appeared in

the work of Krattenthaler and Srivastava [2] when they studied the summations for
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basic hypergeometric series. Some of its properties presented and proved in their work
and also in [3]. Recently, within the framework of quantum statistical mechanics (the
problem of Bose-Einstein condensation in harmonically trapped, one-dimensional and
ideal atoms (ideal photons)), it is found that number of atoms (the photon number) of
vapor is characterized by an analytical function, which involves a q -digamma function
in mathematics [4, 5, 6].

In the recent past, numerous papers were published presenting remarkable inequal-
ities involving the q -gamma and the q -polygamma functions (see [7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] and the extensive list of references given
therein).

The results obtained in [17] have given bounds for the q -gamma and the q -
polygamma functions by means of proving the complete monotonicity property of an
infinite class of functions related to the q -gamma function. Some of these results stat:

• The q -gamma function inequality

[x]xqq
1
2 H(q−1)Sq̂

√
2π
[x]q

exp

(
Li2(1−qx)

logq

)
< Γq(x)

< [x]xqq
5
12 H(q−1)Sq̂

√
2π
[x]q

exp

(
Li2(1−qx)

logq
− 1

12
qx logq
1−qx

)
(1.4)

holds true for all positive real numbers x and q where [x]q = (1− qx)/(1− q) ,
Li2(z) is the dilogarithm function defined for complex argument z as [31]

Li2(z) = −
∫ z

0

log(1− t)
t

dt, z �∈ (1,∞)

and

Sq = q
−1
24

√
q−1
lnq

∞

∑
m=−∞

(
rm(6m+1) − r(2m+1)(3m+1)

)
, r = e

4π2
lnq .

• The q -digamma function inequality

log[x]q +
1
2

qx logq
1−qx − 1

12
qx log2 q
(1−qx)2 < ψq(x) < log[x]q +

1
2

qx logq
1−qx (1.5)

holds true for all positive real numbers x and q .

• The q -polygamma functions inequalities

(−1)r+1βr+1(1) < (−1)rψ(r)
q (x) < (−1)r+1βr+1(0), r ∈ N (1.6)

hold true for all positive real numbers x and q , where

βr+1(n) =
(

logq
1−qx

)r

qxPr−2(qx)− 1
2

(
logq
1−qx

)r+1

qxPr−1(qx)

+
n

∑
i=1

B2i

(2i)!

(
logq
1−qx

)2i+r

qxP2i+r−2(qx), r = 1,2, · · · (1.7)
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where Pk is a polynomial of degree k satisfying

Pk(z) = (z− z2)P′
k−1(z)+ (kz+1)Pk−1(z), P0 = P−1 = 1, k ∈ N.

The main objective of this paper is to present the improvements of the bounds
in the above inequalities by means of proving the complete logarithmic monotonicity
property of the function

Fa(x;q) = [x]
1
2−x
q exp

(
aqx logq
1−qx − Li2(1−qx)

logq

)
Γq(x) (1.8)

for all real a and positive real numbers x and q .
A positive function f is said to be logarithmically completely monotonic on an

interval I if its logarithm log f satisfies

(−1)n[log f (x)](n) � 0, n ∈ N; x ∈ I. (1.9)

Also, a real-valued function f , defined on an interval I , is called completely mono-
tonic, if f has derivatives of all orders and satisfies

(−1)n f (n)(x) � 0, n ∈ N0 = {0,1,2, · · ·}; x ∈ I. (1.10)

These functions have numerous applications in various branches, like, for instance,
numerical analysis and probability theory.

The notion of logarithmically completely monotonic functions was recovered by
Feng Qi and Bai-Ni Guo [26]. It has been proven once again in [27, 28, 29] that the
class of logarithmically completely monotonic functions is a subclass of the completely
monotonic functions. For more information, see ([30], p.134, Section 1.3) and the
references given therein.

Ismail and Muldoon [23] provided the equivalent Stieltjes integral representation
for the q -digamma function as

ψq(x) = − log(1−q)−
∫ ∞

0

e−xt

1− e−t dγq(t), x > 0, 0 < q < 1 (1.11)

where γq(t) is a discrete measure with positive masses − logq at the positive points
−k logq,k ∈ N . For completeness, and economy of later statements, they include the
value q = 1 in the definition of γq(t) :

γq(t) =

⎧⎪⎨
⎪⎩

− logq
∞

∑
k=1

δ (t + k logq), 0 < q < 1,

t, q = 1.

Their proof depended on the identities

qx logq
1−qx = −

∫ ∞

0
e−xtdγq(t) and log(1−qx) = −

∫ ∞

0

e−xt

t
dγq(t) (1.12)
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which follow easily from the definition of dγq(t) for all x > 0 and 0 < q < 1.
With the Euler-Maclaurin formula, Moak [25] obtained the following q -analogue

of Stirling formula (see also [13])

logΓq(x) ∼
(

x− 1
2

)
log[x]q +

Li2(1−qx)
logq

+
1
2
H(q−1) logq+Cq̂, x → ∞ (1.13)

where Cq = log
√

2π + logSq .

2. The complete monotonicity property

In this section, we prove that the reciprocal of the function Fa(x;q) defined by
(1.8) is completely monotonic on (0,∞) for all positive real q if and only if a � g(q̂)
where

g(q) = − (1+q) logq+2(1−q)
2(1−q) log2 q

. (2.1)

Moreover, the function Fb(x;q) is completely monotonic on (0,∞) for all positive real
q if and only if b � 0. These complete monotonicity properties are exploited to estab-
lish sharp two sided inequalities for the q -gamma and q -polygamma functions. It is
worth mentioning that some of new bounds for the q -gamma and q -polygamma func-
tions are improvements of those obtained in [17].

LEMMA 2.1. Let a be a real, t be a positive real and the function

f (a,t) = 2(1− e−t)− t(1+ e−t)+2at2(1− e−t). (2.2)

Then, there exists a unique root of the function a �→ f (a,t) depends on t at a = a(t)
where a(t) is defined as

a(t) =
t(et +1)−2(et −1)

2t2(et −1)
. (2.3)

Furthermore, the function a(t) is decreasing on (0,∞) onto (0,1/12) .

Proof. It is clear that the function a �→ f (a,t) is increasing on R for all t > 0.
The function f (a, t) can be represented as

f (a,t) = e−t
∞

∑
n=3

tn

n!
(2an(n−1)+2−n)

Thus f (0, t) < 0 and f (1,t) > 0 for all fixed t > 0 which mean that the function f (a,t)
has a unique root at a = a(t) where

a(t) =
t(et +1)−2(et −1)

2t2(et −1)

Differentiation gives 2t3(et −1)2a′(t) = h(t) where

h(t) = t +4− e2t(t−4)−2et(t2 +4)
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which can be represented as

h(t) = −
∞

∑
n=2

tn

n!

(
2n−1(n−2)+2n(n−1)+8

)
< 0

Therefore, a(t) is decreasing on (0,∞) . By using L’Hospital rule, we find limt→0 a(t)=
1/12 and limt→∞ a(t) = 0. �

THEOREM 2.2. Let x and q be positive real. Then, the function 1/Fa(x;q) de-
fined by (1.8) is logarithmically completely monotonic on (0,∞) for all positive real q
if and only if a � g(q̂) where g(q) defined as in (2.1). Moreover, the function Fb(x;q)
is logarithmically completely monotonic on (0,∞) for all positive real q if and only if
b � 0 .

Proof. Logarithmic derivative for (1.8) gives

d
dx

(logFa(x;q)) = ψq(x)− log[x]q − 1
2

qx logq
1−qx +

aqx log2 q
(1−qx)2 (2.4)

which can be rewritten when 0 < q < 1 in the integral form as

d
dx

(logFa(x;q)) =
1
2

∫ ∞

0

e−xt

t(1− e−t)
f (a, t)dγq(t), x > 0

and for all positive integer n , we find

(−1)n dn

dxn (logFa(x;q)) = −1
2

∫ ∞

0

tn−2e−xt

1− e−t f (a, t)dγq(t), x > 0 (2.5)

where f (a, t) defined as in (2.2). According to the last formula and the definition of
the discrete measure dγq(t) , the function Fa(x;q) is logarithmically completely mono-
tonic on (0,∞) if f (a,t)dγq(t) � 0 on (0,∞) , that is if f (a,t) � 0 at the points t =
−k logq,k ∈ N and also the function 1/Fa(x;q) is logarithmically completely mono-
tonic on (0,∞) if f (a,t) � 0 at the points t = −k logq,k ∈ N .

In view of Lemma 2.1, the function a �→ f (a,t) is increasing on R and has a
unique root at a = a(t) , then the function a �→ f (a,−k logq) is increasing on R and
has a unique root at a = a(−k logq), k ∈ N and 0 < q < 1. Since a(t) is decreasing on
(0,∞) and so the function k �→ a(−k logq) is decreasing for all k ∈ N which reveals
that

lim
t→∞

a(t) = 0 < a(−k logq) < a(− logq) = g(q), 0 < q < 1

where g(q) is defined as in (2.1). Therefore, f (a,t) < 0 if a � 0 and f (a,t) > 0
if a � a(− logq) = g(q) which conclude that Fb(x;q) is logarithmically completely
monotonic on (0,∞) if b � 0 and 1/Fa(x;q) is logarithmically completely monotonic
on (0,∞) if a � g(q) .
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It is easy from (1.2) and the identity

Li2

(
z−1

z

)
= −Li2(1− z)− 1

2
log2 z

to prove that Fa(x;q) = q
1
2−aFa(x;q−1) for all q � 1 which concludes that Fa(x;q) is

logarithmically completely monotonic on (0,∞) if a � 0 and 1/Fb(x;q) is logarithmi-
cally completely monotonic on (0,∞) if b � g(q̂) for all q > 0.

Conversely, suppose the function Fb(x;q) is logarithmically completely mono-
tonic (with b > 0) on (0,∞) for all q > 0, then (d/dx)(logFb(x;q)) < 0 for all x > 0.
But, this contradicts

lim
x→0

(
d
dx

logFb(x;q
)

= ∞.

Now, suppose the function 1/Fa(x;q) is logarithmically completely monotonic on
(0,∞) for all q > 0, then we find

lim
x→∞

(
q̂−x d

dx
logFa(x;q)

)
� 0, q > 0

which is equivalent, from (2.4), to

lim
x→∞

q̂−x
(

ψq(x)− log[x]q − 1
2

qx logq
1−qx +

aqx log2 q
(1−qx)2

)
� 0, q > 0

By inserting the identities (2.18) and (2.19) in [16] and the fact

lim
x→∞

q̂−x qx log2 q
(1−qx)2 = log2 q, q > 0

into the above inequality, we get

a � − (1+ q̂) log q̂+2(1− q̂)
2(1− q̂) log2 q̂

= g(q̂), q > 0.

This ends the proof. �

From the fact that the logarithmically completely monotonic function is a subclass
of completely monotonic function we provide the following theorem:

THEOREM 2.3. Let x and q be positive real. Then, the reciprocal of the function
Fa(x;q) defined by (1.8) is completely monotonic on (0,∞) for all positive real q if
and only if a � g(q̂) where g(q) defined as in (2.1). Moreover, the function Fb(x;q) is
completely monotonic on (0,∞) for all positive real q if and only if b � 0 .

Furthermore, we can present the following theorem:
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THEOREM 2.4. Let x and q be positive real. Then, the function

Ga(x;q) = Cq̂ +
(

1
2
−a

)
H(q−1) logq− logFa(x;q) (2.6)

where Fa(x;q) defined by (1.8) is completely monotonic on (0,∞) for all positive real q
if and only if a � g(q̂) where g(q) defined as in (2.1). Moreover, the function −Gb(x;q)
is completely monotonic on (0,∞) for all positive real q if and only if b � 0 .

Proof. With the formula (2.5), we get

(−1)nG(n)
a (x;q)) =

1
2

∫ ∞

0

tn−2e−xt

1− e−t f (a,t)dγq(t), n ∈ N

With the Moak formula (1.13) and the fact

lim
x→∞

(
aqx logq
1−qx +aH(q−1) logq

)
= 0, q > 0

we get limx→∞ Ga(x;q) = 0 for all q > 0.
In view of the above and the proof of Theorem 2.1, we get the desired results. �

3. Two sided inequalities

As a consequence of the Theorems obtained in the section above, the following
two-sided inequalities will be established as an application:

3.1. Ratio of the q -gamma functions

The monotonicity of the function Fa(x;q) and its reciprocal as in Theorem 2.3
give

F0(x;q) < F0(y;q), ∀x > y > 0,q > 0

and
Fg(q̂)(x;q) > Fg(q̂)(y;q), ∀x > y > 0,q > 0

which can be read as

[x]x−
1
2

q

[y]y−
1
2

q

exp

(
Li2(1−qx)−Li2(1−qy)

logq
+

g(q̂)qy(1−qx−y) logq
(1−qx)(1−qy)

)

<
Γq(x)
Γq(y)

<
[x]x−

1
2

q

[y]y−
1
2

q

exp

(
Li2(1−qx)−Li2(1−qy)

logq

)
, ∀x > y > 0,q > 0

(3.1)
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3.2. The q -gamma function

The monotonicity of the function Ga(x;q) as in Theorem 2.4 (Gb(x;q) < 0 <
Ga(x;q) for all a � g(q̂) and b � 0) gives a class of inequalities for the q -gamma
function. For all positive real x and q , the inequality

√
2πSq̂q

( 1
2−b)H(q−1)[x]x−

1
2

q exp

(
Li2(1−qx)

logq
− bqx logq

1−qx

)
< Γq(x)

<
√

2πSq̂q
( 1

2−a)H(q−1)[x]x−
1
2

q exp

(
Li2(1−qx)

logq
− aqx logq

1−qx

)
(3.2)

holds true for all a � g(q̂) and b � 0 with the best possible constants a = g(q̂) and b =
0. It is clear that the left bound of inequality (1.4) is the same left bound of inequality
(3.2) at the best constant b = 0. To compare the right bounds at the best constant
a = g(q̂) , notice that the ratio of right bounds of (3.2) and (1.4) is

R = q( 1
12−g(q̂))H(q−1) exp

(
−qx logq

1−qx

(
g(q̂)− 1

12

))

which can be read as

R = exp

(
− [qx +(1−qx)H(q−1)] logq

1−qx

(
g(q̂)− 1

12

))
.

Lemma 2.1 tells that 0 < g(q̂) < 1/12 for all positive real q which reveals that R < 1
for all q > 0. Therefore, the right bound of (3.2) is less (better) than the right bound of
(1.4).

3.3. The q -digamma function

The monotonicity of the function G′
a(x;q) as in Theorem 2.4 (G′

a(x;q) < 0 <
G′

b(x;q) for all a � g(q̂) and b � 0) gives a class of inequalities for the q -digamma
function. For all positive real x and q , the inequality

log[x]q +
1
2

qx logq
1−qx − aqx log2 q

(1−qx)2 < ψq(x) < log[x]q +
1
2

qx logq
1−qx − bqx log2 q

(1−qx)2 (3.3)

holds true for all a � g(q̂) and b � 0 with the best possible constants a = g(q̂) and
b = 0. It is clear that the right bound of inequality (1.5) is the same right bound of
inequality (3.3) at the best constant b = 0. Since g(q̂) < 1/12,∀q > 0, then the left
bound of (3.3) is greater (better) than the left bound of (1.5).

3.4. The q -polygamma function

The monotonicity of the function G(n)
a (x;q),n � 2 as in Theorem 2.4

((−1)nG(n)
b (x;q) < 0 < (−1)nG(n)

a (x;q),n � 2 for all a � g(q̂) and b � 0) gives a
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class of inequalities for the q -digamma function. For all positive real x and q , the
inequality

(−1)r−1 dr−1

dxr−1

[
1− 1

2
d
dr

+a
d2

dx2

][
qx logq
1−qx

]
< (−1)rψ(r)

q (x)

< (−1)r−1 dr−1

dxr−1

[
1− 1

2
d
dr

+b
d2

dx2

][
qx logq
1−qx

]
, r ∈ N

which by the identity [25]

dr

dxr

[
qx logq
1−qx

]
=

[
logq
1−qx

]r+1

qxPr−1(qx), r ∈ N

can be rewritten as

(−1)r+1βr+1(0)−a(−1)r
[

logq
1−qx

]r+2

qxPr(qx) < (−1)rψ(r)
q (x)

< (−1)r+1βr+1(0)−b(−1)r
[

logq
1−qx

]r+2

qxPr(qx), r ∈ N (3.4)

holds true for all a � g(q̂) and b � 0 with the best possible constants a = g(q̂) and
b = 0. It is clear that the right bound of inequality (1.6) is the same right bound of
inequality (3.4) at the best constant b = 0. Since g(q̂) < 1/12,∀q > 0, then the left
bound of (3.4) is better than the left bound of (1.6).

In conclusion, the bounds here for the q -gamma and the q -polygamma functions
are the same or better than the bounds obtained in [17].

3.5. The gamma and polygamma functions

In the case of the ordinary gamma and polygamma functions, limq→1 dγq(t) = dt
in (2.5) and the proof will be the same, thus we do not drew our attention for this
part. The results above, in particular, can be rewritten for the gamma and polygamma
functions by taking q → 1 as follow

xx− 1
2

yy− 1
2

exp

(
y− x
12xy)

)
<

exΓ(x)
eyΓ(y)

<
xx− 1

2

yy− 1
2

, ∀x > y > 0, (3.1)

√
2π
x

xx exp

(
b
x
− x

)
< Γ(x) <

√
2π
x

xx exp
(a

x
− x

)
(3.2)

logx− 1
2x

− a
x2 < ψ(x) < logx− 1

2x
− b

x2 (3.3)

− (r+1)!a
xr+2 < (−1)rψ(r)(x)+

(r−1)!(2x+ r)
2xr+1 < − (r+1)!b

xr+2 , r ∈ N (3.4)

These results hold true for all a � 1/12 and b � 0 with the best possible constants
a = 1/12 and b = 0 and are shown to be new.
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