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VARIABLE EXPONENT SOBOLEV SPACES
ASSOCIATED WITH JACOBI EXPANSIONS

VICTOR ALMEIDA, JORGE J. BETANCOR, ALEJANDRO J. CASTRO,
ALEJANDRO SANABRIA AND ROBERTO SCOTTO

(Communicated by A. Guessab)

Abstract. In this paper we define variable exponent Sobolev spaces associated with Jacobi ex-
pansions. We prove that our generalized Sobolev spaces can be characterized as variable expo-
nent potential spaces and as variable exponent Triebel-Lizorkin type spaces.

1. Introduction

Sobolev spaces associated with orthogonal systems have been studied in the last
years. Bongioanni and Torrea ([8] and [9]) defined Sobolev spaces in the Hermite
and Laguerre settings. Sobolev spaces associated with ultraspherical expansions were
investigated by Betancor, Farifia, Rodriguez-Mesa, Testoni and Torrea [4]. The study
in [4] was extended recently to Jacobi expansions by Langowski [28].

In this paper we define variable exponent Sobolev spaces in the Jacobi context.
We now describe our main results.

Consider a measurable function p : Q C R" — [1,e0). By L’)(Q) we denote
the variable exponent Lebesgue space that consists of all those measurable functions on

Q such that for some A >0
f@)] )P
/Q ( A dx <

It is a Banach space with the Luxermburg norm defined by

p(x)
1£ 1l o (g = InfQ A >0 /g)('f;x”) dx<1ly, fer’(Q).

By p’(-) we represent the conjugate variable exponent. A complete study of L)
spaces can be found in [18].
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We define Z7(Q) as the set of measurable functions p: Q — [1,e0) such that
p—=essinf{p(x) : x€Q} > 1 and  py =esssup{p(x) : x€Q} <eco.

The Hardy-Littlewood maximal operator .# is defined as

M f(x) —sup|B|/\f )ldy, xeQ.

B>x

The set B in the supremum represents a ball and |B| denotes its Lebesgue measure.

We define #(Q) as the subset of Z7(Q) that consists of all those measurable
functions p such that the maximal operator .# is bounded from LP()(Q) into itself.
Diening [17, Theorem 3.5] proved that if Q is a bounded subset of R, p € &?(Q) and
there exists C > 0 such that

< xyeQ, k—y[<1/2,
—loglx—y|
then p € #(Q).

Many classical operators in harmonic analysis (maximal operator, singular inte-
grals, Fourier multipliers, commutators, fractional integrals, ...) have been studied in
variable LP(") -spaces (see, for instance, [16], [18], [19] and [44]).

Let k € N, where by N we represent the set of positive integer with zero included,
and p € Z(Q). A measurable function f on Q is in the generalized Sobolev space
Wkr)(Q) if its weak partial derivatives D*f € LP()(Q), o = (ay,...,0) € N” and
0 < |a| < k, where |ot| = 0 + ...+ 0,. The norm in W*P()(Q) is defined by

k
Hf”wkm(-)(g) = Z HDafHLI’(')(Q)7 fe Wk’p(')(Q)
| |=0

It turns out that W*P()(Q) is a Banach space.

Variable exponent Sobolev spaces W*?(") (Q) have been studied by a lot of authors
in this century. These generalized Sobolev spaces play an important role to solve partial
differential equations involving variable exponents p(-)-Laplacian operator (see [10],
[18, Part IIT], [20], [22], [24] and [43]).

Now we turn to the Harmonic Analysis associated with the Jacobi differential
operator Ly g for o, B > —1, which is defined as

>  1—40? 1-4B2

Log=—""=5— — , on (0,m).
o.p d6? 16sin2% 16c0s2% (0.7)

This type of analysis has emerged as a prolific area of interest (see [1], [13], [14], [28],
[29], [30], [38], [41] and [47], amongst others).
The Jacobi operator admits the following decomposition

N a+B+1)’
Lap = Db+ (21)
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where
Da,ﬁ=%—2a4+l of 2ﬁ4+1tng
()" (o) () e )

and D, 5 is the formal adjoint of Dy g in L?(0,7). When oo = 3 the Jacobi oper-
ator Ly g reduces to the ultraspherical operator L, , A = o+ 1/2, considered in [4].
According to [48, (4.24.2)] we have that, for every n € N,

Lo g0 = 11P 9P,

where 2.2F = =(n+ a+ﬁ+l) and
0\ o+1/2 0\ B+1/2
o,p — (qin—2 z a.p
P (0) <sm2> (cosz> PEP(0), 0¢€(0,m).

If py P denotes the n-th Jacobi polynomial considered in Szegd’s monograph, then
Py B ¥ B p,’f B , where df B is a normalization constant, for every n € N. The

system {¢, P }nen is orthonormal and complete in L?(0,7). We define the Jacobi
operator £, g by

Lopf =D APEB(9*P, feD(Lyp).
n=0

Here, for every f € L?(0,7) and n € N,

’(5)= [ oeP ©)r(0)a0

and by D(Z, ) we denote the domain of .Z, g given by
D(ZLyp) ={f € L*(0,7) zwﬁ e8P ()] < oo}

Note that C°(0,7), the space of smooth function with compact support in (0,7), is
contained in D(.%;, g) and hence,

ga,ﬂf = La,ﬁf7 f € CCM(O»TE)

“Zy.p 1s a positive and selfadjoint operator in L?(0, 7). Let us note that — Ly p gener-

ates a semigroup of operators {Wto“l3 }i=0 in L?(0,7) where, for every ¢ >0,

A Ze P B (r00B e 12(0,m).
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Moreover, for every t > 0 and f € L2(07 ),

W ro) = ["W 0. 0)1(0)dp, 0 € (0.m),

where

Po,9) =3 e 9B (0)92B (), 0,9 € (0,7)ands >0,

{Wta’ﬁ }r>0 is called the heat semigroup associated with the Jacobi operator .Z, 5.

By {Pta’ﬁ }~0 we denote the Poisson semigroup defined by Zyp- According to the
subordination formula, we can write, for every # >0 and f € L? (0,m),

PP 1 (6) /1ﬂﬁ9¢ 0)dp, 6 (0,1),

where
et 2 /4u

9) = m/ — WP (6, )du,

Jacobi Sobolev spaces were studied by Langowski [28]. We now introduce vari-
able exponent Jacobi Sobolev spaces. Assume that p € Z2(0,m) and k € N. We
say that a measurable function f € LI’(')(O, ) is in the variable Jacobi Sobolev space

Wb (0,m) if DYy f € LPO(0,m), for every £ €N, 0< £ <k, with DY, ,f = f and
for/>1,

PP (0,9) 0,0 < (0,7). (1)

’
Dmﬁ =Dgt1-1p41-10 - ©Dgr184+10Dg g,

is understood in a weak sense. On Wig(')(o, 7) we consider the norm defined by

110 0.0y = I 0 o,r+2||D oo, FEWLEO,m).

Thus, W* Il;( )(O, m) becomes a Banach space. See the discussion in [28] (and also in

[4]) for the use of the derivatives Dﬁz B> instead of the more natural choice DﬁC B =
Dypo ...oDgyp.

Let y > 0 and assume that o + f3 # —1. The negative power .,Sﬂa_}; of Zyp is
given by

Lot = T I (0P ferom) @

<z, ¥ defines a one to one and bounded operator from L?(") (0,7) into itself (see Propo-

sitions 3.3 and 3.4 below). The variable exponent Jacobi potential space Hg’.’;(')(o, )
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consists of all those functions f € LP(')(07 m) such that f = <, Z;g for some (unique)
g € LP1)(0, ). We considerer in Hg’%(')(o, ) the following norm

||fHH;:%(‘)(O7n):||g||LP(')(O7n)7 =%, ﬁgEHy%()(O 7).

Endowed with this norm H;? /3( )(07 ) is a Banach space.

The variable exponent version of [28, Theorem A] is given in the following theo-
rem.

THEOREM 1.1. Let o, > —1/2 such that a—i—ﬂ #—land keN, k> 1. As-
sume that p € $(0,x). Then, Hz(g’p(')(OJt) =W 13( )(0 7). Moreover, the norms
Il - ||H(,;{/§#,,(.)(O’n) and || - ||W§i’;’s(')(0=”) are equivalent.

The proof of Theorem 1.1 is done in several steps. For a suitable function p we
will prove.

(a) The linear subspace S, 5 = span{¢, b } is dense in both Wéig(')(o,n) and
k/2,

(b) The higher order Jacobi-Riesz transforms defined by

k k/2 kxo ok —k/2
Ra,ﬁ— ﬁjfﬁ and R ﬁ—ID) ﬁga+k/3+k7 keN,

are bounded operators on L"()(0, 7).

(c) We define a multiplier operator m(.%, g) in such a way that
m( Lo )R gRE pf = f = anﬁ 0B forall f €Sy p,

and prove its boundedness on L) (0, ).
(d) For every y > 0, the potential operator ., g is also bounded on LP(") (0,7).

According with [16] in order to get the boundedness of operators defined on
U’(')(O,n) it is sufficient to prove boundedness of them on the weighted L"-spaces,
L, (0,m) for every m € A.(0,7), the class of Muckenhoupt weights , and some 1 <
r < oo. Let us note that, taking into account [16, Theorem 1.2], we can change the
condition ”p € Z(0,r) and for some py € (1,p-), (p(-)/po) € $(0,7)” used in
[16, Theorem 1.3] by p € #(0,x), because if p € A(0,x) there exists an extension
p € ABR) of p from (0,7) to R.

Once all this has been proved, the proof of Theorem 1.1 is as follows:
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From assertion (a) it is enough to prove the equivalence of norms for functions in

Sap- Letus take then f,g € S, g such that f =2 ﬁ/

we get

g. From assertions (b) and (c)

18100 0.0) < C(Im(Za )R 5D P10 0+ 1000 00))

<C(Ik gl om + £ 1000

Thus, we obtain
1182000, < I s

On the other hand, by using assertions (b) and (d), for every m € N such that
0<m<k,

—k2
HID) ﬁf”LP 07; HDZ:. HLI’ On)

k—m)/2
= [|IR% 5 a,& "8 0 0.0 < Cllell ot 0 -

Hence,
HfHWé:Z(.)(Ov”) < C||fHH§{§>p(-)(07n).

We now define the positive power of the Jacobi operator %}, g according to the
ideas of Lions and Peetre [3 1, Chapter VII, Section 2] and Berens, Butzer and Westphal
[2]. Let y > 0 and choose r € N such that y < r < y+ 1. For every € > 0 and
ferr)(0,r), we define

v . (I_W“aﬁ) f
f=Cy, /8 s, 3)

where the integral is understood in the L”() -Bochner sense and

B 0o (1 N e—u)r -1
C%r = <‘/0 Wdu .

Note that, for every f e LP()(0, 1),

/w I (I—Wf’ﬁ> fHpr(o,n)d
€

] U < oo,

Moreover, the operator 17" is bounded from Lp(')(O, m) into itself (Proposition 5.1).
We consider the domain of .,ng B

Dp(,)(ﬁgﬁ) = {f e’V (0,x) : Elir(r)l+ 1" f exists in L”(')(O,TC)},

and we define
Lypl = Mm I'f, €Dy (Zyp): @)
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As it will be shown in Section 5, in the definition of jfg p Wecan takeany re N, r > 7y.

Next, we characterize the Jacobi potential space H};”;}(')(O, ) as the domain of fg 8

THEOREM 1.2. Let v> 0 and o, > —1/2 such that o.+ B # —1. Assume that
p € A(0,m). Then, H;f/ll;( )(O,n:) :Dp(_)(fg;ﬁ). Moreover, for every f € Dy (.,2”;'[3)
Y Y
D‘Z ﬁf fa
and, for every f € LP1)(0, 1),
Y Vi _
L=

Segovia and Wheeden [45] characterized potential spaces by using Littlewood-
Paley square functions. In order to do this they introduced square functions involving
fractional derivatives of the classical Poisson semigroup. Inspired by [45], Betancor,
Farifia, Rodriguez-Mesa, Testoni and Torrea obtained characterizations using vertical
and area Littlewood-Paley functions for the potential spaces associated with the Her-
mite and Ornstein-Uhlenbeck operators ([5]) and Schrodinger operators ([6]). We will
characterize our variable exponent Jacobi potential spaces by using Littlewood-Paley
function defined via derivatives of the Jacobi-Poisson semigroup.

Let y> 0 and k € N such that 0 < y < k. We consider the following Littlewood-
Paley function

Tk | k—y 3k poi.B 2dr\ '/
o =([Trarinel ). ecom.
We say that a measurable function f € LP()(0, 1) is in Tg’g’p(')(o, 7) when gékﬁ (f) e
L70)(0,m). On Toilfl];’p(')(o,ﬂ) we define the norm

k (-
1780305 = I 0+ I8E D0 F € T25"0.)

Thus, Tyg’p( )(0,7) is a Banach space.

The space Tg ;;17 0 (0,7), which can be seen as a variable exponent Triebel-Lizorkin

type space, coincides with the variable exponent potential space H;/ é*’ ¢ (0,m).

THEOREM 1.3. Let o, > —1/2 suchthat oo+ # —1 and 0 < y <k, k€ N.
Assume that p € (0, 7). Then, Hy/2 P )(0 )= Tyg,p( )(0,7'6). Moreover, the norms

and || - ||Ty,;Ep are equivalent.
a,

H ' ||Hg/§l7()(0ﬂ) (077.[)

Note that from Theorem 1.3 we deduce that the space TYEP o f rt )(0 ) does not de-
pend on k € N provided that 0 < y < k. The result in Theorem 1.3 is new even when
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p € (0, ) is constant and it gives a new characterization of the Jacobi Sobolev spaces
introduced in [28].

In order to prove Theorem 1.3 we need to show that certain square function related
to gé’_kﬁ, which involves fractional derivatives, is bounded on LP()(0, 1) . In [45] frac-

tional derivatives were introduced. Suppose that ¥ > 0 and F' is a nice enough function
defined in (0,7) x (0,c0). The y-th derivative ,'F is defined by

—i(m—y)m

OIF(0,1) =& / IF(0,1+5)s" " \ds, 0 (0,7),1>0,

[(m—7y) Jo

where m € N issuchthat m—1 <y <m.
We consider the Littlewood-Paley function gl B given by

t

0@ = ([ o). econ

The key relation between gékﬁ and g£7 B> 0 <y <k, which allows to connect the spaces
HY/3P0(0,7) and TV (0, 7). is the following

Gof (N =gl (L 120, € Sap

In [27] Kyriazis, Petrushev and Xu defined Besov and Triebel-Lizorkin spaces
associated with Jacobi expansions with respect to ((—1,1), (1 —x)*(1+x)Pdx). We
now adapt the Triebel-Lizorkin definitions given in [27] to our Jacobi expansions in
((0,m),d6). We take a function a € C7(0,0) such that suppa C [1/2,2] and
inf,c3/5 5 /31 jla(t)| > 0. The following construction is independent of the election of a
and, as it is said in [27], we can add the condition that a(¢)+a(2¢) =1 for ¢ € [1/2,1].

We define the sequence {@7’[5 } jen of functions on (0, )% as follows,

5 7(6.9) = 07 ()0 (9). 0.0 € (0.7),

and, forevery jeN, j> 1

oo o,f
¥%(0.0)= 3 a(5) 670002 9). 0.0 (0.)

If yER and 0 < p,q < o, a function f € L'(0,7) is in the Jacobi-Triebel-Lizorkin
space F 07273”7 (0,7) provided that

||fHnggﬁp(O7,,) = H ( io (2J’y|q>7ﬁ (f)(~)|)q> 1/q
, =

LP(0,m)

Here, for every j € N,

P ()(0) = [ 0P (0.0)f(0)dp. 6 (0.7)
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It would be interesting to investigate Jacobi-Triebel-Lizorkin spaces with variable ex-
ponent in the ((—1,1),(1—x)%(1+x)Pdx) and ((0,7),d6) settings. This question
will be considered on its whole generality in a forthcoming paper. Here we only in-
troduce Jacobi-Triebel-Lizorkin spaces with ¥ > 0, ¢ =2 and variable exponent p(-).

Assume that p € (0, 7). A function f € LP)(0, 1) is in Fg7z7p(')(077t) when

< oo,

Iz —H( 2”I<D?"ﬁ<f><->|>2)l/2 o0

In the following theorem we identify the variable exponent Jacobi-Triebel-Lizorkin
space F oﬁ}p (0, ) with the potential space Hg’%(')(o, ).

THEOREM 1.4. Let o, > —1/2 and y> 0. Assume that p € $(0,7). Then,

HIHO(0,1) = F/30(0,7). Moreover, the norms || -|

are equivalent.

and |- lppzoc
o,

H110 (0.m) J(0,m)

Note that as a special case of Theorem 1.4 we establish that the Jacobi potential
space H P /3(0 7) considered by Langowski ([28]) coincides with the Jacobi-Triebel-
Lizorkin space Fgﬁf’(o, m), forevery 1 < p < oo.

The paper is organized as follows. In Sections 2, 3 and 4 we prove that assertions
(a), (b), (c) and (d) are true. Theorems 1.2, 1.3 and 1.4 are proved in Sections 5, 6 and
7, respectively.

Throughout this paper by C and ¢ we always denote positive constants that can
change in each occurrence.

2. Dense subspaces

This section deals with the proof of the Wi:’l;(') -density of S, g claimed in asser-
tion (a) of Section 1.

Assume that p € 2(0, 7). According to [18, Theorem 3.4.6] the space L' ) (0, )
is isomorphic to the dual space (LP")(0,7))* of L()(0,7). On the other hand, for

every ke N, (Z),:x’ﬁ € L*(0,7). Then, (Z),f"ﬁ € LP'0)(0,7), ke N ([18, Theorem 3.3.11]).
We define, for every f € LP()(0,7) and k € N,

T B
= [ ot e)r(0)a0
By [18, Theorem 3.4.12] the space C=*(0,7) is dense in L")(0, 7).

PROPOSITION 2.1. Let o,8 > —1/2 and p € P(0,x). The space Sqp =
span{(l),f"ﬁ}keN is dense in LP1)(0, ).
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Proof. Since C(0,1) is a dense subspace of LP()(0, 1), it is sufficient to see that
C7(0,7) is contained in the closure of Sy g in LPO(0,7). Let g € C(0,7). By using
integration by parts we deduce that, for every m € N, there exists C,, > 0 such that
%P (g)] < Culk+1)"", k € N. Hence,

sePe)= X P (@0l — g asn—e inL2(0,m).
k=0

Hence, according to [18, Theorem 3.3.11], S,?’ﬁ(q)) —¢,asn— oo, in LP(')(O, r). O

COROLLARY 2.1. Let o, > —1/2 and p € 2(0,n). If f € L’V)(0,x) and
c“P(f)=0, keN, then f=0.

Proof. Since p € #(0,x), p’ isalsoin (0, 7). Then, by Proposition 2.1, S, g

is dense in LP'()(0, 7). Assume that f € LP()(0,7) is such that c,‘?ﬁ (f)=0, keN.
The norm conjugate formula ([18, Corollary 3.2.14]) leads to

T
| r®xs0)a0 =0,
for every g € L”()(0,7). By using again the norm conjugate formula (duality) we

conclude that f =0. O

We can improve the result in Proposition 2.1 when the function p(-) satisfies ad-
ditional conditions. According to [34, Theorem 1], if 1 < p < o and f € L?(0,7),
then

f=lim 3 P (1)
k=0

n—oo

where the convergence is understood in L”(0,7). We now establish this property in
L5(0,7), 1 < p<eoand we A,(0,7), and in L) (0, ) when the function p(-) is as
in [16, Theorem 1.3].

PROPOSITION 2.2. Let o, > —1/2.

(i) If 1 <p<eoandw € A,(0,r), there exists C > 0 such that, for every n € N,

|3 el irer?
k=0

(0.7 <CUfllgom feLi0m),

and

n—oo

lim ¥ c“P(neP = r, rerro,n),
k=0

in the sense of convergence in L(0,1).
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(ii) Assume that p € B(0, 7). Then, there exists C > 0 such that, for every n € N,

| 3 e ()00?
k=0

p()
poom S Mllwtom, [ EL0.7),

and

lim 2 PnerP =y, rerrto,mn),

n—eo f

in the sense of convergence in LP)(0,1).

Proof of Proposition 2.2, (i). In order to prove this property we proceed as in the
proof of [26, Theorem 2]. Let 1 < p < e and w € A,(0, 7). Suppose that f € L%,(0,7)
and n € N. We define

n

S.f(0) =Y P (r)e¢P (6), 6€(0,m).

k=0

Asin [26, p. 13] we have that

3
S./(8)| <C X I r(6), 6 (0,m), 5)
(=1
where the operators sz B " ¢ =1,2,3 can be estimated as follows. Firstly, for Ja B
we get
. p\o+l/2 0\B+1/2
g < o (08 (eos)
(sin§+ )" (cos § + ;1p) P12

+
(Sin%)a+l/2(COS%)ﬁ+l/2

sl (@lde

o+1/2
2 nJlrl) (Cos(p—’_n}rl)
/
<c ["l@)ldp, 0.
Then, Holder’s inequality implies that
[Tt sorwerao <c [ I7(6)rwie)ae, ©)
because L% (0,7) C L' (0, 7).
For J5' B the following estimate holds
Ja7ﬁ7"f(9) . (sin 2)a+1/2(cosg)ﬁ+1/2
2 = ) 1 \o+1/2 ) 1 \B+1/2
(sin§ + ) (cos§+ 1)
’/ o (i) (oo 8) bu(9)f(@)de
0 SIHM51n 2(P (Sin%+Z)a+3/2(cosg+%)ﬁ+3/2 n y
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where supcy |br(@)] < C, ¢ € (0,7). We can write (see [26, p. 14])

sin @ 1

= +R(0,0), 0,pc(0,m), 0 ,
sin 2sin 822 sin &2 (6.9) peOm). 679

being

— > 0< 0<m/2

sin 5 —i—sm(p /

R(6,9)|<C | 0 € (0,7).

— T/2<6<m,

COs 5 +CO0s 5
Thus, by defining

3/2 @ \B+3/2
(smz)a+ (cos?¥)
g(QO) = bn((P)f((P)7 (S (0777:)7
(sin$+1)*(cos g +1)7
we obtain
5P r(0) <C[I(Hg)(e)l+Sl(\g|)(9)+52(\g|)(9) , 0¢€(0,m), (7)
where
y
(Hg)(6) = P.V. g(;") do, ae. 0c(0,m),
0 sinZ=2
T
s'9)0)= [ %(w, 0 0.7,
0 sm7—|—sm7

and

T
SO = [ e o<

The operator H is a singular integral operator related to the Hilbert transform and S/,
j = 1,2, are Stieltjes type operators. It is well-known ([25]) that H is bounded from
L5(0,7) into itself. In [26, Lemma 6] it was established that S' and S? are bounded
from L%(0,7) into itself. Then, (7) implies that

[Tt pe)rweae < [“lg@)rwors <c [Cr@)rweae.  ®)
In a similar way we can see
[T so)rwierds <c [ I7(6)rw(e)de. ©)
By putting together (5), (6), (8) and (9) we conclude that

1Snf1220.2) < CIF Nl 0,7)-



VARIABLE EXPONENT SOBOLEV SPACES ASSOCIATED WITH JACOBI EXPANSIONS 913

Note that the constant C > 0 does not depend on n € N and f € L}(0,7).
Since C°(0,7) is a dense subspace of L%(0,7) and for every h € C(0,7),

lim S,h = h, uniformly in(0, ),

Nn—oo
and hence in L% (0, ) ; standard arguments allow us to show that, forevery f € L} (0,7),

lim S,/ = f, inLp(0,7). O

Proof of Proposition 2.2, (ii). From the property established in Proposition 2.2,
(i), and according to [16, Theorem 1.3] we deduce that there exists C > 0 such that,
forevery n € N,

151100 0.0y < CUFllpor0 s F € L7V (0,7). (10)

By [18, Theorem 3.3.1], C°(0, ) € LP+(0, 1) € LP1)(0, ) and the inclusions are con-
tinuous. Hence, for every h € C°(0, ),

lim S, (h) =h, in L’)(0, 7).

Since C(0, 1) is dense in L) (0, ) we deduce from (10) that, for every f € LP1)(0, 1),

lim S, f=f, inL’Y(0,7). O

We are going to see that S, g is a dense subspace of Ws’g(') (0,m).

PROPOSITION 2.3. Let o, > —1/2, k€ N and p € #(0,x). Then, Sy is a
dense subspace of Wg’g(') (0,7).

Proof. We proceed following the ideas in the proof of [4, Proposition 2] (see also
[28, Proposition 3.2]). Note firstly that, since LF(')(O,n:) C LP-(0,7m) ([18, Theorem
3.3.1]), Wﬁ:g(')(o,n) - Wig’ (0,7), where the last Sobolev type space Wig’ (0,m)
(with constant exponent p_ ) was studied by Langowski [28].

Let f € Wig('>(0,n). The maximal operator WP associated with {W,O"l3 Hso 18
defined by

WP () = sup WP ().

t>0

According to [40, Theorem A, and (3)] we have that

efc(ef‘P)z/[

w0 <C——,
W7 (6,9)] v

0,0 € (0,m)and? > 0. (11)
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From (11) we deduce that
WP () < ca (),

where ., denotes the centered Hardy-Littlewood maximal operator. Then, by [18,

Theorem 4.3.8] Wf“ﬁ is a bounded (sublinear) operator from Lp(')(O, ) into itself. It
is clear that, for every ¢ € S, 5,

lim WP (¢) = ¢, inLrO(0,7).

t—0t

Then, since S, g is dense in LP0)(0, 1) (Proposition 2.1), we obtain that,

lim WP (f) =, inLPO(0, 7).

t—0t

By [28, Lemmas 3.1 and 3.3] for each ¢,m € N, such that 0 < ¢ <k,

o+l B+ (Dgﬁ f) = (=)'t Demrlrat 1) (1), (12)
Here and in the sequel we denote by (z)¢, z > 0, the ¢-Pochhammer symbol, that is,
()e=z(z+ 1) (z+€—-1), £eN, £>21 and (z)o=1. (13)

By taking into account [28, (1)] we can differentiate term by term inside the series
and [28, Lemma 3.1] and (12) lead to

= ap
DfxﬁWta,ﬁf: 2 e c%B () Dfx,ﬁq)ma’ﬁ
m=0

o B ,

= X M ) In = Dl ot B D () ou P

_ Z e—tkmﬁcaM /3+(< Qﬁf) ¢nzfirf,/3+€

= 2 eit
m=0

Hence, forevery / € N, 0 < ¢ <k,

LB+
A,,‘é‘* B+

cat P (Dl o f ) gt P, e N, 0< <k

hmeﬁW“ﬁf Df gf. inLP0(0,7).

t—0t

Let € > 0. There exists #y > 0 such that, for every 0 <1 < 1y,
DL, ﬁW"‘ﬁf DY s fllptrjom <& CEN, 0<I<k.

On the other hand, by using [28, (1)], [18, Theorem 3.3.11] and Holder inequality we
get, forevery 6 € (0,7) and ¢,m € N,

ng+f,;3+@ (Dg 5 f) )

@Z‘*"’M(O)‘ < C”Dfx,ﬁfHL’L (0,1 (m+ 1)otp2ee,
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Hence, there exists my € N, mgy > k, such that
—toA LB e Bt (o +0,B+L
o107 P B Da,ﬁf & B
m=M+1

C 2 7[() m+

m=mq+1

Then,

LrO)(0,m)

oc+ﬁ+2f

P (m1)*Br22 e 1N, 0< <k MEN, M >m

o ? < 2¢.

cEP(f9aP —f

k.p
Wa‘/}

Thus, we have proved that f is in the closure of S, g in Wi’g(')(o, ) and the proof is
finished. [J

3. Jacobi multipliers in weighted L -spaces

This section deals, among other things, with the proof of the Hk/ B »C) -density of

Sa.p claimed in assertions (a) and (d) of Section 1.
Let m = (my)7_, be a bounded sequence of real numbers. The Jacobi multiplier

Ty B associated with m is defined by
aBr_ < a.p a,B 2
Tm f_ kack (f)(Pk ) fGL (Ovﬂ)
k=0

Plancherel’s equality implies that 7, P is bounded on L?(0, ). Sufficient conditions

which allow to extend T P as a bounded operator to L”(0, 1) and to certain weighted
LP(0, ) spaces have been established by several authors (see [11, [7], [15], [23], [32],
[35], [36] and [49], amongst others).

The goal of this section is to establish a multiplier theorem in LP()(0, 7). Previ-
ously we need to show a multiplier result for L{}(0,7) when w € A,,(0,7). In order to
achieve this we invoke a general multiplier theorem due to Meda [33] (see also [49]).

2
Let —o<a< (a+l3 +1> . We consider the operator
Lopa=Loap—a

It is clear that, for every k € N, d),f‘ P is an eigenfunction for £, 4., associated with
the eigenvalue

2 2
3B _ <k+7a+§+l> —a=k(kto+B1)+ (er“) —a.

Zop:a is a nonnegative and selfadjoint operator on L?(0, 7). Moreover, Lo pa €N~

erates a (heat) semigroup {W, "}, on L2(0,7), given by

WPy = /OHVVI:"‘”B;“(GM)J”((P)d(p, ferl*0,m), t>0,
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and

a hd _ o,Ba ) )
wWoP0,0) =3 e 08P (0)07P (9), 0,9 €(0,7), and 1> 0.
k=0

According to [40, Theorem A, (3) and (9)] we have that
—((‘”g“)z—a)t e—c(e—(p)z/t
\/; ’
Let y € R\{0}. The i'maginary power .,ngﬁ;a of £, g.q is the spectral multiplier
8(Lo. p.a) Where g(x) =x"7, x > 0, that is,

)W,a’ﬁ;a(@,(l))‘ < Ce 0,0 <€ (0,m)andz > 0.

oo

LT =Y AParEB (porf  fe12(0,m).
k=0

The operator Xgﬁ;a can be seen as a Laplace transform type multiplier for £, 3.,
Then, a general result due to Stein [46, Corollary 3, p. 121] applies to deduce that
jfgﬁ;u can be extended from L?(0,7) NLP(0,7) to LP(0,7) as a bounded operator
on L”(0,7), for every 1 < p < eo. Also, by proceeding as in [39] we can see that

jfgﬁ “ is a Calder6n-Zygmund operator in the sense of a space of homogeneous type

((0,m),dB,]|-|), where |-| stands for the Euclidean metric. Then, féyﬁ‘a defines a

bounded operator from L1(0,7) into itself, for every 1 < p < o and w € A,(0,7).
Moreover, classical arguments (see for instance, [2 1, Chapter 7, Section 4]) allow us to
obtain that, for every 1 < p <eoand w € A,(0,7),

12, 0l 8 0.0~ 5 0.0) < Cpaee™ 72, (14)

where C,,, > 0 does not depend on y. Estimation (14) shows an exponential increase
with respect to |y| of the operator norm ||$;yl3a|| 15(0,7)—14,(0,7) Which is not sufficient
to obtain our multiplier result. Actually, the exponential behavior in (14) can be re-
placed by a polynomial growth. Indeed, according to [12, Theorem 1.3 and Remarks
1.4 and 1.5] we have that, for every 1 < p < eo and w € A,(0,7),

12, s all iz 0,m)—220,) < Cou(L+ 17D,

where C,,, > 0 does not depend on y.
We now establish our result concerning the L%, (0, 7r) -boundedness of spectral mul-
tipliers for the operator %, g.,-

2
PROPOSITION 3.1. Let 1 < p < oo, o, > —1/2 and —oo < a < (%) .
Assume that:

(i) m is a bounded holomorphic function on {z € C : Re z > 0}, or
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(if) me C~(0,x) and for every { € N
0

f—m(x)

sup x* < oo, (15)

x€(0,00

Then, the spectral multiplier m(£y g.,) related to the operator £y, g., given by
Lo — i Aavﬁ;“ o.p o.p 16
m( Ly pa)f m(A ") e (Ao (16)
k=0

is bounded from L%,(0,7) into itself, for every w € A,(0,7).

This result can be proved as in [33, Theorem 3 or Corollary 1]. By using now [16,
Theorem 1.3] we deduce from Proposition 3.1 the following L? () -boundedness result
for spectral multipliers associated with £, 3.,

a+ﬁ+1

PROPOSITION 3.2. Let o,f3 > —1/2 and —o0 < a < ) . Assume that

p € B(0,r). If m satisfies condition (i) or (ii) of Proposition 3.1, then the spectral
multiplier m(Zy, g.,) given by (16) defines a bounded operator from LPO)(0, 1) into
itself.

The negative powers of £, 3 defined in (2) are spectral multipliers for the Jacobi
operator that will be useful in the sequel. Suppose that ¥ >0 and a+ 8 # —1. Since

2
k,f‘ B > (%) , k € N, the operator £, ;3/ is bounded from L2(07 ) into itself.

2
We take a = 1 (%) . We can write

L8 =Y 0P P ()P = TePe(r),  fer?(o,m),
k=0

where my(z) = (z+a)”7, z€ C, Re z > 0. Since my is a bounded holomorphic
functionon {z € C : Re z >0} from Propositions 3.1 and 3.2 we deduce the following.

PROPOSITION 3.3. Let y>0 and o, > —1/2 such that o+ # —1.

(a) If 1 < p < oo and we Ap(0,m), then f;}; can be extended from L*(0,7) N
LL(0,7) to LE(0,7) as a bounded operator from LL,(0, 1) into itself:

(b) If pe A(0,1), then Xo;g defines a bounded operator from L") (0, 1) into itself.
We also have the injectivity of fa_}; on L5(0,7) and LPO)(0, 7).

PROPOSITION 3.4. Let y>0 and o, > —1/2 such that o+ # —1.

(a) If 1 < p <eoand we A,(0,r), then 3;}; is one to one on L;(0,7).
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(b) Assume that p € $(0,x). Then, .,Sﬂa_g is one to one on LPV)(0, 7).

Proof. We prove (b). Property (a) can be shown in a similar way. It is clear that if
J € Sq p we have that

(L3 =8P (f), ken, (17)
Since £, ;3/ is bounded from U’(')(O,TC) into itself (see Proposition 3.3); for every

keN, ¢]§X~,I3 e L/'0(0,m) = <LP(')(O77I)>* ([18, Theorem 3.4.6]) and S, g is dense
in LP1)(0, ) (Proposition 2.1), we conclude that (17) holds for every f € LP)(0, 7).
Then, from Corollary 2.1 we deduce that f = 0 provided that £ 23/ f=0. 0O

By using Proposition 2.2 we obtain the following characterization of the potential
space H;?%(')(Q ).

PROPOSITION 3.5. Let ¥ > 0 and a,f3 > —1/2 such that oo+ 3 # —1. As-
sume that p € B(0,1). A function f € LPV)(0,7) is in Hg(’,}(')(o,n) if, and only
if, the series Zif’:o(?t,f"ﬁ)ycna’ﬁ (f)q),?’ﬁ converges in LP)(0,1). Moreover, for every

FeHro,m),

S (2,0B) 7B () g0
170000 = DI UT s I
Proof. Let f e LPV)(0,7). Suppose that f € Hgf,;(')(o,n). Then, there exists g €

£70)(0,7) such that f = %, T ¢. Thus, by (17) we have that ¢/ () = (47) ~7cP (),
n € N. Hence, according to Proposition 2.2, the series

S (e (000 = 3 e (6)05
n=0
converges in L) (0, 7).
Assume now that the series F = Y= (A, P Yy P (foy B convergesin L) (0, 7).

Then, by Proposition 3.4, .,?a_z;F =fand f € Hg’_%(')(o,n). O

As an immediate consequence of Proposition 3.5 we establish the density of S, g

in HH(0,7).

COROLLARY 3.1. Let y>0 and o, > —1/2 such that o+ B # —1. Assume
that p € 2(0, 7). Then, for every f € HY‘Z( )(O, ),

£=lim Y ()00
k=0

in the sense of convergence in Hg’.’l;(') (0,7).
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Proof. Let feH”;()(O,rc) We have that f = .2 ﬁg, where

= S APy P (9P,

k=0

in the sense of convergence in LP(")(0, ). Then,

7= ek #ner|

— 0, asn — oo,
LP0O)(0,m)
O

= Hg W) &P (1o P

H7 p(

4. Boundedness of the higher order Riesz transforms

This section has to do with the proof of assertions (b) and (c) of Section 1.
Firstly, we establish that R’fx_ B and R - ap are composition of Jacobi Riesz trans-
forms of order one.

LEMMA 4.1. Let k € N and o, > —1/2 such that o.+ 3 # —1. Then,

k 1 1 1
Ra,ﬁf:Ra+k71,ﬁ+k71ORa+k72,ﬁ+k72O """ ORa,ﬁf7 fe Saﬁ’ (18)

and
k* 1,
aﬁf Raﬁ a+1/3+1 """ ORy k- 1,B+k— o FESatkpi (19)

Proof. We are going to prove (18), (19) can be shown in a similar way. It is

sufficient to see that (18) is true when f = (Z)lm"l3 , forevery [ € N.
Let [ € N. According to [28, Lemma 3.1] we have that

Df 0P = (D) —k+ D+ ot B+ e o 1P (20)

Recall the definition of the Pochhammer symbol in (13) and by convention ¢, P = ,
neZ,n<0. Hence,

koLoB  [U—k+1)i(l+o+B+ 1) “h Bk
ROhﬁ(Z)la - (_l) \/ (Ala.p)k lak

Since /lla’ﬁ = /l;):"’ﬁﬂ, 0 < n <1, we can write

¢a,3_ B kH n)(l+oa+B+1+n) grkpk

ol )LochnﬁJrn I—k
o k 1 (I-=n)(l+a+B+1+n) otk—1,B+k—1
- H )La+n[3+n oc+k 1B +k— 1¢ —k+1

I—n

1 1 o
Ra+k 1B+k—1° R k2 pak—20ORy g0 ",
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and (18) is established. [

We are going to prove that R’fx_ B and R];TB define bounded operators from L, (0, 7r)
into itself for every 1 < p < oo and w € A »(0,7). As consecuence of the next lemma,
we only need to study the corresponding local operators (see [11] and [14]).

We consider the domain & = U‘}:l@ ; represented in the figure bellow

¢
L e e 2
Do 0
- IS 9:{(9<p):0<<p< 0<o<Z},
] D, ,’1’ ,', | 39 2
9:{(9(p):0<7<(p<7t,0<9<5},
5 , P /’ |
/' /: ,I : 39_
Ay | @:{(9q)):0<(p< 2”,%<9<n},
it '{ Ds 0+nm bq
,//,:”/Dl @:{(9(,0): 7 <qo<7r,5<9<7t}.
™ T 0
2

Figure 1: Global regions

LEMMA 4.2. Suppose that K : (0,7) x (0,7)\{(8,0) : 6 € (0,7)} — Risa
measurable function such that

K(6,0)| < 0,0<c(0,m), 0F# 0.

¢
0 —ol’
Then, for every 1 < p <o and w € Ap(0,7) the operator H defined by
T
Hf(0) = [ K(6.0)12(6.0)f(9)dp, 6 (0.m)
is bounded from LL,(0, 1) into LL,(0, 7).

Proof. We define

H;f(6 / K(6,0)%5,(6,0)f(9)do, 0 € (0,m), j=1,2,3,4.

4
Thus, H = Y H;.
j=1
By .# we denote the Hardy-Littlewood maximal function on (0,7). We have
that

0/2 9/2
o)< [ o< [ i)ag <caipie), ocm),
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and

" 1f() c r
Hyf(0)] < /M e (p‘d<p<n_9 e oyl (@l0

<SCA(f)(0), 6€(0,7).

By using the classical maximal theorem we deduce that H; and Hy are bounded from
L1(0,7) into itself, for every 1 < p < oo and w € A,(0, 7).
The adjoint operator Hy of H» is defined by

2¢/3 /2
5 (¢) K(O,w)g(9>d9+x(%,,)(<p)/o K(6,9)2(6)d6, ¢ € (0,7).

s

Hyg(9) =%

o

If 1 <p<ooandweA,(0,r), we deduce that

1H5 81120 ) gc{ (/03”/4w((p) </02<p/3 |§( 20||d9)pd(p>1/17
n ™ 1/p
(o ([ ) )
) C{ ([ o ataioras)
([ wtorae) " [ g<e>de}

<Clgllpor, &€LLO,m).

Hence, H, is bounded from L%(0, ) into itself for every 1 < p <o and w € A,(0, 7).
On the other hand, the adjoint operator H; of Hj is given by

T

Higl0) = 704)(9) [ K(0.0)8(0)d0 +1i5.0(9) | K(0.p)s(0)d0.
(29+7)/3

If 1 <p<ooandweA,0,m), we get
) 1/p
It5ellzom < €3 ([ wioo)  [Mlet@)lao
12(6)] ) )“”
+ do | d
( ( 2<p+n/3\9 (0] ¢
T 1 T P 1/p
<C : / 0)ld6 ) d
lelizion + ([ w0 (525 [ le@)lae) do)

<C(llgllgom + 12 (gDl 0.x ) <Cligllpon) &€Li0,7).
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We conclude that Hj is bounded from L% (0, 7) into itself, for every 1 < p < e and
weAy0,m).

Thus, the proof of this lemma is finished. [J

By using Lemmas 4.1 an 4.2 we will deduce the L{;(0,)-boundedness of R 8

and R:;';g from the corresponding property of R<lx7 B and Rtlx*ﬁ , respectively.

PROPOSITION 4.1. Let 1 < p <o, w € Ap(0, n) and o, > —1/2 such that
o+ B # —1. The Jacobi Riesz transforms R! B and R deﬁne bounded operators
from L5(0,1) into itself.

We are going to use local Calderén-Zygmund theory for singular integrals (see
[14]). We are inspired in the arguments developed by Nowak and Sjogren in [39].

Proof of Proposition 4.1, the case of R(lx_ B By (20) we have that

< Jk(k+a+B+1
Rypf =~ % AP py o P rer?(0,m).
k=0 k/

According to Plancherel’s theorem, R}x. B is bounded from L?(0, ) into itself. By using
[13, Theorem 2.4] we can write '
T

1 _ 1
Ry pf(0) = 81;161+ b ‘ei(pbgRa’ﬁ(O,(p)f((p)dqm a.e.0¢€(0,m),

forevery f € C2(0,). Here the kernel R, B (8, 0) is defined by

Ry, 5(6,0) = /DaﬁP P(0.p)dr, 6,9 (0.1), 0+ 0¢.

According to [14, Theorem 2.4] and Lemma 4.2, to prove that R(lx_ B is bounded from
L1(0,7) into itself, it is enough to show that

R, 5(6,0)] < , 0,0€(0,7), 0+ 0, 1)

0—o|

and
C
‘89sz,ﬁ(07(p)‘ + ‘8¢R(lxﬁ(67(p)| < m7 (67(p) € (Ovn)z\@7 0 7é Q, (22)

where & is the domain in Figure 1.
According to [39, Proposition 4.1] and [40, (3)] we have that for every 0,¢ €
(0,7) and ¢t >0,

o+1/2 B+1/2
“ﬁ(e ®) =Cop (smgsmg) (cosgcosg) sinh%

dly (u)dTg(v)
X/—l/—l (coshf —1+¢(0,@,u,v))eB+2’ 23)
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p—a—p-1

dna (M) — T'lo+1)

where Cp, g = T (e0s

CI(67§0»”»V)

9)2B 149 ° VaT(a+1/2)

2 2

0 0
=1 —usinEsing—vcos—cos—.

923

(1—u?)*"Y2du, and

9
2

By proceeding as in [39, Proof of Theorem 2.4; the case of R‘f"p ] and using [39,
Lemma 4.4 and trigonometric identities in p. 738] we get that

dl g (u)dUg (v)dt

Ry, 5(6,0)]
<C/ hE // singsin & ot1/2 (cos%cos%)ml/z\9911(9#!),14,\1)\
1n
’ cosh —1+q(9 o,u, V))oc+ﬁ+3
+/ B+1/2

(cos 8cos?)

< sm sm
C/ / oc+li+3/2

(0,0,u,v)

dlly (u)dlg(v)

<C/ (singsin%) otl/2 (cosgcosﬂ)lﬂlﬂdl—[ (u)
(1 —usin¥sin £)A+1/2(1 —usin § sin § — cos & cos &) +!
cc (cosgcos%)ﬁﬂ/2 1 (singsin%)wrl/2
(1 —sin&sin )P +1/2 (1 —sin & sin & — cos § cos £)1/2 (l—cos%cos%)aH/z
1/2
cosgcos & P 1
<C PN PN, 0 o 0 0o @ 12
1 —sinZ sin § — €08 5 €08  + €08 7 COS 5 (l—cosé);—(")
0 o B+1/2
COS 5 COS 5 1 C
<C . < , 0,0c(0,m). (24
(l—cos"’ +coszcosq’> 0—0[ " [60—9 0.m)
Then (21) is proved.
Also, we have that
IR 0, 0) = 2a+1cosg 2[3+1s1ng (0.0)
0fapl®®) =\ Ty sin & 4 cos? Rup(0:0
0\ @12 o ¢\
+<sin§sin§> <c0s5c0s5> To5(0,0), 6,0 € (0,7),
(25)
where
d g (u)dT1
o()dM5 (v) de, 0,0€(0,m).

Top(0,0)= aﬁ%/ Smhz// (cosh

—1+¢(0,¢,u,v))* P+

We can write by [39, Lemma 4.7] and proceeding as in [39, Proof of Theorem 2.4; the
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case of Rﬁ,’ﬁ 1,
L6 o a+1)2 0 0 B+1/2
(smzsm 5) c0S > €08 Ty p5(0,0)
<C/1 /1 (sin%sin%)mﬂ/2 (cosgcos%)lﬂlﬂdn ()T (v)
X u Vv
—1)a q(6,¢,u,v)e+h+2 ’ P
C
<—, 0,0€(0,m). 26
On the other hand
cos§ B cos §cos & B cosdcos % B coscos &
sing  sinfcos$  sinGcos$—singcosd+sinFcosd  sin 52 4 sin L cos
1
QT, 0<(P<9<TC. 27)
sin =%
If p €(0,7), 6 €(0,m/2) and 0 < ¢ <36/2, then sin(¢/3) < sin(6/2) and
cos% - cos% B cosgcosg < 1 28)
sin§ " sin§  sin%cos§ —sin§cos$+singcos? " sin 52
Also, we get
cos% 1 C
—5 S T 7 S o 0<o<m, T/2<6<m. (29)
sing  sing " sin|=52|
By combining (24), (27), (28) and (29) we obtain
1 40.0) < S (0.0)€ 01\ (30)
5 X 5 y , T .
sin apl®® |6 — o2 ¢
We can write 0 0
sin 5 cos 52
S =———2-, 0€(0,m), (31)
COSj SIHT
and by symmetries reasons and proceeding as above we get
s et o ol<—C . (6.0) ¢ 0.0\2 32)
) ) X a0 ) , T .
cos§ apl® 60— o ¢

From (25), (26), (30) and (32) we conclude that

C
90Rp(0.9)| < 5o (0.0)€ 0.1\

|6
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In a similar way, we can see that

C
‘aq)R(lx,ﬁ(ea(P” < _7q0|2, (0,0) € (0,7‘6)2\9.

|6

Thus, (22) is established. [

Proof of Proposition 4.1, the case of R(lx’.*ﬁ. We have that

1* k+1 k+a+ﬁ+2) 1,B+1
Rojpf == 2 e rerom

From Plancherel’s theorem we deduce that R(lx’.*l3 is a bounded operator from L?(0, 1)
into itself.
If f €CZ(0,m), then for every m € N there exists Cy, such that

P ) < Culk+1) ™, ke N

Suppose that f,g € C°(0, ). Partial integration leads to
1 o1
[ REpr@s0)a0 = [ 10)2, ! (Duge) (0)do.

By taking into account the rapid decay of the sequence <c,‘z"l3 (g)) Lo and [28, Lemma
€
3.1] we write

oo

Da,ﬁgw):—zo kk+a+ B+’ ()97 P (8), 6e(0,m),
k=

and

k(k+o+pB+1) .

(@) 9P 0)
A

—1/2 i
L, 15,1 (Dagg) (6) = -2

=R}, 35(0), 6 € (0,7).

Hence, R(lx’.*l3 is the adjoint of Rll)C B (fact justifying the notation). Thus, Rllx*l3 defines a
bounded operator from L!(0, ) into itself, forevery 1 <p <eoand weA,(0,7). O

Combining [16, Theorem 1.3] with Lemma 4.1 and Proposition 4.1 we obtain the
following.

PROPOSITION 4.2. Let ke N and o,B > —1/2 such that o.+ B # —1. Suppose
that p € (0, ). Then, R’fx p and R - p define bounded operators from LPO)(0, 1) into
itself.



926 V. ALMEIDA, J. J. BETANCOR, A. J. CASTRO, A. SANABRIA AND R. SCOTTO

According to [28, Lemma 3.1] we get, for every f' € Sy 5,

Rk*R S (n—k+1)n+a+B+1) aﬁ ap
pr = 3 et e )6

Notice that, forevery n e N, n > k,

(n—k D= (V288 = \288) (Va8 < a8 o (VA = [ag®),

and

(ot Bt D= (VAS /28 P) (Var? 4 \a) o (VaeP 4 /a25).

We consider the function M given by

M(x) = # x# AP j=0,k— 1,

=

Jj=0

and we choose a smooth function ¢ on (0,e) such that

0, 0<x< A,f‘_’lf+ —“*5“,
o(x) =

1 x}lﬁ’ﬁ—%ﬁ“.

)

Take m = ¢M . Then,

m( Lo )Ry gRe g f = f: [ E€Sap.

It is not hard to see that m satisfies condition (15) of proposition 3.1. Hence, by Propo-
sition 3.2 (with a = 0) we infer the following.

PROPOSITION 4.3. Let o, 3 > —1/2 such that oo+ 8 # —1. Suppose that p €
%(0,1). Then, the Jacobi spectral multiplier m(Z,, g), where m = ¢M is as above,

defines a bounded operator from LP") (0, 1) into itself.

5. Proof of Theorem 1.2

First of all we establish the following lemma where we define some Jacobi spectral
multipliers that will be useful in the sequel.

LEMMA 5.1. Let €,y>0, re N with r >y and o, > —1/2 such that o+ 3 #
—1. Assume that p € B(0,7). We define, for each t > 0, the functions

(1 _ e—st)r

)= (1), M) = =S and Hg(t)z/:w

oy du. (33)

1
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By mg we represent Yo, Mg or He. Then, mg defines a Jacobi spectral multiplier on
LP0)(0, ). Moreover,

sup ||m8($a,/3)HLP(‘)(O.n) < oo,

e>0 ’

Proof. Straightforward manipulations allow us to show that, for every ¢ € N, there

exists C > 0 such that .
o d
sup |
z;>0| dt ar’™"
where C does not depend on €. Then, by Proposition 3.2 (taken with a = 0) we
concluded the desired results. [

()| <C,

PROPOSITION 5.1. Let £,y >0, r € N with r >y and o,3 > —1/2 such that
o+ B # —1. Assume that p € B(0,x). Then, the operator 1" defined in (3) is
bounded from LP")(0, 1) into itself.

Proof. Let f € Sy g. We can write

(I=WeBy f =3 Yo (RP) kP (1)9fP =Y Lup)f. >0,
n=0

where the series is actually a finite sum. According to Lemma 5.1, we deduce that,

< du
22l < CSUP KLt p) o) [ s < € s 0.0y

Taking into account that S, g is a dense subspace of Lp(')(O, 7) (Proposition 2.1) the
conclusion follows. [J

Proof of Theorem 1.2. Suppose that f € Dp(,)(fgﬁ) and call g = lim Irf.
) £—0

Since £, ;3/ is a bounded operator from Lp(')(OJI) into itself (Proposition 3.3), we
have that

(I—w&Pyry

-, _ Y
faﬁg—Cyr hm .,2” / T du
wu—wﬂ% - R
—Cr)/rgli}'(l)lJr i T$a7 fdl/t, lan()(07ﬂ:).
‘We can write
—ur P

a-wetys - (1),
T yf 2 /2 Cg’ﬁ(f) r?ﬁ

) a27)

=M Lop) L, }2f, u>0,
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where M, was defined in (33). According to Lemma 5.1 and Propositions 2.2 and 3.3,
there exists C > 0 such that

HM Lop)Z Y/2<anl3 ) ¢

<c| é)c,‘i“ﬁ(f) ;

L) (0,7) LP0)(0,7)

< CHf”LI’(')(()’n;y ¢eNandu>0.

Also, since u~'~7 € L!(g,0), € > 0, we obtain

- _ 7u7t,?'ﬁ "
/ (I— Wuaﬁ d :Z/M (1 € ) d_uca,ﬁ(f) o.B
aﬁ u'tv n=0 <u/l;§x’ﬁ>y w " !
a.p a.p
- Z/QLQ'B u1+y d uc, (f) (Pn
=He(Lop)f, €>0,

where H. was defined in (33).
Suppose that F € S, g. We can write, for every / € N,

4 0o (1 _efu)r
. o.B o.B
Jim He(Zag)F = Jim 3 [ e du P )0

PR =
Vo

b

in the sense of convergence in L”()(0, ). Since Sa.p is dense in LP0)(0, 1) (Proposi-
tion 2.1), Lemma 5.1 leads to

. /
gllf(r)h Hs(fa,ﬁ)(f) = C%r-

Thus, we conclude that f;};g =f.

On the other hand, take f € Hg’.’;( )(0,7) such that f = <z 8- with g€ LPO(0, 7).
Then, as it has just been proved,

oo a.Byr
o U=Wa") ey
it =cy i [T 2 g

in the sense of convergence in L’()(0,7). O
REMARK 5.1. A careful reading of the above proof reveals that we can consider

any r € N, r > v (not necessarily r <y < r+1). This fact implies that the operator
fgﬁ can be defined by (4), forany re N, r > 7y.
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6. Proof of Theorem 1.3

Assume that ¥ > 0. It is not hard to see that d/e~% = ¢™a¥e~%  t,a > 0. Thus,
we have that, for every f € S, g UCZ(0,7),

L F(0) = 3 e B 00 0), e )

Hence, for every f € S, g UCZ(0,7),
g£7ﬁ(f)(9)<°°v GE(O,TC).

Our first objective is to establish L -boundedness properties of g£ B -functions.

PROPOSITION 6.1. Let y>0 and o, > —1/2. Then, géip defines a bounded
(quasi-linear) operator from L%,(0, ) into itself, for every 1 < p < oo and w € A, (0, 7).

Proof. For every N € N, we define

t

12
aiyne ([ [rartnel§) . econ.

We will show that, for every 1 < p <o and w € A,(0,7), there exists C > 0 indepen-
dent of N € N, such that

1955 Dz < CUAllpoms  F€LLO,7). (34)

From (34), by using monotone convergence theorem, we deduce that for every 1 < p <
e and w € A(0, ), there exists C > 0 satisfying that

gt gDl 02 < CIANln 0z € LLO,).

In order to show (34) we apply the local Calder6n-Zygmund theory [14] in a Banach
valued setting [42].
By proceeding as in [5, Proposition 2.1] we obtain, for each f,g € Sq 5,

22Y
/ / 1Y PP r(0)797P*P (5 de— / 1(0)g(6)d6.  (35)
Thus, for every N € N, we get

I = o oy 1 € Sap (36)

Hence, géﬁ and g&‘ﬁ, N € N, can be extended from S, 5 to L?(0,7) as a bounded
operators from L*(0,7) into itself.
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Let m € N. According to [3, Lemma 4] we have that

)8,’"[%7’2/4”] < Ce My (1m)/2 -y e (0,00). (37)

By (1) and by taking into account that (11) and (37) the differentiation under the integral
sign is justified, so we can write

—t /4u
m (Xﬁ avﬁ
PP (9, ¢) = \/_/ W [Web (0, 0)du, 1>0and 0,9 € (0,m)

From (11) and (37) it follows that

maﬁ fct+(9 ®)*)/u
C

S (12 + (9 _ (p)Z)(rn+1)/2’

t>0and 6, € (0,7). (38)
Let f € L?(0,7). By (38) we obtain
T
B r(0) = [ 0B (0.0)f(p)dp, 1>0and € (0,m)

Thus, if m—1 <y <m, (38) leads to

aﬁf

,‘1? 0.0)| I/(@)ldps"ds

(P)| m—y—1
// [(+9)7+(0—0)? ](m+1)/2d‘/’s ds

Y r—1 C
<C [ g ||fHLz<o,n><thflle<o,n» t>0and 6 € (0,).

Hence, we obtain, for every N € N,
Y.N
g <c( [ ) Wm0 0., (39)

This estimate shows that, for every N € N, g&”l}’ is a bounded operator from [? (0,m)
into itself. By (36) we conclude that, for every N € N,

Brom = Py F € L20.7) (40)

10

Note that (40), in contrast with (39), shows that the family {%gg} Nen 1s bounded in

Z(L?(0,7)), the space of bounded operators from L*(0, ) into itself.
Let N € N. We consider the operator

TN (f / K15(0,0)1(9)do,
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where, for every 6, ¢ € (0,7), 6 # ¢,

[KL5(0,0)1() =797 B*P(8,9), 1€ (1/N,N),

and the integral is understood in the L?((1/N,N),dt /t)-Bochner sense.
From (38) we deduce that

N = s 24y 1/2
<C 7/ ds| =
L2((1/N.N).d /1) (/1/N’t o ((+92+(0—@R)mn® t)

N t2y—1 1/2
<o [ s
(1/N(t+\9—¢\)27+2 )

C
<7——, 0,0€(0,m), O . 41
Here C > 0 does not depend on N € N.
Let f € L?(0,7) and O ¢ supp(f). If h € L>((1/N,N),dt/t), (41) allows us to
write

K();ﬁ(e ?)

T @I0% = [ 1) / ho< >[KV’§<9,¢>]<t>fd<p

1/N t t

—/ h 117 E P (0,0) g
= [ 0 / 19B(0,0)/(9)dp""
1/N 0 t
Thus, we obtain

TN (1)(0)(1) = 7P (£)(8), .t € (1/N.N).

We are going to show, for every N € N and (8,¢) € (0,7)>\ 2, 6 # ¢,

|96 (737R* (0. 9))

L2((1/N,N),dt/t)
+||ou (e P 0.9) |, <

< 42
(NN [0 2

for a certain C > 0 which does not depend on N and the domain & is as in Figure 1.
To simplify we call
sinh §
@, 5(t,2) = 2 , 1,2>0,
aB(1,2) (coshf—1 +7)0+B+2

to one of the terms appearing in (23). According to [39, Lemma 4.8] we have that, for
every m € N,

(cosh —1+2)~ @ P=m+3/2 1 <1, 2>0
(coshf —1+z)~%P-1 t>1,z2>0,

/' (1,2)] <C{ “3)
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and for 0,¢ € (0,7) and —1 <u,v <1,

090" @y 1,9(0, 9.10,)) | + |93 Py 5 1,(0, 9, 101)

< c{ (cosh 5 —1+q(6,@,u,v))* P02 1 <1,

44
(coshl — 1+44(6,0,u) " B2 1>1. “@4)

Let m € N. By using (43) and [39, Lemma 4.4] we get
1
L]

<

atmq)a,ﬁ (t7 Q(ev O,u, V)) dIly (u)dHl; (V)

- AT, ()T (v) .
/4 /4 (cosh’ — 1+q(0,@,u,v))etBbrms3)/27 " =
C

/1 /1 dl g (u)dTg(v) o
-1/-1 (COSh% - 1 +q(9’(P7u7v))a+ﬁ+l’
C

t>0and 6,0 € (0,7).

= (coshf —1)otB+1’
Thus, from (23) we can write for each 0,¢ € (0,7) and ¢ > 0,

0B _ . 9 . 9 o+1/2 9 9 B+1/2
J"P, (9,(p)—Ca7l;(sm2sm2> <c0s2c0s2)

I rl
X[1Ll8f’nq)°‘vﬁ(t’q(67Q’”’V))dna(u)dl_[ﬁ(v).

Assume that m € N is such that m — 1 < y < m. From (44) and [39, trigonometric
identities in p. 738] we deduce, for every 6,¢ € (0,7) and t > 0,

oo 1 1
/ gl / / )898,’”@0:./3 (t+5,q9(0,0,u,v)) dHa(M)dH/} (v)ds
0 —1J-1 '

max{0,1—7} sm_y_l
S C{ / 0 ds
0 (cosh 2 — 1+ 2sin? 5 2)o+p+(m+4)/2

1 sm—y—l
ds
/max{Oth} (cosh % — 1 4 2sin® £2)+p+3/2

+ /‘oo Smf)/flefc(a+ﬁ+3/2)(t+s)ds} < oo,
1
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Hence, we can write for 6,¢ € (0,7) and 7 >0,
Y po.p
17999, ;" (6, 9)

- .0 . p\otl2 0  @\B+1/2eimY)m ,
_Ca.p(smzsmz) <c0s§c0s§> mt

oo 1 1
<[t [ ] 0607 p(t+5.9(6. 9.0 dMa(w)dTTy (v)ds

+<2a+lcos§ 2p+1 sin§>

9 )
4 sing 4 coss

oo 1 1
></ sm*}’*l/ / gtmq)a.ﬁ(t_|_s,q(9’(p,l,{,v))dl_[a(u)dnﬁ(v)ds .
0 —1.J-1 ’

By proceeding as in [39, pp. 747-748] (see also the proof of Proposition 4.1), (44) and
Minkowski’s inequality leads to

H (sin g sin g) o (cos g cos g)lﬂl/zﬂ

oo 1 1
. /0 g1l /_ 1 /_ 900" @1+ 5,4(6,9.,1,9)) T )Ty (v)ds
.0 . p\atl)2 0 @\ B+1/2 |
< — s — ps 7=
S (SlI'l2 Sin 2) (COSZCOS 2) / / /
Y 0 T1 I
< [raedr @u e +s.a0.0.0m)| o dTla(arig(v)ds

0 @\ o+1/2 0 §0 B+1/2 U dTly(u )dH/i( v)ds
< — — —
C<Sm28m2> <COSZCOSZ / /lq 0.0,u, V)a+ﬁ+2

L2((0,00),dt /1)

C

<77 9,([)6 O7n’07é(P' (45)
6 gP 0

In a similar way, by using (43) we obtain

H (sin g sin g) e (cos g cos %)ﬁﬂ/zt”

oo 1 1
x /0 v / / "Dy (1 +5,q(6, 9. 1,))dT14 (u)dTTg (v)ds

0 . \otl/2 0 (p B+1/2 dl g (u)dTg(v)ds
< — — —
\C(sm > sin 2) (cos cos / /1 200,01, v)a+l3+3/2

2 2
6,9 <€(0,7), 6 # ¢. (46)

L2((0,00),dt /1)

C C
< < 2 b
6—0| " |69
Combining (45) and (46) with (27), (28), (29) and (31), we deduce that

C

<= .
L2((000)dt/t) |0 — ]2 (0,0) € (0,m)"\2

|96K7 5(6.9)
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The same procedure allows us to prove that

(8,0) € (O,n)z\@.

doK” (6, S o3
H oKap(8-0) 12((00)dt/r) |0 — @[
Thus, (42) is established.

By using now the local Calderén-Zygmund theory for singular integrals (see [14])
in the L2((1/N,N),dt/t)-setting and by taking into account Lemma 4.2, we conclude
that, for every 1 < p < oo and w € A p(07 ), the operator ng can be extended from

L*(0,7) N LE(0,7) to L5(0,m) as a bounded operator fgg from LL(0,7) into

L4((0,7); L*((1/N,N),dt /1)), and there exists C > 0, which does not depend on N,
such that

Let f € L(0,7) where 1 < p < oo and w € A,(0, 7). We take a sequence (f;,)nen
LL(0,m)NL*(0,7) such that

s (f)

< » p .
L5 (w2 (1/NNdr]r) Wlzom: /€ LA0.) “n

fo—f, asn—oo inLY(0,7).
As in (39) we obtain that
GIR = 1:)(0) <C|lf = full gz, nE€Nand6 € (0,7).
Hence,
yg;’g(fn)(e) — gg;’ﬁv(f)(e), as n — oo for every 6 € (0, ).
On the other hand,
Tr5(f) = im V5 (£, in L((0,m); L ((1/N,N), dt /1)).

avﬁ n—oo )

Then, there exists a monotone function ¢ : N — N such that

TY5 (o) (8) — TYR(f)(8), asn— e, in L2((1/N,N),dt/1),

for almost every 6 € (0, 7). This implies that

N ey -
05 o) O) — | TEE DO o a7
for almost every 6 € (0, 7). We conclude that
N _||7rN
G5 (0O = |TIEDNO) 260 € 0.

and from (47) we deduce (34).
Thus the proof of this proposition is completed. [J

By using [16, Theorem 1.3] from Proposition 6.1 we infer the following.
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COROLLARY 6.1. Let o0, > —1/2 and y> 0. Suppose that p € $(0,x). Then,
the fractional square function gg B defines a bounded (quasi-linear) operator from

LPO)(0, 1) into itself.
Also Proposition 6.1 and the polarization formula (35) allow us to obtain the con-
verse inequality for g; B
COROLLARY 6.2. Let a,3 > —1/2 and y> 0.
(@) If 1 <p<ooandw e Ay0,x) then, for a certain C >0,

g0 <CllgL 5 (Allzomy F € LLO. ).
(b) If p e #(0,m), then there exits C > 0 such that

||fHLP(‘)(()771-) < CHgg.’ﬁ(f)”Lp(')(O?ﬂ)’ f € LP(.)(Oa”)-

Proof. We are going to prove (b), (a) can be deduced in a similar way.
For every f € LP0)(0,7) and g € LP'1)(0, ), we consider the bilinear operators

-/ " 1(0)5(0)d0

L(f,g) = 22Y / / 797 P* £(0)1797 PP (3)(0 )tde.

By using Holder’s mequahty in the variable exponent setting (see [ 18, Lemma 3.2.20])
we can see that T and L are bounded from LP1) (0, ) x L )(0, 7r) into C. Since Sop
is a dense subspace of LP(") (0,7) and 1949 (0,7) (Proposition 2.1), equality (35) holds
for every f € LP0)(0,7) and g € L7 (0, 7).

Let f € Lp(')(077t). According to the norm conjugate formula ([18, Corollary
3.2.14]), by Proposition 6.1 we can write

£l 0.0) <2 \ | reyzeae|

geLP
llell, (.

and

<1

\TT)
<C sup \/ / 179 PP £(0)1797 PP (g ><> L0

geL”

lell ) )<1

//\

/ 8L (1)(0)¢], 5 (@)()d0

geLP

el .

<1

<C swp 8L 5Dl o 18% 5 @0 0m < Cl8 s Do o
;,EL”()(OE)
llell, ¢ <l

O‘n:) = ]
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REMARK 6.1. Note that Proposition 6.1 together with Corollaries 6.1 and 6.2 tell
us that the new norms ||| - (|1 (o ») and ||| - H\L,,(.)(O x) defined by

11 Mg 0.0 = 88 g (D llip 0.0y f € LE(O, ),
‘Hf‘HLP(‘)(OJt) = ”g;/} (f)HLP(‘)(()Jﬂ? fe Lp(')(O,TE),

are equivalent to ||| 1 ») on LL(0,7) andto |- 120 0,2) 01 LPY(0,7), respectively,
provided that the specified conditions are satisfied.

Proof of Theorem 1.3. We first establish that H!/3"")(0,7) € /5" (0,7). As-
sume that f,g € S, g are such that f = Xo:;;g We can write

7/2 71\/“7

PP (2, 1) = (- kz RYIE cXP(g)p2P = ™ TRy, 1> 0,

= ¢im0gdeal § q.1> 0. Hence, we get

s (Zole) =gt J (). (48)

From (48) and Corollaries 6.1 and 6.2 we deduce that, for every f € Saﬁ s

because 90e

1
1 vk
C“f||HZ(§”’(')(O7ﬂ) < g5 (N0, < C“f||Hg(§>"<')(o,n)’ (49)

for a certain C > 0. Since S, 5 is a dense subspace of Hy/l3 p()(O ), gaﬁ can

be extended to H;:%p( )(0,7) as a bounded operator g 13 from HW; 00,7 into
LPU)(0, 7). Moreover, (49) holds for every f € Hz;/ ﬁ*’ ¢ )(O,n:) when g” a,ﬁ is replaced
~yk
by g apB”
We are going to see that g ga B= ga B For every N € N, we define

1/2

&, _ N ke o,B 2dt
g;][{iN(f)(e) - <~/1/N ’tk )/a[k})[ f(9)| 7) , 0¢ (0,71:).

Let N € N. From (49) it follows that %gng can be extended to HZ/ é’p (')(O,n) as a
bounded operator E%}:ZN from Hg/ ;’p (')(07 m) into LP1)(0,7) and
S1kN 2,p(-
125" Do 0. < EI s o 1 € HY5"(0,7).

Note that C does not depend on N. Let f € Hz;%p (')(0,71:). We choose a sequence
(fu)nen € Sop such that

fa—f, asn—oo in Hg{;’p(')(OJI:).
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Then, _
G5 () — GGV (), asn— e, iV (0,7).

Since, LP()(0, ) C LP- (0, 1), there exists a monotone function ¢ : N — N such that

gofilfa’N(f(p(n))(@) - %@’N(f)(@), asn—eo, ae. 0 ¢€(0,m).

’

By proceeding as in (39) we deduce that
GG (Fon)(0) — 415" ()(0), asn— e, 6€(0,m).
Then, %’ZN =9 o’:’;N and
1956" (D)l o o) < ClLA 2000,y

Since

lim G157 (1)(0) = 815 ()(0), 6 (0,m),

Fatou’s Lemma in variable exponent LP() -spaces (see [18, p. 77]) leads to
k
gl s (Nl 0.2) < C||fHH;{;A,p<->(OJ)~ (50)
From (49) we also deduce now that

8 2.p(-
1120 0,5, < C8E s (N lpr oz S € HY5P(0,7). (51)

By (50) it follows that Hg%p(')(o,n) is contained in Tg’g’p('>(0,n) and by Proposi-
tion 3.3 72500
||fHTg‘.§p<l>(0’ﬂ) < C||fHH;{;‘p<l>(0’n), S € Hy g0, m).

Suppose now that f € ngg’p(')(077t). In order to show that f € H;/é’p(')(o,n:) we
can follow the procedure developed in the proof of [5, Proposition 4.1]. Indeed, that
method works because the following properties hold:

(i) There exists C > 0 such that, for every n € N,
18P |00 < Clnt 1)@ BH5/2,

Indeed, according to [18, Theorem 3.3.11], LP+ (0, 7r) is continuously contained
in LP1)(0, ). Then, from [39, (3)] it follows that

gP

|0 (0,m) S CllFP | ps o0y < Cn+ 1)* P2 peN.

Assume that 1 € LP()(0, 7). Holder’s inequality ([18, Lemma 3.2.20]) implies
that
e P ()| < Cln+ 1) PR iy gy mEN.
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(if) Forevery 0 >0, we define f5 = Pg"ﬁ (f) and

: -
Fs = 3 (A)2e VA e ) g8

n=0

Property (i) implies that F5 € LP()(0,x) and f5 = <z, Y/2F € Hy/é 2 )(O m),
0 > 0. We choose ¢ € N such that 2(¢/ —y) > 1 and € > k. (51) allows us to
write

1
1F5 1l 200 (0.2) = ||f5HH;/§‘p<«>(OJ) <Cligg 5 (f)llperiomy >0

(iii) Asin [5, Proposition 2.6] we can prove that

8 X
25Nl 0.m) < g (Dl o0

Moreover, straightforward manipulations lead to
o 0
8l (£5)(8) <gl'5(£)(60), 6 €(0,m), >0,
because 2(¢ —y) > 1. Then, we obtain
k
1E5 0000, < Cllgly g (D lpptr 0.2y 6 >0

(iv) By using Banach-Alaoglu’s Theorem, Proposition 3.3 and [18, Theorem 3.2.13]
we conclude that f = .Z ;;/ *F, for a certain F € LPY)(0, ) such that

k
1F 1ot 0,2y < Cllgly s Mot 0.0y

Thus, we prove that f € Hg%p(')(o,n) and

I fHH;{g‘p(,) om SCIf ”Tg;gm(o?,r)- O

7. Proof of Theorem 1.4

In order to establish this theorem we use the ideas developed in the proof of [37,
Proposition 4.3]. First of all, we introduce some spectral multipliers of Hormander
type, associated with the Jacobi operator.

LEMMA 7.1. Let y>0, 1 <p <o, we A,(0,m) and o, > —1/2 such that
o+ B # —1. We consider, for each t > 0, the functions

4 NJY
¢ g2
o m.(t)= E
N AT

t
a<F> (€N and e = (g)f_y € {~1,1}*".
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t+1\7 - .
o M(t) = - o(t), where ¢ € C=(0,00) is such thar ¢(r) =0, 0 <1 <

ASP 2 and o(6) =1, 1 > 20P.

Then, the spectral multipliers m'(%L,, B) and M(Zy g) define bounded operators in
LL(0, 7). Moreover,

S;'lp Hmﬁ: (Xa,ﬁ) HL@(O,H)—L@(OJ:) <ee.
/€

Proof. By Proposition 3.1, it is enough to notice that, for every k € N, there exists
C > 0 such that

dk
suptdk ()’<C feNandee {—1,1}"FL
>0
and
k
sup |t ‘\C |
>0

Proof of Theorem 1.4; the case ong’_’;(') (0,7) C Fg’z’p(') (0,7). Lete= (ej)§:0 €
{—1,1}*! with £ € N. We can write,

3 b (AEB) AP 1 1)7cB (1)

n=0
a7ﬁ
o,f Y oc[3 oc[3 812” An
(AP +1)7cy, Z )Laﬁ-i-l 2

Mg

n=0
‘ o.fp
=2 2”2 ( )cﬁ"ﬁ(f)qb,?"’
)
l
=Y 2P (), feLl(o,n). (52)
=0

Note that the series Z is actually a finite sum. From Lemma 7.1, it follows that

n=0
‘ . o
| Zezmei? 0y, , = | Zmetitmararyat ner| ,
J= ) n—= ,
< S a.Byy.o.p a.p p
\cHngow PP (0P 0 ELOM)
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provided that Y (A25P)7c?P (£)9%P € L1 (0, 7). Also, we get for f € LE (0, )
n=0

e .
| X 2P () (53)
=0

<c| X aEyeprger

(0,7) h(0m)

Observe that, the constant C > 0 does not depend on € or /.
By using Khintchine’s inequality ([50, Vol. I, p. 213]) from (53) we deduce that,
for f € L} (0,7)

H(é @70 () >1/2

L3(0.m)

a.Byy.oB o,
< X artyatnet],, ..

A,?*/}ng
where C > 0 does not depend on ¢. According to [16, Theorem 1.3], there exists C > 0
such that

H(é @70t () >1/2

<C

S

Ot.ﬂ Y Ot.ﬂ 067[3 P()
SO0, S €L O,
AP <ot

LrO)(0,m)

We have taken into account that:

(a) Forevery n € N, the mapping f —— 2P (f) is bounded from LP()(0, 1) into
C.

(b) Forevery j € N, the mapping f —— @; ﬁ(f) is bounded from LP()(0, ) into
itself (Proposition 3.1). Also, we used that Va2 +b2<a+b,a,b>0

(¢) Sgp isdensein LP0)(0, ) (Proposition 2.1).

Taking ¢ — o, Proposition 3.5 allow us to deduce that

[(Zemor o)™

v:p()
L0 (0.7 < C“f||HZ:’l;(')(0,n)’ f S H o.p (O,TE) OJ

Next, we prove the converse inclusion of Theorem 1.4. As before, we need to study
previously some Jacobi spectral multipliers. It is convenient to introduce the following
notation. We define,

Ny={4l+s : LeN}\{0}, s=0,1,2,3.
Also we consider the function
b(t)=a(t/2)+a(t)+a(2r), t>0.

Note that suppb C [1/4,4] and b(¢) = 1, 7 € [1/2,2], because a(t)+a(2t) =1, ¢t €
[1/2,1], and suppa C [1/2,2].
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LEMMA 7.2. Let 1 <p <oo, w€ Ap(0,m) and o, > —1/2 such that o.+ B #
—1. We consider, for each t > 0, the functions
. £ t ¢
NROENDY s,-b(F), s=0,1,23, (€N and &= ()€
Jj=0, .IENS
{_1,1}€+1’.

o Ri(t)=0¢/My(t), where ¢ isasinLemmaT.l;

o R(t)= (ﬁ)y

Then, the spectral multipliers més(fmﬁ), M(Zyp), Ri(ZLyp) and R(ZLy p) define
bounded operators in L4(0,1). Moreover,

/
Sl;p ”mas(ga,ﬁ)”L{C(O,n)—i{i(o,n) < oo,
s,l.e

and
sup (\\Mz(faﬁ)||L5,(o,n)_>Lf;(o,n) +[Re(ZLap) HLfi(Qﬂ)*Ui(M)) < e

Proof. Again, by Proposition 3.1, it suffices to take into account that, for every
k € N there exists C > 0 for which

where C > 0 does not depend on s, ¢ or €. Also, My = mﬁ in Lemma 7.1, for € =

(1)§=0' Finally, for every k € N, there exists C > 0 such that
dc 1

I <C
drk My (1) ) ’

sup ‘t
=2&P 12

where C > 0 does not depend on ¢. [
Proof of Theorem 1.4; the case of Fg’é’p(')(o,n) C Hg”l;('>(0,7t). Suppose that
s €{0,1,2,3} and n € N\{0}. We define

14
gl =3 2"%P(f), reNandfeL(0,n).
’ Jj=0, jEN;
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There exists at most an unique j, € Ny such that A, B e [2/n=2 2Jn) . Hence,

AP AP AP . o
b(Zjnl):l and b(zjl =a F =0, ]eNsa]#]w

Observe that m, LA ﬁ) = ¢gj, , provided that j, </, and mj LA ﬁ) =0, otherwise.
We can write

o ‘ e 228
80 (f) = 2 27X 21

j=0, jeN;  n=0

) e “ﬁ—za cP(e®P . reLl(o,n).

where a, = 2/7q ( A.%P / 2j”’1> ,if j, < ¢, and a, = 0, otherwise. Note that the above
serie is actually a finite sum. Also, we have that

me (L p)el zmgs(an B) an P08 = 3 &,a0 e (/)07
n=0
‘ e nﬁ
14
= Y el
j=0, jeNs

Then,
ml (Lol (Lo p)sll (1) = 3 an P ()0 = gL (1).
n=0

Assume that 1 < p <o and w € A,(0,0). From Lemma 7.2 we get

18P ()l 0 <C||m£s<faﬁ> POz om

< CH 277e,0%P (f)
J= 0 JENS

ony T ELROD),

where C > 0 does not depend on € or ¢. By using Khintchine’s inequality argument
we obtain

( .
185 Nlpom <C| X @02, o fethon),

j=0, jeN;

L5(0,7)

where C > 0 does not depend on ¢. According to [16, Theorem 1.3],

o <C 2iTg.|p*P 2y1/2
85 (w0 H, ; /€N< LA OIDRE B

VS Sa,ﬁv
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where C > 0 does not depend on £. As in the proof of the first inclusion we obtain, for
ferro,n),

8P Dloom <C| 3 a0 (p))
j=0, jeNg

. 4
LPO)(0,1) (54)

According to (52) we have that, for every f € L'(0,7),

oo

Y MAIPYREP )P (i = X P (nerf = 262’7@1’7’[5(1‘)-
=

n=0 n:O,l,?"'Bgﬂ
By using (54), Lemma 7.2 and [16, Theorem 1.3] we can write
| X aePyeten
n:O,l,?"'Bgﬂ

= | X RGO R M6 (19|

LPO)(0,7)

<c| g2

o0
(S_ » /erzf'Y@f;‘ﬁ(f) poom 125 lroiom)
( H(}OEN @0 ) 196 00
<CH(jzo<2”|<b§“ﬁ<f>|>2)”21\”(,)(07”)7 Ferro.m). 55)

¢
Suppose now that f = c%P(f19%P | where m,0 € N, m < ¢. Since suppa C

[1/2,2], we have that
o , ¢ )Loc.[}
Z’ (2} 1) (f)‘baﬁ_zra(z/ 1) P(Herf =o,

provided that j > 2 +1log, ¢ or j < log,m. Then, from (55) we deduce that
)2> 1/2

‘
Let f e F2"Y(0,7). By (56), the series > (AZPY P (£)g*P converges in

o,B
n=m

LPY)(0,7). Hence, f € Hg’.’;(')(OJI) and by (55) and Proposition 3.5, we conclude

2+10g2( 5
< 7|\ p%
P0) (0,7 CH ( (2 ‘q)/ (f)
j=logym

ooy OO

| n:ﬁmm,?ﬁw,?ﬁ (/)08
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