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VARIABLE EXPONENT SOBOLEV SPACES

ASSOCIATED WITH JACOBI EXPANSIONS

VÍCTOR ALMEIDA, JORGE J. BETANCOR, ALEJANDRO J. CASTRO,
ALEJANDRO SANABRIA AND ROBERTO SCOTTO

(Communicated by A. Guessab)

Abstract. In this paper we define variable exponent Sobolev spaces associated with Jacobi ex-
pansions. We prove that our generalized Sobolev spaces can be characterized as variable expo-
nent potential spaces and as variable exponent Triebel-Lizorkin type spaces.

1. Introduction

Sobolev spaces associated with orthogonal systems have been studied in the last
years. Bongioanni and Torrea ([8] and [9]) defined Sobolev spaces in the Hermite
and Laguerre settings. Sobolev spaces associated with ultraspherical expansions were
investigated by Betancor, Fariña, Rodrı́guez-Mesa, Testoni and Torrea [4]. The study
in [4] was extended recently to Jacobi expansions by Langowski [28].

In this paper we define variable exponent Sobolev spaces in the Jacobi context.
We now describe our main results.

Consider a measurable function p : Ω ⊆ R
n −→ [1,∞) . By Lp(·)(Ω) we denote

the variable exponent Lebesgue space that consists of all those measurable functions on
Ω such that for some λ > 0 ∫

Ω

( | f (x)|
λ

)p(x)

dx < ∞.

It is a Banach space with the Luxermburg norm defined by

‖ f‖Lp(·)(Ω) = inf

{
λ > 0 :

∫
Ω

( | f (x)|
λ

)p(x)

dx � 1

}
, f ∈ Lp(·)(Ω).

By p′(·) we represent the conjugate variable exponent. A complete study of Lp(·) -
spaces can be found in [18].
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We define P(Ω) as the set of measurable functions p : Ω −→ [1,∞) such that

p− = ess inf{p(x) : x ∈ Ω} > 1 and p+ = ess sup{p(x) : x ∈ Ω} < ∞.

The Hardy-Littlewood maximal operator M is defined as

M f (x) = sup
B�x

1
|B|
∫

B
| f (y)|dy, x ∈ Ω.

The set B in the supremum represents a ball and |B| denotes its Lebesgue measure.
We define B(Ω) as the subset of P(Ω) that consists of all those measurable

functions p such that the maximal operator M is bounded from Lp(·)(Ω) into itself.
Diening [17, Theorem 3.5] proved that if Ω is a bounded subset of Rn , p ∈P(Ω) and
there exists C > 0 such that

|p(x)− p(y)|� C
− log |x− y| , x,y ∈ Ω, |x− y|� 1/2,

then p ∈ B(Ω) .
Many classical operators in harmonic analysis (maximal operator, singular inte-

grals, Fourier multipliers, commutators, fractional integrals, ...) have been studied in
variable Lp(·) -spaces (see, for instance, [16], [18], [19] and [44]).

Let k ∈ N , where by N we represent the set of positive integer with zero included,
and p ∈ P(Ω) . A measurable function f on Ω is in the generalized Sobolev space
Wk,p(·)(Ω) if its weak partial derivatives Dα f ∈ Lp(·)(Ω) , α = (α1, . . . ,αn) ∈ Nn and
0 � |α| � k , where |α| = α1 + . . .+ αn . The norm in Wk,p(·)(Ω) is defined by

‖ f‖Wk,p(·)(Ω) =
k

∑
|α |=0

‖Dα f‖Lp(·)(Ω), f ∈Wk,p(·)(Ω).

It turns out that Wk,p(·)(Ω) is a Banach space.
Variable exponent Sobolev spaces Wk,p(·)(Ω) have been studied by a lot of authors

in this century. These generalized Sobolev spaces play an important role to solve partial
differential equations involving variable exponents p(·)-Laplacian operator (see [10],
[18, Part III], [20], [22], [24] and [43]).

Now we turn to the Harmonic Analysis associated with the Jacobi differential
operator Lα ,β for α,β > −1, which is defined as

Lα ,β = − d2

dθ 2 −
1−4α2

16sin2 θ
2

− 1−4β 2

16cos2 θ
2

, on (0,π).

This type of analysis has emerged as a prolific area of interest (see [1], [13], [14], [28],
[29], [30], [38], [41] and [47], amongst others).

The Jacobi operator admits the following decomposition

Lα ,β = D∗
α ,β Dα ,β +

(
α + β +1

2

)2

,
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where

Dα ,β =
d
dθ

− 2α +1
4

cot
θ
2

+
2β +1

4
tan

θ
2

=
(

sin
θ
2

)α+1/2(
cos

θ
2

)β+1/2 d
dθ

[(
sin

θ
2

)−α−1/2(
cos

θ
2

)−β−1/2]
,

and D∗
α ,β is the formal adjoint of Dα ,β in L2(0,π) . When α = β the Jacobi oper-

ator Lα ,β reduces to the ultraspherical operator Lλ , λ = α + 1/2, considered in [4].
According to [48, (4.24.2)] we have that, for every n ∈ N ,

Lα ,β φα ,β
n = λ α ,β

n φα ,β
n ,

where λ α ,β
n = (n+ α+β+1

2 )2 and

φα ,β
n (θ ) =

(
sin

θ
2

)α+1/2(
cos

θ
2

)β+1/2
Pα ,β

n (θ ), θ ∈ (0,π).

If pα ,β
n denotes the n -th Jacobi polynomial considered in Szegö’s monograph, then

Pα ,β
n = dα ,β

n pα ,β
n , where dα ,β

n is a normalization constant, for every n ∈ N . The
system {φα ,β

n }n∈N is orthonormal and complete in L2(0,π) . We define the Jacobi
operator Lα ,β by

Lα ,β f =
∞

∑
n=0

λ α ,β
n cα ,β

n ( f )φα ,β
n , f ∈ D(Lα ,β ).

Here, for every f ∈ L2(0,π) and n ∈ N ,

cα ,β
n ( f ) =

∫ π

0
φα ,β

n (θ ) f (θ )dθ ,

and by D(Lα ,β ) we denote the domain of Lα ,β given by

D(Lα ,β ) = { f ∈ L2(0,π) :
∞

∑
n=0

(λ α ,β
n )2|cα ,β

n ( f )|2 < ∞}.

Note that C∞
c (0,π) , the space of smooth function with compact support in (0,π) , is

contained in D(Lα ,β ) and hence,

Lα ,β f = Lα ,β f , f ∈C∞
c (0,π).

Lα ,β is a positive and selfadjoint operator in L2(0,π) . Let us note that −Lα ,β gener-

ates a semigroup of operators {Wα ,β
t }t>0 in L2(0,π) where, for every t > 0,

Wα ,β
t f =

∞

∑
n=0

e−tλ α,β
n cα ,β

n ( f )φα ,β
n , f ∈ L2(0,π).
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Moreover, for every t > 0 and f ∈ L2(0,π) ,

Wα ,β
t f (θ ) =

∫ π

0
W α ,β

t (θ ,ϕ) f (ϕ)dϕ , θ ∈ (0,π),

where

Wα ,β
t (θ ,ϕ) =

∞

∑
n=0

e−tλ α,β
n φα ,β

n (θ )φα ,β
n (ϕ), θ ,ϕ ∈ (0,π) and t > 0.

{Wα ,β
t }t>0 is called the heat semigroup associated with the Jacobi operator Lα ,β .

By {Pα ,β
t }t>0 we denote the Poisson semigroup defined by Lα ,β . According to the

subordination formula, we can write, for every t > 0 and f ∈ L2(0,π) ,

Pα ,β
t f (θ ) =

∫ π

0
Pα ,β
t (θ ,ϕ) f (ϕ)dϕ , θ ∈ (0,π),

where

Pα ,β
t (θ ,ϕ) =

t√
4π

∫ ∞

0

e−t2/4u

u3/2
Wα ,β

u (θ ,ϕ)du, θ ,ϕ ∈ (0,π). (1)

Jacobi Sobolev spaces were studied by Langowski [28]. We now introduce vari-
able exponent Jacobi Sobolev spaces. Assume that p ∈ P(0,π) and k ∈ N . We
say that a measurable function f ∈ Lp(·)(0,π) is in the variable Jacobi Sobolev space

Wk,p(·)
α ,β (0,π) if D�

α ,β f ∈ Lp(·)(0,π) , for every � ∈ N , 0 � � � k , with D0
α ,β f = f and

for � � 1,

D
�
α ,β = Dα+l−1,β+l−1 ◦ ... ◦Dα+1,β+1◦Dα ,β ,

is understood in a weak sense. On Wk,p(·)
α ,β (0,π) we consider the norm defined by

‖ f‖
W

k,p(·)
α,β (0,π)

= ‖ f‖Lp(·)(0,π) +
k

∑
l=1

‖D
�
α ,β f‖Lp(·)(0,π), f ∈Wk,p(·)

α ,β (0,π).

Thus, Wk,p(·)
α ,β (0,π) becomes a Banach space. See the discussion in [28] (and also in

[4]) for the use of the derivatives D�
α ,β , instead of the more natural choice D�

α ,β =
Dα ,β ◦ ... ◦Dα ,β .

Let γ > 0 and assume that α + β �= −1. The negative power L −γ
α ,β of Lα ,β is

given by

L
−γ

α ,β f =
∞

∑
n=0

(λ α ,β
n )−γcα ,β

n ( f )φα ,β
n , f ∈ L2(0,π). (2)

L −γ
α ,β defines a one to one and bounded operator from Lp(·)(0,π) into itself (see Propo-

sitions 3.3 and 3.4 below). The variable exponent Jacobi potential space Hγ,p(·)
α ,β (0,π)
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consists of all those functions f ∈ Lp(·)(0,π) such that f = L −γ
α ,β g for some (unique)

g ∈ Lp(·)(0,π) . We considerer in Hγ,p(·)
α ,β (0,π) the following norm

‖ f‖
Hγ,p(·)

α,β (0,π)
= ‖g‖Lp(·)(0,π), f = L

−γ
α ,β g ∈ Hγ,p(·)

α ,β (0,π).

Endowed with this norm Hγ,p(·)
α ,β (0,π) is a Banach space.

The variable exponent version of [28, Theorem A] is given in the following theo-
rem.

THEOREM 1.1. Let α,β � −1/2 such that α + β �= −1 and k ∈ N , k � 1 . As-

sume that p ∈ B(0,π) . Then, Hk/2,p(·)
α ,β (0,π) = Wk,p(·)

α ,β (0,π) . Moreover, the norms
‖ · ‖

Hk/2,p(·)
α,β (0,π)

and ‖ · ‖
Wk,p(·)

α,β (0,π)
are equivalent.

The proof of Theorem 1.1 is done in several steps. For a suitable function p we
will prove.

(a) The linear subspace Sα ,β = span{φα ,β
n } is dense in both Wk,p(·)

α ,β (0,π) and

Hk/2,p(·)
α ,β (0,π) .

(b) The higher order Jacobi-Riesz transforms defined by

Rk
α ,β = D

k
α ,β L

−k/2
α ,β and Rk,∗

α ,β = D
k,∗
α ,β L

−k/2
α+k,β+k, k ∈ N,

are bounded operators on Lp(·)(0,π) .

(c) We define a multiplier operator m(Lα ,β ) in such a way that

m(Lα ,β )Rk,∗
α ,β Rk

α ,β f = f −
k−1

∑
n=0

cα ,β
n ( f )φα ,β

n , for all f ∈ Sα ,β ,

and prove its boundedness on Lp(·)(0,π) .

(d) For every γ > 0, the potential operator L −γ
α ,β is also bounded on Lp(·)(0,π) .

According with [16] in order to get the boundedness of operators defined on
Lp(·)(0,π) it is sufficient to prove boundedness of them on the weighted Lr -spaces,
Lr

ω(0,π) for every ω ∈ Ar(0,π) , the class of Muckenhoupt weights , and some 1 <
r < ∞ . Let us note that, taking into account [16, Theorem 1.2], we can change the
condition ” p ∈ P(0,π) and for some p0 ∈ (1, p−) , (p(·)/p0)′ ∈ B(0,π)” used in
[16, Theorem 1.3] by p ∈ B(0,π) , because if p ∈ B(0,π) there exists an extension
p̃ ∈ B(R) of p from (0,π) to R .

Once all this has been proved, the proof of Theorem 1.1 is as follows:
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From assertion (a) it is enough to prove the equivalence of norms for functions in

Sα ,β . Let us take then f ,g ∈ Sα ,β such that f = L
−k/2
α ,β g . From assertions (b) and (c)

we get

‖g‖Lp(·)(0,π) � C
(
‖m(Lα ,β )Rk,∗

α ,β D
k
α ,β f‖Lp(·)(0,π) +‖ f‖Lp(·)(0,π)

)
� C

(
‖D

k
α ,β f‖Lp(·)(0,π) +‖ f‖Lp(·)(0,π)

)
.

Thus, we obtain
‖ f‖

H
k/2,p(·)
α,β (0,π)

� C‖ f‖
W

k,p(·)
α,β (0,π)

.

On the other hand, by using assertions (b) and (d), for every m ∈ N such that
0 � m � k ,

‖D
m
α ,β f‖Lp(·)(0,π) = ‖D

m
α ,β L

−k/2
α ,β g‖Lp(·)(0,π)

= ‖Rm
α ,β L

−(k−m)/2
α ,β g‖Lp(·)(0,π) � C‖g‖Lp(·)(0,π).

Hence,
‖ f‖

W
k,p(·)
α,β (0,π)

� C‖ f‖
H

k/2,p(·)
α,β (0,π)

.

We now define the positive power of the Jacobi operator Lα ,β according to the
ideas of Lions and Peetre [31, Chapter VII, Section 2] and Berens, Butzer and Westphal
[2]. Let γ > 0 and choose r ∈ N such that γ < r � γ + 1. For every ε > 0 and
f ∈ Lp(·)(0,π) , we define

Iγ,r
ε f = Cγ,r

∫ ∞

ε

(
I−Wα ,β

u

)r
f

uγ+1 du , (3)

where the integral is understood in the Lp(·) -Bochner sense and

Cγ,r =
(∫ ∞

0

(1− e−u)r

uγ+1 du

)−1

.

Note that, for every f ∈ Lp(·)(0,π) ,

∫ ∞

ε

‖
(
I−Wα ,β

u

)r
f‖Lp(·)(0,π)

uγ+1 du < ∞.

Moreover, the operator Iγ,r
ε is bounded from Lp(·)(0,π) into itself (Proposition 5.1).

We consider the domain of L γ
α ,β

Dp(·)(L
γ

α ,β ) =
{

f ∈ Lp(·)(0,π) : lim
ε→0+

Iγ,r
ε f exists in Lp(·)(0,π)

}
,

and we define
L γ

α ,β f = lim
ε→0+

Iγ,r
ε f , f ∈ Dp(·)(L

γ
α ,β ). (4)
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As it will be shown in Section 5, in the definition of L γ
α ,β we can take any r ∈N, r > γ .

Next, we characterize the Jacobi potential space Hγ,p(·)
α ,β (0,π) as the domain of L γ

α ,β .

THEOREM 1.2. Let γ > 0 and α,β �−1/2 such that α +β �= −1 . Assume that

p∈B(0,π) . Then, Hγ,p(·)
α ,β (0,π) = Dp(·)(L

γ
α ,β ) . Moreover, for every f ∈Dp(·)(L

γ
α ,β ) ,

L −γ
α ,βL γ

α ,β f = f ,

and, for every f ∈ Lp(·)(0,π) ,

L γ
α ,β L −γ

α ,β f = f .

Segovia and Wheeden [45] characterized potential spaces by using Littlewood-
Paley square functions. In order to do this they introduced square functions involving
fractional derivatives of the classical Poisson semigroup. Inspired by [45], Betancor,
Fariña, Rodrı́guez-Mesa, Testoni and Torrea obtained characterizations using vertical
and area Littlewood-Paley functions for the potential spaces associated with the Her-
mite and Ornstein-Uhlenbeck operators ([5]) and Schrödinger operators ([6]). We will
characterize our variable exponent Jacobi potential spaces by using Littlewood-Paley
function defined via derivatives of the Jacobi-Poisson semigroup.

Let γ > 0 and k ∈ N such that 0 < γ < k . We consider the following Littlewood-
Paley function

gγ,k
α ,β ( f )(θ ) =

(∫ ∞

0

∣∣∣tk−γ∂ k
t Pα ,β

t ( f )(θ )
∣∣∣2 dt

t

)1/2

, θ ∈ (0,π).

We say that a measurable function f ∈ Lp(·)(0,π) is in T γ,k,p(·)
α ,β (0,π) when gγ,k

α ,β ( f ) ∈
Lp(·)(0,π) . On T γ,k,p(·)

α ,β (0,π) we define the norm

‖ f‖
T

γ,k,p(·)
α,β (0,π)

= ‖ f‖Lp(·)(0,π) +‖gγ,k
α ,β( f )‖Lp(·)(0,π), f ∈ T γ,k,p(·)

α ,β (0,π).

Thus, T γ,k,p(·)
α ,β (0,π) is a Banach space.

The space T γ,k,p(·)
α ,β (0,π) , which can be seen as a variable exponent Triebel-Lizorkin

type space, coincides with the variable exponent potential space Hγ/2,p(·)
α ,β (0,π) .

THEOREM 1.3. Let α,β � −1/2 such that α + β �= −1 and 0 < γ < k , k ∈ N .

Assume that p ∈ B(0,π) . Then, Hγ/2,p(·)
α ,β (0,π) = T γ,k,p(·)

α ,β (0,π) . Moreover, the norms
‖ · ‖

Hγ/2,p(·)
α,β (0,π)

and ‖ · ‖
Tγ,k,p(·)

α,β (0,π)
are equivalent.

Note that from Theorem 1.3 we deduce that the space T γ,k,p(·)
α ,β (0,π) does not de-

pend on k ∈ N provided that 0 < γ < k . The result in Theorem 1.3 is new even when
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p∈P(0,π) is constant and it gives a new characterization of the Jacobi Sobolev spaces
introduced in [28].

In order to prove Theorem 1.3 we need to show that certain square function related
to gγ,k

α ,β , which involves fractional derivatives, is bounded on Lp(·)(0,π) . In [45] frac-
tional derivatives were introduced. Suppose that γ > 0 and F is a nice enough function
defined in (0,π)× (0,∞) . The γ -th derivative ∂ γ

t F is defined by

∂ γ
t F(θ , t) =

e−i(m−γ)π

Γ(m− γ)

∫ ∞

0
∂m
t F(θ ,t + s)sm−γ−1ds, θ ∈ (0,π), t > 0,

where m ∈ N is such that m−1 � γ < m .
We consider the Littlewood-Paley function gγ

α ,β given by

gγ
α ,β ( f )(θ ) =

(∫ ∞

0

∣∣∣tγ∂ γ
t Pα ,β

t ( f )(θ )
∣∣∣2 dt

t

)1/2

, θ ∈ (0,π).

The key relation between gγ,k
α ,β and gγ

α ,β , 0 < γ < k , which allows to connect the spaces

Hγ/2,p(·)
α ,β (0,π) and T γ,k,p(·)

α ,β (0,π) , is the following

gk−γ
α ,β ( f ) = gγ,k

α ,β (L −γ/2
α ,β f ), f ∈ Sα ,β .

In [27] Kyriazis, Petrushev and Xu defined Besov and Triebel-Lizorkin spaces
associated with Jacobi expansions with respect to

(
(−1,1),(1− x)α(1+ x)β dx

)
. We

now adapt the Triebel-Lizorkin definitions given in [27] to our Jacobi expansions in(
(0,π),dθ

)
. We take a function a ∈ C∞

c (0,∞) such that suppa ⊆ [1/2,2] and
inft∈[3/5,5/3] |a(t)| > 0. The following construction is independent of the election of a
and, as it is said in [27], we can add the condition that a(t)+a(2t) = 1 for t ∈ [1/2,1] .
We define the sequence {Φα ,β

j } j∈N of functions on (0,π)2 as follows,

Φα ,β
0 (θ ,ϕ) = φα ,β

0 (θ )φα ,β
0 (ϕ), θ ,ϕ ∈ (0,π),

and, for every j ∈ N , j � 1,

Φα ,β
j (θ ,ϕ) =

∞

∑
n=0

a
(λ α ,β

n

2 j−1

)
φα ,β

n (θ )φα ,β
n (ϕ), θ ,ϕ ∈ (0,π).

If γ ∈ R and 0 < p,q < ∞ , a function f ∈ L1(0,π) is in the Jacobi-Triebel-Lizorkin
space Fγ,q,p

α ,β (0,π) provided that

‖ f‖Fγ,q,p
α,β (0,π) =

∥∥∥( ∞

∑
j=0

(
2 jγ∣∣Φα ,β

j ( f )(·)∣∣)q)1/q∥∥∥
Lp(0,π)

< ∞.

Here, for every j ∈ N ,

Φα ,β
j ( f )(θ ) =

∫ π

0
Φα ,β

j (θ ,ϕ) f (ϕ)dϕ , θ ∈ (0,π).
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It would be interesting to investigate Jacobi-Triebel-Lizorkin spaces with variable ex-
ponent in the

(
(−1,1),(1− x)α(1 + x)βdx

)
and

(
(0,π),dθ

)
settings. This question

will be considered on its whole generality in a forthcoming paper. Here we only in-
troduce Jacobi-Triebel-Lizorkin spaces with γ > 0, q = 2 and variable exponent p(·) .
Assume that p ∈ P(0,π) . A function f ∈ Lp(·)(0,π) is in Fγ,2,p(·)

α ,β (0,π) when

‖ f‖
Fγ,2,p(·)

α,β (0,π)
=
∥∥∥( ∞

∑
j=0

(
2 jγ∣∣Φα ,β

j ( f )(·)∣∣)2)1/2∥∥∥
Lp(·)(0,π)

< ∞.

In the following theorem we identify the variable exponent Jacobi-Triebel-Lizorkin

space Fγ,2,p(·)
α ,β (0,π) with the potential space Hγ,p(·)

α ,β (0,π) .

THEOREM 1.4. Let α,β � −1/2 and γ > 0 . Assume that p ∈ B(0,π) . Then,

Hγ,p(·)
α ,β (0,π) = Fγ,2,p(·)

α ,β (0,π) . Moreover, the norms ‖ · ‖
Hγ,p(·)

α,β (0,π)
and ‖ · ‖

Fγ,2,p(·)
α,β (0,π)

are equivalent.

Note that as a special case of Theorem 1.4 we establish that the Jacobi potential
space Hγ,p

α ,β (0,π) considered by Langowski ([28]) coincides with the Jacobi-Triebel-

Lizorkin space Fγ,2,p
α ,β (0,π) , for every 1 < p < ∞ .

The paper is organized as follows. In Sections 2, 3 and 4 we prove that assertions
(a), (b), (c) and (d) are true. Theorems 1.2, 1.3 and 1.4 are proved in Sections 5, 6 and
7, respectively.

Throughout this paper by C and c we always denote positive constants that can
change in each occurrence.

2. Dense subspaces

This section deals with the proof of the Wk,p(·)
α ,β -density of Sα ,β claimed in asser-

tion (a) of Section 1.
Assume that p∈P(0,π) . According to [18, Theorem 3.4.6] the space Lp′(·)(0,π)

is isomorphic to the dual space (Lp(·)(0,π))∗ of Lp(·)(0,π) . On the other hand, for

every k∈N , φα ,β
k ∈ L∞(0,π) . Then, φα ,β

k ∈Lp′(·)(0,π) , k∈N ([18, Theorem 3.3.11]).
We define, for every f ∈ Lp(·)(0,π) and k ∈ N ,

cα ,β
k ( f ) =

∫ π

0
φα ,β

k (θ ) f (θ )dθ .

By [18, Theorem 3.4.12] the space C∞
c (0,π) is dense in Lp(·)(0,π) .

PROPOSITION 2.1. Let α,β � −1/2 and p ∈ P(0,π) . The space Sα ,β =

span{φα ,β
k }k∈N is dense in Lp(·)(0,π) .
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Proof. Since C∞
c (0,π) is a dense subspace of Lp(·)(0,π) , it is sufficient to see that

C∞
c (0,π) is contained in the closure of Sα ,β in Lp(·)(0,π) . Let g ∈C∞

c (0,π) . By using
integration by parts we deduce that, for every m ∈ N , there exists Cm > 0 such that
|cα ,β

k (g)| < Cm(k+1)−m , k ∈ N . Hence,

Sα ,β
n (g) =

n

∑
k=0

cα ,β
k (g)φα ,β

k −→ g , as n → ∞, in L∞(0,π).

Hence, according to [18, Theorem 3.3.11], Sα ,β
n (φ)→ φ , as n→∞ , in Lp(·)(0,π) . �

COROLLARY 2.1. Let α,β � −1/2 and p ∈ P(0,π) . If f ∈ Lp(·)(0,π) and

cα ,β
k ( f ) = 0, k ∈ N , then f = 0 .

Proof. Since p ∈ P(0,π) , p′ is also in P(0,π) . Then, by Proposition 2.1, Sα ,β

is dense in Lp′(·)(0,π) . Assume that f ∈ Lp(·)(0,π) is such that cα ,β
k ( f ) = 0, k ∈ N .

The norm conjugate formula ([18, Corollary 3.2.14]) leads to∫ π

0
f (θ )g(θ )dθ = 0,

for every g ∈ Lp′(·)(0,π) . By using again the norm conjugate formula (duality) we
conclude that f = 0. �

We can improve the result in Proposition 2.1 when the function p(·) satisfies ad-
ditional conditions. According to [34, Theorem 1], if 1 < p < ∞ and f ∈ Lp(0,π) ,
then

f = lim
n→∞

n

∑
k=0

cα ,β
k ( f )φα ,β

k ,

where the convergence is understood in Lp(0,π) . We now establish this property in
Lp

w(0,π) , 1 < p < ∞ and w ∈ Ap(0,π) , and in Lp(·)(0,π) when the function p(·) is as
in [16, Theorem 1.3].

PROPOSITION 2.2. Let α,β � −1/2 .

(i) If 1 < p < ∞ and w ∈ Ap(0,π) , there exists C > 0 such that, for every n ∈ N ,∥∥∥ n

∑
k=0

cα ,β
k ( f )φα ,β

k

∥∥∥
Lp

w(0,π)
� C‖ f‖Lp

w(0,π), f ∈ Lp
w(0,π),

and

lim
n→∞

n

∑
k=0

cα ,β
k ( f )φα ,β

k = f , f ∈ Lp
w(0,π),

in the sense of convergence in Lp
w(0,π) .
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(ii) Assume that p ∈ B(0,π) . Then, there exists C > 0 such that, for every n ∈ N ,∥∥∥ n

∑
k=0

cα ,β
k ( f )φα ,β

k

∥∥∥
Lp(·)(0,π)

� C‖ f‖Lp(·)(0,π), f ∈ Lp(·)(0,π),

and

lim
n→∞

n

∑
k=0

cα ,β
k ( f )φα ,β

k = f , f ∈ Lp(·)(0,π),

in the sense of convergence in Lp(·)(0,π) .

Proof of Proposition 2.2, (i) . In order to prove this property we proceed as in the
proof of [26, Theorem 2]. Let 1 < p < ∞ and w ∈ Ap(0,π) . Suppose that f ∈ Lp

w(0,π)
and n ∈ N . We define

Sn f (θ ) =
n

∑
k=0

cα ,β
k ( f )φα ,β

k (θ ), θ ∈ (0,π).

As in [26, p. 13] we have that

|Sn f (θ )| � C
3

∑
�=1

Jα ,β ,n
� f (θ ), θ ∈ (0,π), (5)

where the operators Jα ,β ,n
� , � = 1,2,3 can be estimated as follows. Firstly, for Jα ,β ,n

1
we get

Jα ,β ,n
1 f (θ ) � C

(
sin θ

2

)α+1/2(
cos θ

2

)β+1/2(
sin θ

2 + 1
n+1

)α+1/2(
cos θ

2 + 1
n+1

)β+1/2

×
∫ π

0

(
sin ϕ

2

)α+1/2(cos ϕ
2

)β+1/2(
sin ϕ

2 + 1
n+1

)α+1/2(cos ϕ
2 + 1

n+1

)β+1/2
| f (ϕ)|dϕ

� C
∫ π

0
| f (ϕ)|dϕ , θ ∈ (0,π).

Then, Hölder’s inequality implies that∫ π

0
|Jα ,β ,n

1 f (θ )|pw(θ )dθ � C
∫ π

0
| f (θ )|pw(θ )dθ , (6)

because Lp
w(0,π) ⊆ L1(0,π) .

For Jα ,β ,n
2 the following estimate holds

Jα ,β ,n
2 f (θ ) � C

(
sin θ

2

)α+1/2(
cos θ

2

)β+1/2(
sin θ

2 + 1
n+1

)α+1/2(
cos θ

2 + 1
n+1

)β+1/2

×
∣∣∣∫ π

0

sinϕ
sin θ+ϕ

2 sin θ−ϕ
2

(
sin ϕ

2

)α+3/2(
cos ϕ

2

)β+3/2(
sin ϕ

2 + 1
n

)α+3/2(
cos ϕ

2 + 1
n

)β+3/2
bn(ϕ) f (ϕ)dϕ

∣∣∣,
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where supk∈N |bk(ϕ)| � C , ϕ ∈ (0,π) . We can write (see [26, p. 14])

sinϕ
sin θ+ϕ

2 sin θ−ϕ
2

=
1

sin θ−ϕ
2

+R(θ ,ϕ), θ ,ϕ ∈ (0,π), θ �= ϕ ,

being

|R(θ ,ϕ)| � C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

sin θ
2 + sin ϕ

2

, 0 < θ < π/2

1

cos θ
2 + cos ϕ

2

, π/2 < θ < π ,

ϕ ∈ (0,π).

Thus, by defining

g(ϕ) =

(
sin ϕ

2

)α+3/2(cos ϕ
2

)β+3/2(
sin ϕ

2 + 1
n

)α+3/2(
cos ϕ

2 + 1
n

)β+3/2
bn(ϕ) f (ϕ), ϕ ∈ (0,π),

we obtain

Jα ,β ,n
2 f (θ ) � C

[
|(Hg)(θ )|+S1(|g|)(θ )+S2(|g|)(θ )

]
, θ ∈ (0,π), (7)

where

(Hg)(θ ) = P.V.
∫ π

0

g(ϕ)

sin θ−ϕ
2

dϕ , a.e. θ ∈ (0,π),

(S1g)(θ ) =
∫ π

0

g(ϕ)
sin θ

2 + sin ϕ
2

dϕ , θ ∈ (0,π),

and

(S2g)(θ ) =
∫ π

0

g(ϕ)
cos θ

2 + cos ϕ
2

dϕ , θ ∈ (0,π).

The operator H is a singular integral operator related to the Hilbert transform and S j ,
j = 1,2, are Stieltjes type operators. It is well-known ([25]) that H is bounded from
Lp

w(0,π) into itself. In [26, Lemma 6] it was established that S1 and S2 are bounded
from Lp

w(0,π) into itself. Then, (7) implies that∫ π

0
|Jα ,β ,n

2 f (θ )|pw(θ )dθ � C
∫ π

0
|g(θ )|pw(θ )dθ � C

∫ π

0
| f (θ )|pw(θ )dθ . (8)

In a similar way we can see∫ π

0
|Jα ,β ,n

3 f (θ )|pw(θ )dθ � C
∫ π

0
| f (θ )|pw(θ )dθ . (9)

By putting together (5), (6), (8) and (9) we conclude that

‖Sn f‖Lp
w(0,π) � C‖ f‖Lp

w(0,π).
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Note that the constant C > 0 does not depend on n ∈ N and f ∈ Lp
w(0,π) .

Since C∞
c (0,π) is a dense subspace of Lp

w(0,π) and for every h ∈C∞
c (0,π) ,

lim
n→∞

Snh = h, uniformly in(0,π),

and hence in Lp
w(0,π) ; standard arguments allow us to show that, for every f ∈Lp

w(0,π) ,

lim
n→∞

Sn f = f , in Lp
w(0,π). �

Proof of Proposition 2.2, (ii) . From the property established in Proposition 2.2,
(i) , and according to [16, Theorem 1.3] we deduce that there exists C > 0 such that,
for every n ∈ N ,

‖Sn f‖Lp(·)(0,π) � C‖ f‖Lp(·)(0,π), f ∈ Lp(·)(0,π). (10)

By [18, Theorem 3.3.1], C∞
c (0,π)⊆ Lp+(0,π)⊆ Lp(·)(0,π) and the inclusions are con-

tinuous. Hence, for every h ∈C∞
c (0,π) ,

lim
n→∞

Sn(h) = h, in Lp(·)(0,π).

Since C∞
c (0,π) is dense in Lp(·)(0,π) we deduce from (10) that, for every f ∈Lp(·)(0,π) ,

lim
n→∞

Sn f = f , in Lp(·)(0,π). �

We are going to see that Sα ,β is a dense subspace of Wk,p(·)
α ,β (0,π) .

PROPOSITION 2.3. Let α,β � −1/2 , k ∈ N and p ∈ B(0,π) . Then, Sα ,β is a

dense subspace of Wk,p(·)
α ,β (0,π) .

Proof. We proceed following the ideas in the proof of [4, Proposition 2] (see also
[28, Proposition 3.2]). Note firstly that, since Lp(·)(0,π) ⊆ Lp−(0,π) ([18, Theorem

3.3.1]), Wk,p(·)
α ,β (0,π) ⊆ Wk,p−

α ,β (0,π) , where the last Sobolev type space Wk,p−
α ,β (0,π)

(with constant exponent p− ) was studied by Langowski [28].

Let f ∈Wk,p(·)
α ,β (0,π) . The maximal operator W α ,β

∗ associated with {Wα ,β
t }t>0 is

defined by

Wα ,β
∗ ( f ) = sup

t>0
|W α ,β

t ( f )|.

According to [40, Theorem A, and (3)] we have that

|Wα ,β
t (θ ,ϕ)| � C

e−c(θ−ϕ)2/t
√

t
, θ ,ϕ ∈ (0,π) and t > 0. (11)
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From (11) we deduce that
Wα ,β

t ( f ) � CMc( f ),

where Mc denotes the centered Hardy-Littlewood maximal operator. Then, by [18,
Theorem 4.3.8] Wα ,β

∗ is a bounded (sublinear) operator from Lp(·)(0,π) into itself. It
is clear that, for every φ ∈ Sα ,β ,

lim
t→0+

W α ,β
t (φ) = φ , in Lp(·)(0,π).

Then, since Sα ,β is dense in Lp(·)(0,π) (Proposition 2.1), we obtain that,

lim
t→0+

Wα ,β
t ( f ) = f , in Lp(·)(0,π).

By [28, Lemmas 3.1 and 3.3] for each �,m ∈ N , such that 0 � � � k ,

cα+�,β+�
m

(
D

�
α ,β f

)
= (−1)�

√
(m+1)�(m+�+α+β+1)�c

α ,β
m+�( f ). (12)

Here and in the sequel we denote by (z)� , z > 0, the � -Pochhammer symbol, that is,

(z)� = z(z+1) · · ·(z+ �−1), � ∈ N, � � 1 and (z)0 = 1. (13)

By taking into account [28, (1)] we can differentiate term by term inside the series
and [28, Lemma 3.1] and (12) lead to

D
�
α ,βWα ,β

t f =
∞

∑
m=0

e−tλ α,β
m cα ,β

m ( f ) D
�
α ,β φα ,β

m

=
∞

∑
m=�

e−tλ α,β
m (−1)m

√
(m− �+1)�(m+ α + β +1)� cα ,β

m ( f ) φα+�,β+�
m−�

=
∞

∑
m=�

e−tλ α,β
m cα+�,β+�

m−�

(
D

�
α ,β f

)
φα+�,β+�

m−�

=
∞

∑
m=0

e−tλ α+�,β+�
m cα+�,β+�

m

(
D

�
α ,β f

)
φα+�,β+�

m , � ∈ N, 0 � � � k.

Hence, for every � ∈ N , 0 � � � k ,

lim
t→0+

D
�
α ,βWα ,β

t f = D
�
α ,β f , in Lp(·)(0,π).

Let ε > 0. There exists t0 > 0 such that, for every 0 < t < t0 ,

‖D
�
α ,βWα ,β

t f −D
�
α ,β f‖Lp(·)(0,π) < ε, � ∈ N, 0 � l � k.

On the other hand, by using [28, (1)], [18, Theorem 3.3.11] and Hölder inequality we
get, for every θ ∈ (0,π) and �,m ∈ N ,∣∣∣cα+�,β+�

m

(
D

�
α ,β f

)∣∣∣ ∣∣∣φα+�,β+�
m (θ )

∣∣∣� C‖D
�
α ,β f‖Lp− (0,π)(m+1)α+β+2�+2.
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Hence, there exists m0 ∈ N , m0 � k , such that∥∥∥∥∥ ∞

∑
m=M+1

e−t0λ α+�,β+�
m cα+�,β+�

m

(
D

�
α ,β f

)
φα+�,β+�

m

∥∥∥∥∥
Lp(·)(0,π)

� C
∞

∑
m=m0+1

e−t0(m+ α+β+2�
2 )2(m+1)α+β+2�+2 < ε, � ∈ N, 0 � � � k, M ∈ N, M � m0.

Then, ∥∥∥∥∥ m0

∑
m=0

e−t0λ α,β
m cα ,β

m ( f )φα ,β
m − f

∥∥∥∥∥
W

k,p(·)
α,β (0,π)

< 2ε.

Thus, we have proved that f is in the closure of Sα ,β in Wk,p(·)
α ,β (0,π) and the proof is

finished. �

3. Jacobi multipliers in weighted Lp -spaces

This section deals, among other things, with the proof of the Hk/2,p(·)
α ,β -density of

Sα ,β claimed in assertions (a) and (d) of Section 1.
Let m = (mk)∞

k=0 be a bounded sequence of real numbers. The Jacobi multiplier

Tα ,β
m associated with m is defined by

Tα ,β
m f =

∞

∑
k=0

mkc
α ,β
k ( f )φα ,β

k , f ∈ L2(0,π).

Plancherel’s equality implies that T α ,β
m is bounded on L2(0,π) . Sufficient conditions

which allow to extend T α ,β
m as a bounded operator to Lp(0,π) and to certain weighted

Lp(0,π) spaces have been established by several authors (see [1], [7], [15], [23], [32],
[35], [36] and [49], amongst others).

The goal of this section is to establish a multiplier theorem in Lp(·)(0,π) . Previ-
ously we need to show a multiplier result for Lp

w(0,π) when w ∈ Ap(0,π) . In order to
achieve this we invoke a general multiplier theorem due to Meda [33] (see also [49]).

Let −∞ < a <
(

α+β+1
2

)2
. We consider the operator

Lα ,β ;a = Lα ,β −a.

It is clear that, for every k ∈ N , φα ,β
k is an eigenfunction for Lα ,β ;a associated with

the eigenvalue

λ α ,β ;a
k =

(
k+

α + β +1
2

)2

−a = k(k+ α + β +1)+
(

α + β +1
2

)2

−a.

Lα ,β ;a is a nonnegative and selfadjoint operator on L2(0,π) . Moreover, Lα ,β ;a gen-

erates a (heat) semigroup {Wα ,β ;a
t }t>0 on L2(0,π) , given by

Wα ,β ;a
t ( f ) =

∫ π

0
Wα ,β ;a

t (θ ,ϕ) f (ϕ)dϕ , f ∈ L2(0,π), t > 0,
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and

Wα ,β ;a
t (θ ,ϕ) =

∞

∑
k=0

e−tλ α,β ;a
k φα ,β

k (θ )φα ,β
k (ϕ), θ ,ϕ ∈ (0,π), and t > 0.

According to [40, Theorem A, (3) and (9)] we have that∣∣∣W α ,β ;a
t (θ ,ϕ)

∣∣∣� Ce−(( α+β+1
2 )2−a)t e−c(θ−ϕ)2/t

√
t

, θ ,ϕ ∈ (0,π) and t > 0.

Let γ ∈ R\{0} . The imaginary power L iγ
α ,β ;a of Lα ,β ;a is the spectral multiplier

g(Lα ,β ;a) where g(x) = xiγ , x > 0, that is,

L iγ
α ,β ;a( f ) =

∞

∑
k=0

(λ α ,β ;a
k )iγcα ,β

k ( f )φα ,β
k , f ∈ L2(0,π).

The operator L iγ
α ,β ;a can be seen as a Laplace transform type multiplier for Lα ,β ;a .

Then, a general result due to Stein [46, Corollary 3, p. 121] applies to deduce that
L iγ

α ,β ;a can be extended from L2(0,π)∩Lp(0,π) to Lp(0,π) as a bounded operator
on Lp(0,π) , for every 1 < p < ∞ . Also, by proceeding as in [39] we can see that
L iγ

α ,β ;a is a Calderón-Zygmund operator in the sense of a space of homogeneous type

((0,π),dθ , | · |) , where | · | stands for the Euclidean metric. Then, L iγ
α ,β ;a defines a

bounded operator from Lp
w(0,π) into itself, for every 1 < p < ∞ and w ∈ Ap(0,π) .

Moreover, classical arguments (see for instance, [21, Chapter 7, Section 4]) allow us to
obtain that, for every 1 < p < ∞ and w ∈ Ap(0,π) ,

‖L iγ
α ,β ;a‖Lp

w(0,π)→Lp
w(0,π) � Cp,weπ |γ|/2, (14)

where Cp,w > 0 does not depend on γ . Estimation (14) shows an exponential increase

with respect to |γ| of the operator norm ‖L iγ
α ,β ;a‖Lp

w(0,π)→Lp
w(0,π) which is not sufficient

to obtain our multiplier result. Actually, the exponential behavior in (14) can be re-
placed by a polynomial growth. Indeed, according to [12, Theorem 1.3 and Remarks
1.4 and 1.5] we have that, for every 1 < p < ∞ and w ∈ Ap(0,π) ,

‖L iγ
α ,β ;a‖Lp

w(0,π)→Lp
w(0,π) � Cp,w(1+ |γ|),

where Cp,w > 0 does not depend on γ .
We now establish our result concerning the Lp

w(0,π)-boundedness of spectral mul-
tipliers for the operator Lα ,β ;a.

PROPOSITION 3.1. Let 1 < p < ∞ , α,β � −1/2 and −∞ < a <
(

α+β+1
2

)2
.

Assume that:

(i) m is a bounded holomorphic function on {z ∈ C : Re z > 0} ; or
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(ii) m ∈C∞(0,π) and for every � ∈ N

sup
x∈(0,∞)

∣∣∣∣x� d�

dx�
m(x)

∣∣∣∣< ∞. (15)

Then, the spectral multiplier m(Lα ,β ;a) related to the operator Lα ,β ;a given by

m(Lα ,β ;a) f =
∞

∑
k=0

m(λ α ,β ;a
k )cα ,β

k ( f )φα ,β
k , (16)

is bounded from Lp
w(0,π) into itself, for every w ∈ Ap(0,π) .

This result can be proved as in [33, Theorem 3 or Corollary 1]. By using now [16,
Theorem 1.3] we deduce from Proposition 3.1 the following Lp(·) -boundedness result
for spectral multipliers associated with Lα ,β ;a .

PROPOSITION 3.2. Let α,β � −1/2 and −∞ < a <
(

α+β+1
2

)2
. Assume that

p ∈ B(0,π) . If m satisfies condition (i) or (ii) of Proposition 3.1, then the spectral
multiplier m(Lα ,β ;a) given by (16) defines a bounded operator from Lp(·)(0,π) into
itself.

The negative powers of Lα ,β defined in (2) are spectral multipliers for the Jacobi
operator that will be useful in the sequel. Suppose that γ > 0 and α + β �= −1. Since

λ α ,β
k �

(
α+β+1

2

)2
, k ∈ N , the operator L

−γ
α ,β is bounded from L2(0,π) into itself.

We take a = 1
2

(
α+β+1

2

)2
. We can write

L −γ
α ,β f =

∞

∑
k=0

(λ α ,β ;a
k +a)−γcα ,β

k ( f )φα ,β
k = T α ,β ;a

mγ ( f ), f ∈ L2(0,π),

where mγ(z) = (z + a)−γ , z ∈ C , Re z > 0. Since mγ is a bounded holomorphic
function on {z∈C : Re z > 0} from Propositions 3.1 and 3.2 we deduce the following.

PROPOSITION 3.3. Let γ > 0 and α,β � −1/2 such that α + β �= −1 .

(a) If 1 < p < ∞ and w ∈ Ap(0,π) , then L
−γ
α ,β can be extended from L2(0,π)∩

Lp
w(0,π) to Lp

w(0,π) as a bounded operator from Lp
w(0,π) into itself.

(b) If p∈B(0,π) , then L
−γ

α ,β defines a bounded operator from Lp(·)(0,π) into itself.

We also have the injectivity of L
−γ
α ,β on Lp

w(0,π) and Lp(·)(0,π) .

PROPOSITION 3.4. Let γ > 0 and α,β � −1/2 such that α + β �= −1 .

(a) If 1 < p < ∞ and w ∈ Ap(0,π) , then L
−γ
α ,β is one to one on Lp

w(0,π) .
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(b) Assume that p ∈ B(0,π) . Then, L −γ
α ,β is one to one on Lp(·)(0,π) .

Proof. We prove (b). Property (a) can be shown in a similar way. It is clear that if
f ∈ Sα ,β we have that

cα ,β
k (L −γ

α ,β f ) = (λ α ,β
k )−γcα ,β

k ( f ), k ∈ N. (17)

Since L −γ
α ,β is bounded from Lp(·)(0,π) into itself (see Proposition 3.3); for every

k ∈ N , φα ,β
k ∈ Lp′(·)(0,π) =

(
Lp(·)(0,π)

)∗
([18, Theorem 3.4.6]) and Sα ,β is dense

in Lp(·)(0,π) (Proposition 2.1), we conclude that (17) holds for every f ∈ Lp(·)(0,π) .
Then, from Corollary 2.1 we deduce that f = 0 provided that L −γ

α ,β f = 0. �
By using Proposition 2.2 we obtain the following characterization of the potential

space Hγ,p(·)
α ,β (0,π) .

PROPOSITION 3.5. Let γ > 0 and α,β � −1/2 such that α + β �= −1 . As-

sume that p ∈ B(0,π) . A function f ∈ Lp(·)(0,π) is in Hγ,p(·)
α ,β (0,π) if, and only

if, the series ∑∞
n=0(λ

α ,β
n )γcα ,β

n ( f )φα ,β
n converges in Lp(·)(0,π) . Moreover, for every

f ∈ Hγ,p(·)
α ,β (0,π) ,

‖ f‖
Hγ,p(·)

α,β (0,π)
=
∥∥∥ ∞

∑
n=0

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp(·)(0,π)

.

Proof. Let f ∈ Lp(·)(0,π) . Suppose that f ∈ Hγ,p(·)
α ,β (0,π) . Then, there exists g ∈

Lp(·)(0,π) such that f = L −γ
α ,βg . Thus, by (17) we have that cα ,β

n ( f )= (λ α ,β
n )−γcα ,β

n (g) ,
n ∈ N . Hence, according to Proposition 2.2, the series

∞

∑
n=0

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n =

∞

∑
n=0

cα ,β
n (g)φα ,β

n

converges in Lp(·)(0,π) .
Assume now that the series F = ∑∞

n=0(λ
α ,β
n )γcα ,β

n ( f )φα ,β
n converges in Lp(·)(0,π) .

Then, by Proposition 3.4, L −γ
α ,β F = f and f ∈ Hγ,p(·)

α ,β (0,π) . �
As an immediate consequence of Proposition 3.5 we establish the density of Sα ,β

in Hγ,p(·)
α ,β (0,π) .

COROLLARY 3.1. Let γ > 0 and α,β � −1/2 such that α + β �= −1 . Assume

that p ∈ B(0,π) . Then, for every f ∈ Hγ,p(·)
α ,β (0,π) ,

f = lim
n→∞

n

∑
k=0

cα ,β
k ( f )φα ,β

k ,

in the sense of convergence in Hγ,p(·)
α ,β (0,π) .



VARIABLE EXPONENT SOBOLEV SPACES ASSOCIATED WITH JACOBI EXPANSIONS 919

Proof. Let f ∈ Hγ,p(·)
α ,β (0,π) . We have that f = L −γ

α ,β g , where

g =
∞

∑
k=0

(λ α ,β
k )γcα ,β

k ( f )φα ,β
k ,

in the sense of convergence in Lp(·)(0,π) . Then,∥∥∥ f−
n

∑
k=0

cα ,β
k ( f )φα ,β

k

∥∥∥
Hγ,p(·)

α,β (0,π)
=
∥∥∥g− n

∑
k=0

(λ α ,β
k )γcα ,β

k ( f )φα ,β
k

∥∥∥
Lp(·)(0,π)

→ 0, as n→∞.

�

4. Boundedness of the higher order Riesz transforms

This section has to do with the proof of assertions (b) and (c) of Section 1.
Firstly, we establish that Rk

α ,β and Rk,∗
α ,β are composition of Jacobi Riesz trans-

forms of order one.

LEMMA 4.1. Let k ∈ N and α,β � −1/2 such that α + β �= −1 . Then,

Rk
α ,β f = R1

α+k−1,β+k−1 ◦R1
α+k−2,β+k−2 ◦ .....◦R1

α ,β f , f ∈ Sα ,β , (18)

and
Rk,∗

α ,β f = R1,∗
α ,β ◦R1,∗

α+1,β+1 ◦ .....◦R1,∗
α+k−1,β+k−1 f , f ∈ Sα+k,β+k. (19)

Proof. We are going to prove (18), (19) can be shown in a similar way. It is
sufficient to see that (18) is true when f = φα ,β

l , for every l ∈ N .
Let l ∈ N . According to [28, Lemma 3.1] we have that

D
k
α ,β φα ,β

l = (−1)k
√

(l− k+1)k(l + α + β +1)k φα+k,β+k
l−k . (20)

Recall the definition of the Pochhammer symbol in (13) and by convention φα ,β
n = 0,

n ∈ Z , n < 0. Hence,

Rk
α ,β φα ,β

l = (−1)k

√
(l− k+1)k(l + α + β +1)k

(λ α ,β
l )k

φα+k,β+k
l−k .

Since λ α ,β
l = λ α+n,β+n

l−n , 0 � n � l , we can write

Rk
α ,β φα ,β

l = (−1)k
k−1

∏
n=0

√
(l−n)(l + α + β +1+n)

λ α+n,β+n
l−n

φα+k,β+k
l−k

= (−1)k−1
k−2

∏
n=0

√
(l−n)(l + α + β +1+n)

λ α+n,β+n
l−n

R1
α+k−1,β+k−1φα+k−1,β+k−1

l−k+1

= R1
α+k−1,β+k−1 ◦R1

α+k−2,β+k−2 ◦ .....◦R1
α ,β φα ,β

l ,
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and (18) is established. �
We are going to prove that Rk

α ,β and Rk,∗
α ,β define bounded operators from Lp

w(0,π)
into itself for every 1 < p < ∞ and w ∈ Ap(0,π) . As consecuence of the next lemma,
we only need to study the corresponding local operators (see [11] and [14]).

We consider the domain D = ∪4
j=1D j represented in the figure bellow

θ

ϕ

ππ
2

π

π
4

π
2

3π
4

D1

D2

D3

D4

D1 =
{

(θ ,ϕ) : 0 < ϕ <
θ
2

, 0 < θ <
π
2

}
,

D2 =
{

(θ ,ϕ) : 0 <
3θ
2

< ϕ < π , 0 < θ <
π
2

}
,

D3 =
{

(θ ,ϕ) : 0 < ϕ <
3θ −π

2
,

π
2

< θ < π
}
,

D4 =
{

(θ ,ϕ) :
θ + π

2
< ϕ < π ,

π
2

< θ < π
}
.

Figure 1: Global regions

LEMMA 4.2. Suppose that K : (0,π)× (0,π)\{(θ ,θ ) : θ ∈ (0,π)} −→ R is a
measurable function such that

|K(θ ,ϕ)| � C
|θ −ϕ | , θ ,ϕ ∈ (0,π), θ �= ϕ .

Then, for every 1 < p < ∞ and w ∈ Ap(0,π) the operator H defined by

H f (θ ) =
∫ π

0
K(θ ,ϕ)χD(θ ,ϕ) f (ϕ)dϕ , θ ∈ (0,π),

is bounded from Lp
w(0,π) into Lp

w(0,π) .

Proof. We define

Hj f (θ ) =
∫ π

0
K(θ ,ϕ)χD j(θ ,ϕ) f (ϕ)dϕ , θ ∈ (0,π), j = 1,2,3,4.

Thus, H =
4

∑
j=1

Hj .

By M we denote the Hardy-Littlewood maximal function on (0,π) . We have
that

|H1 f (θ )| �
∫ θ/2

0

| f (ϕ)|
|θ −ϕ |dϕ � C

θ

∫ θ/2

0
| f (ϕ)|dϕ � CM ( f )(θ ), θ ∈ (0,π),
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and

|H4 f (θ )| �
∫ π

(θ+π)/2

| f (ϕ)|
|θ −ϕ |dϕ � C

π −θ

∫ π

π−3(π−θ)/2
| f (ϕ)|dϕ

� CM ( f )(θ ), θ ∈ (0,π).

By using the classical maximal theorem we deduce that H1 and H4 are bounded from
Lp

w(0,π) into itself, for every 1 < p < ∞ and w ∈ Ap(0,π) .
The adjoint operator H∗

2 of H2 is defined by

H∗
2g(ϕ) = χ(0, 3π

4 )(ϕ)
∫ 2ϕ/3

0
K(θ ,ϕ)g(θ )dθ+χ( 3π

4 ,π)(ϕ)
∫ π/2

0
K(θ ,ϕ)g(θ )dθ , ϕ ∈ (0,π).

If 1 < p < ∞ and w ∈ Ap(0,π) , we deduce that

‖H∗
2g‖Lp

w(0,π) � C

{(∫ 3π/4

0
w(ϕ)

(∫ 2ϕ/3

0

|g(θ )|
|θ −ϕ |dθ

)p

dϕ
)1/p

+
(∫ π

3π/4
w(ϕ)

(∫ π/2

0

|g(θ )|
|θ −ϕ |dθ

)p

dϕ
)1/p

}

� C

{(∫ π

0
w(ϕ)|M (|g|)(ϕ)|pdϕ

)1/p

+
(∫ π

3π/4
w(ϕ)dϕ

)1/p∫ π

0
|g(θ )|dθ

}
� C‖g‖Lp

w(0,π), g ∈ Lp
w(0,π).

Hence, H2 is bounded from Lp
w(0,π) into itself for every 1 < p < ∞ and w ∈ Ap(0,π) .

On the other hand, the adjoint operator H∗
3 of H3 is given by

H∗
3 g(ϕ) = χ(0, π

4 )(ϕ)
∫ π

π/2
K(θ ,ϕ)g(θ )dθ + χ( π

4 ,π)(ϕ)
∫ π

(2ϕ+π)/3
K(θ ,ϕ)g(θ )dθ .

If 1 < p < ∞ and w ∈ Ap(0,π) , we get

‖H∗
3g‖Lp

w(0,π) � C

{(∫ π/4

0
w(ϕ)dϕ

)1/p∫ π

0
|g(θ )|dθ

+
(∫ π

π/4
w(ϕ)

(∫ π

(2ϕ+π)/3

|g(θ )|
|θ −ϕ |dθ

)p

dϕ
)1/p

}

� C

{
‖g‖Lp

w(0,π) +
(∫ π

π/4
w(ϕ)

(
1

π −ϕ

∫ π

π−4(π−ϕ)/3
|g(θ )|dθ

)p

dϕ
)1/p

}
� C

(
‖g‖Lp

w(0,π) +‖M (|g|)‖Lp
w(0,π)

)
� C‖g‖Lp

w(0,π), g ∈ Lp
w(0,π).
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We conclude that H3 is bounded from Lp
w(0,π) into itself, for every 1 < p < ∞ and

w ∈ Ap(0,π) .
Thus, the proof of this lemma is finished. �
By using Lemmas 4.1 an 4.2 we will deduce the Lp

w(0,π)-boundedness of Rm
α ,β

and Rm,∗
α ,β from the corresponding property of R1

α ,β and R1,∗
α ,β , respectively.

PROPOSITION 4.1. Let 1 < p < ∞ , w ∈ Ap(0,π) and α,β � −1/2 such that

α + β �= −1 . The Jacobi Riesz transforms R1
α ,β and R1,∗

α ,β define bounded operators

from Lp
w(0,π) into itself.

We are going to use local Calderón-Zygmund theory for singular integrals (see
[14]). We are inspired in the arguments developed by Nowak and Sjögren in [39].

Proof of Proposition 4.1; the case of R1
α ,β . By (20) we have that

R1
α ,β f = −

∞

∑
k=0

√
k(k+ α + β +1)

λ α ,β
k

cα ,β
k ( f ) φα+1,β+1

k−1 , f ∈ L2(0,π).

According to Plancherel’s theorem, R1
α ,β is bounded from L2(0,π) into itself. By using

[13, Theorem 2.4] we can write

R1
α ,β f (θ ) = lim

ε→0+

∫ π

0, |θ−ϕ|>ε
R1

α ,β (θ ,ϕ) f (ϕ)dϕ , a.e. θ ∈ (0,π),

for every f ∈C∞
c (0,π) . Here the kernel R1

α ,β (θ ,ϕ) is defined by

R1
α ,β (θ ,ϕ) =

∫ ∞

0
Dα ,β Pα ,β

t (θ ,ϕ)dt, θ ,ϕ ∈ (0,π), θ �= ϕ .

According to [14, Theorem 2.4] and Lemma 4.2, to prove that R1
α ,β is bounded from

Lp
w(0,π) into itself, it is enough to show that

|R1
α ,β (θ ,ϕ)| � C

|θ −ϕ | , θ ,ϕ ∈ (0,π), θ �= ϕ , (21)

and

|∂θ R1
α ,β (θ ,ϕ)|+ |∂ϕR1

α ,β (θ ,ϕ)| � C
|θ −ϕ |2 , (θ ,ϕ) ∈ (0,π)2\D , θ �= ϕ , (22)

where D is the domain in Figure 1.
According to [39, Proposition 4.1] and [40, (3)] we have that for every θ ,ϕ ∈

(0,π) and t > 0,

Pα ,β
t (θ ,ϕ) = Cα ,β

(
sin

θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2

sinh
t
2

×
∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ (v)
(cosh t

2 −1+q(θ ,ϕ ,u,v))α+β+2
, (23)
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where Cα ,β = 2−α−β−1∫ π
0 (sin θ

2 )2α+1(cos θ
2 )2β+1dθ

, dΠα(u) = Γ(α+1)√
πΓ(α+1/2)(1−u2)α−1/2du , and

q(θ ,ϕ ,u,v) = 1−usin
θ
2

sin
ϕ
2
− vcos

θ
2

cos
ϕ
2

.

By proceeding as in [39, Proof of Theorem 2.4; the case of Rα ,β
1 ] and using [39,

Lemma 4.4 and trigonometric identities in p. 738] we get that

|R1
α ,β (θ ,ϕ)|

�C
∫ ∞

0
sinh

t
2

∫ 1

−1

∫ 1

−1

(
sinθ

2 sin ϕ
2

)α+1/2(
cos θ

2 cosϕ
2

)β+1/2 |∂θ q(θ ,ϕ ,u,v)|
(cosh t

2−1+q(θ ,ϕ ,u,v))α+β+3
dΠα(u)dΠβ (v)dt

� C
∫ 1

−1

∫ 1

−1

(
sin θ

2 sin ϕ
2

)α+1/2 (
cos θ

2 cos ϕ
2

)β+1/2

qα+β+3/2(θ ,ϕ ,u,v)
dΠα(u)dΠβ (v)

� C
∫ 1

−1

(
sin θ

2 sin ϕ
2

)α+1/2 (
cos θ

2 cos ϕ
2

)β+1/2
dΠα(u)

(1−usin θ
2 sin ϕ

2 )β+1/2(1−usin θ
2 sin ϕ

2 − cos θ
2 cos ϕ

2 )α+1

� C

(
cos θ

2 cos ϕ
2

)β+1/2

(1− sin θ
2 sin ϕ

2 )β+1/2

1

(1− sin θ
2 sin ϕ

2 − cos θ
2 cos ϕ

2 )1/2

(
sin θ

2 sin ϕ
2

)α+1/2(
1− cos θ

2 cos ϕ
2

)α+1/2

� C

(
cos θ

2 cos ϕ
2

1− sin θ
2 sin ϕ

2 − cos θ
2 cos ϕ

2 + cos θ
2 cos ϕ

2

)β+1/2
1(

1− cos θ−ϕ
2

)1/2

� C

(
cos θ

2 cos ϕ
2

1− cos ϕ−θ
2 + cos θ

2 cos ϕ
2

)β+1/2
1

|θ −ϕ | � C
|θ −ϕ | , θ ,ϕ ∈ (0,π). (24)

Then (21) is proved.
Also, we have that

∂θ R1
α ,β (θ ,ϕ) =

(
2α +1

4

cos θ
2

sin θ
2

− 2β +1
4

sin θ
2

cos θ
2

)
R1

α ,β (θ ,ϕ)

+
(

sin
θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2

Tα ,β (θ ,ϕ), θ ,ϕ ∈ (0,π),

(25)

where

Tα ,β (θ ,ϕ)=Cα ,β ∂ 2
θ

∫ ∞

0
sinh

t
2

∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ (v)
(cosh t

2−1+q(θ ,ϕ ,u,v))α+β+2
dt, θ ,ϕ ∈ (0,π).

We can write by [39, Lemma 4.7] and proceeding as in [39, Proof of Theorem 2.4; the



924 V. ALMEIDA, J. J. BETANCOR, A. J. CASTRO, A. SANABRIA AND R. SCOTTO

case of Rα ,β
N ],∣∣∣∣∣
(

sin
θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2

Tα ,β (θ ,ϕ)

∣∣∣∣∣
� C

∫ 1

−1

∫ 1

−1

(
sin θ

2 sin ϕ
2

)α+1/2 (
cos θ

2 cos ϕ
2

)β+1/2

q(θ ,ϕ ,u,v)α+β+2
dΠα(u)dΠβ (v)

� C
|θ −ϕ |2 , θ ,ϕ ∈ (0,π). (26)

On the other hand

cos θ
2

sin θ
2

=
cos θ

2 cos ϕ
2

sin θ
2 cos ϕ

2

=
cos θ

2 cos ϕ
2

sin θ
2 cos ϕ

2 − sin ϕ
2 cos θ

2 + sin ϕ
2 cos θ

2

=
cos θ

2 cos ϕ
2

sin θ−ϕ
2 + sin ϕ

2 cos θ
2

� 1

sin θ−ϕ
2

, 0 < ϕ < θ < π . (27)

If ϕ ∈ (0,π) , θ ∈ (0,π/2) and θ < ϕ < 3θ/2, then sin(ϕ/3) < sin(θ/2) and

cos θ
2

sin θ
2

�
cos θ

2

sin ϕ
3

=
cos θ

2 cos θ
3

sin ϕ
3 cos θ

3 − sin θ
3 cos ϕ

3 + sin θ
3 cos ϕ

3

� 1

sin θ−ϕ
3

. (28)

Also, we get

cos θ
2

sin θ
2

� 1
sin π

4
� C

sin | θ−ϕ
2 |

, 0 < ϕ < π , π/2 < θ < π . (29)

By combining (24), (27), (28) and (29) we obtain∣∣∣∣∣cos θ
2

sin θ
2

R1
α ,β (θ ,ϕ)

∣∣∣∣∣� C
|θ −ϕ |2 , (θ ,ϕ) ∈ (0,π)2\D . (30)

We can write
sin θ

2

cos θ
2

= −cos π−θ
2

sin π−θ
2

, θ ∈ (0,π), (31)

and by symmetries reasons and proceeding as above we get∣∣∣∣∣ sin θ
2

cos θ
2

R1
α ,β (θ ,ϕ)

∣∣∣∣∣� C
|θ −ϕ |2 , (θ ,ϕ) ∈ (0,π)2\D . (32)

From (25), (26), (30) and (32) we conclude that

|∂θ R1
α ,β (θ ,ϕ)| � C

|θ −ϕ |2 , (θ ,ϕ) ∈ (0,π)2\D .
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In a similar way, we can see that

|∂ϕR1
α ,β (θ ,ϕ)| � C

|θ −ϕ |2 , (θ ,ϕ) ∈ (0,π)2\D .

Thus, (22) is established. �

Proof of Proposition 4.1; the case of R1,∗
α ,β . We have that

R1,∗
α ,β f = −

∞

∑
k=0

√
(k+1)(k+ α + β +2)

λ α+1,β+1
k

cα+1,β+1
k ( f ) φα ,β

k+1 , f ∈ L2(0,π).

From Plancherel’s theorem we deduce that R1,∗
α ,β is a bounded operator from L2(0,π)

into itself.
If f ∈C∞

c (0,π) , then for every m ∈ N there exists Cm such that

|cα+1,β+1
k ( f )| � Cm(k+1)−m, k ∈ N.

Suppose that f ,g ∈C∞
c (0,π) . Partial integration leads to∫ π

0
R1,∗

α ,β f (θ )g(θ )dθ =
∫ π

0
f (ϕ)L −1/2

α+1,β+1

(
Dα ,β g

)
(ϕ)dϕ .

By taking into account the rapid decay of the sequence
(
cα ,β
k (g)

)
k∈N

and [28, Lemma

3.1] we write

Dα ,β g(θ ) = −
∞

∑
k=0

√
k(k+ α + β +1)cα ,β

k (g)φα+1,β+1
k−1 (θ ), θ ∈ (0,π),

and

L
−1/2

α+1,β+1

(
Dα ,β g

)
(θ ) = −

∞

∑
k=0

√
k(k+ α + β +1)

λ α ,β
k

cα ,β
k (g) φα+1,β+1

k−1 (θ )

= R1
α ,β g(θ ), θ ∈ (0,π).

Hence, R1,∗
α ,β is the adjoint of R1

α ,β (fact justifying the notation). Thus, R1,∗
α ,β defines a

bounded operator from Lp
w(0,π) into itself, for every 1 < p < ∞ and w∈Ap(0,π) . �

Combining [16, Theorem 1.3] with Lemma 4.1 and Proposition 4.1 we obtain the
following.

PROPOSITION 4.2. Let k ∈ N and α,β �−1/2 such that α +β �= −1 . Suppose
that p∈B(0,π) . Then, Rk

α ,β and Rk,∗
α ,β define bounded operators from Lp(·)(0,π) into

itself.
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According to [28, Lemma 3.1] we get, for every f ∈ Sα ,β ,

Rk,∗
α ,β Rk

α ,β f =
∞

∑
n=k

(n− k+1)k(n+ α + β +1)k

(λ α ,β
n )k

cα ,β
k ( f ) φα ,β

n .

Notice that, for every n ∈ N , n � k ,

(n− k+1)k =
(√

λ α ,β
n −

√
λ α ,β

k−1

)(√
λ α ,β

n −
√

λ α ,β
k−2

)
· ... ·

(√
λ α ,β

n −
√

λ α ,β
0

)
,

and

(n+ α + β +1)k =
(√

λ α ,β
n +

√
λ α ,β

0

)(√
λ α ,β

n +
√

λ α ,β
1

)
· ... ·

(√
λ α ,β

n +
√

λ α ,β
k−1

)
.

We consider the function M given by

M(x) =
xk

k−1

∏
j=0

(
x−λ α ,β

j

) , x �= λ α ,β
j , j = 0, ...,k−1,

and we choose a smooth function φ on (0,∞) such that

φ(x) =

⎧⎪⎨⎪⎩
0, 0 < x < λ α ,β

k−1 + α+β+1
8 ,

1, x � λ α ,β
k − α+β+1

8 .

Take m = φM . Then,

m(Lα ,β )Rk,∗
α ,β Rk

α ,β f = f , f ∈ Sα ,β .

It is not hard to see that m satisfies condition (15) of proposition 3.1. Hence, by Propo-
sition 3.2 (with a = 0) we infer the following.

PROPOSITION 4.3. Let α,β � −1/2 such that α + β �= −1 . Suppose that p ∈
B(0,π) . Then, the Jacobi spectral multiplier m(Lα ,β ) , where m = φM is as above,

defines a bounded operator from Lp(·)(0,π) into itself.

5. Proof of Theorem 1.2

First of all we establish the following lemma where we define some Jacobi spectral
multipliers that will be useful in the sequel.

LEMMA 5.1. Let ε,γ > 0 , r ∈ N with r > γ and α,β �−1/2 such that α +β �=
−1 . Assume that p ∈ B(0,π) . We define, for each t > 0 , the functions

Yε(t) = (1− e−εt)r, Mε(t) =
(1− e−εt)r

(εt)γ/2
and Hε(t) =

∫ ∞

εt

(1− e−u)r

u1+γ du. (33)
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By mε we represent Yε , Mε or Hε . Then, mε defines a Jacobi spectral multiplier on
Lp(·)(0,π) . Moreover,

sup
ε>0

‖mε(Lα ,β )‖Lp(·)(0,π) < ∞.

Proof. Straightforward manipulations allow us to show that, for every �∈N , there
exists C > 0 such that

sup
ε>0

∣∣t� d�

dt�
mε(t)

∣∣� C,

where C does not depend on ε . Then, by Proposition 3.2 (taken with a = 0) we
concluded the desired results. �

PROPOSITION 5.1. Let ε,γ > 0 , r ∈ N with r > γ and α,β � −1/2 such that
α + β �= −1 . Assume that p ∈ B(0,π) . Then, the operator Iγ,r

ε defined in (3) is
bounded from Lp(·)(0,π) into itself.

Proof. Let f ∈ Sα ,β . We can write

(I−Wα ,β
u )r f =

∞

∑
n=0

Yu

(
λ α ,β

n

)
cα ,β
n ( f )φα ,β

n = Yu(Lα ,β ) f , u > 0,

where the series is actually a finite sum. According to Lemma 5.1, we deduce that,

‖Iγ,r
ε f‖Lp(·)(0,π) � C sup

u>0
‖Yu(Lα ,β ) f‖Lp(·)(0,π)

∫ ∞

ε

du
uγ+1 � C‖ f‖Lp(·)(0,π).

Taking into account that Sα ,β is a dense subspace of Lp(·)(0,π) (Proposition 2.1) the
conclusion follows. �

Proof of Theorem 1.2. Suppose that f ∈ Dp(·)(L
γ

α ,β ) and call g = lim
ε→0+

Iγ,r
ε f .

Since L
−γ
α ,β is a bounded operator from Lp(·)(0,π) into itself (Proposition 3.3), we

have that

L −γ
α ,β g = Cγ,r lim

ε→0+
L −γ

α ,β

∫ ∞

ε

(I−Wα ,β
u )r f

u1+γ du

= Cγ,r lim
ε→0+

∫ ∞

ε

(I−Wα ,β
u )r

u1+γ L −γ
α ,β f du, in Lp(·)(0,π).

We can write

(I−Wα ,β
u )r f

uγ/2
L −γ

α ,β f =
∞

∑
n=0

(
1− e−uλ α,β

n

)r

(
uλ α ,β

n

)γ/2(
λ α ,β

n

)γ/2
cα ,β
n ( f ) φα ,β

n

= Mu(Lα ,β )L −γ/2
α ,β f , u > 0,
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where Mu was defined in (33). According to Lemma 5.1 and Propositions 2.2 and 3.3,
there exists C > 0 such that∥∥∥Mu(Lα ,β )L −γ/2

α ,β

( �

∑
n=0

cα ,β
n ( f )φα ,β

n

)∥∥∥
Lp(·)(0,π)

� C
∥∥∥ �

∑
n=0

cα ,β
n ( f )φα ,β

n

∥∥∥
Lp(·)(0,π)

� C‖ f‖Lp(·)(0,π), � ∈ N and u > 0.

Also, since u−1−γ ∈ L1(ε,∞) , ε > 0, we obtain

L −γ
α ,β

∫ ∞

ε

(I−Wα ,β
u )r f

u1+γ du =
∞

∑
n=0

∫ ∞

ε

(
1− e−uλ α,β

n

)r

(
uλ α ,β

n

)γ
du
u

cα ,β
n ( f ) φα ,β

n

=
∞

∑
n=0

∫ ∞

ελ α,β
n

(1− e−u)r

u1+γ du cα ,β
n ( f ) φα ,β

n

= Hε(Lα ,β ) f , ε > 0,

where Hε was defined in (33).
Suppose that F ∈ Sα ,β . We can write, for every l ∈ N ,

lim
ε→0+

Hε(Lα ,β )F = lim
ε→0+

�

∑
n=0

∫ ∞

ελ α,β
n

(1− e−u)r

u1+γ du cα ,β
n (F)φα ,β

n

=
1

Cγ,r

�

∑
n=0

cα ,β
n (F)φα ,β

n =
F

Cγ,r
,

in the sense of convergence in Lp(·)(0,π) . Since Sα ,β is dense in Lp(·)(0,π) (Proposi-
tion 2.1), Lemma 5.1 leads to

lim
ε→0+

Hε(Lα ,β )( f ) =
f

Cγ,r
.

Thus, we conclude that L −γ
α ,β g = f .

On the other hand, take f ∈Hγ,p(·)
α ,β (0,π) such that f = L

−γ
α ,βg , with g∈Lp(·)(0,π) .

Then, as it has just been proved,

lim
ε→0+

Iγ,r
ε f = Cγ,r lim

ε→0+

∫ ∞

ε

(I−Wα ,β
u )r

u1+γ L −γ
α ,β g du = g,

in the sense of convergence in Lp(·)(0,π) . �

REMARK 5.1. A careful reading of the above proof reveals that we can consider
any r ∈ N , r > γ (not necessarily r < γ � r + 1 ). This fact implies that the operator
L γ

α ,β can be defined by (4), for any r ∈ N , r > γ .
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6. Proof of Theorem 1.3

Assume that γ > 0. It is not hard to see that ∂ γ
t e−at = eiπγaγe−at , t,a > 0. Thus,

we have that, for every f ∈ Sα ,β ∪C∞
c (0,π) ,

∂ γ
t Pα ,β

t f (θ ) =
∞

∑
n=0

eiπγ(λ α ,β
n )γ/2e−t

√
λ α,β

n cα ,β
n ( f )φα ,β

n (θ ), θ ∈ (0,π).

Hence, for every f ∈ Sα ,β ∪C∞
c (0,π) ,

gγ
α ,β ( f )(θ ) < ∞, θ ∈ (0,π).

Our first objective is to establish Lp
ω -boundedness properties of gγ

α ,β -functions.

PROPOSITION 6.1. Let γ > 0 and α,β � −1/2 . Then, gγ
α ,β defines a bounded

(quasi-linear) operator from Lp
w(0,π) into itself, for every 1< p< ∞ and w∈Ap(0,π) .

Proof. For every N ∈ N , we define

G
γ,N
α ,β ( f )(θ ) =

(∫ N

1/N

∣∣∣tγ ∂ γ
t Pα ,β

t ( f )(θ )
∣∣∣2 dt

t

)1/2

, θ ∈ (0,π).

We will show that, for every 1 < p < ∞ and w ∈ Ap(0,π) , there exists C > 0 indepen-
dent of N ∈ N , such that

‖G γ,N
α ,β ( f )‖Lp

w(0,π) � C‖ f‖Lp
w(0,π), f ∈ Lp

w(0,π). (34)

From (34), by using monotone convergence theorem, we deduce that for every 1 < p <
∞ and w ∈ Ap(0,π) , there exists C > 0 satisfying that

‖gγ
α ,β ( f )‖Lp

w(0,π) � C‖ f‖Lp
w(0,π), f ∈ Lp

w(0,π).

In order to show (34) we apply the local Calderón-Zygmund theory [14] in a Banach
valued setting [42].

By proceeding as in [5, Proposition 2.1] we obtain, for each f ,g ∈ Sα ,β ,

22γ

Γ(2γ)

∫ π

0

∫ ∞

0
tγ∂ γ

t Pα ,β
t f (θ )tγ ∂ γ

t Pα ,β
t (g)(θ )dθ

dt
t

=
∫ π

0
f (θ )g(θ )dθ . (35)

Thus, for every N ∈ N , we get

‖G γ,N
α ,β ( f )‖2

L2(0,π) =
Γ(2γ)
22γ ‖ f‖2

L2(0,π), f ∈ Sα ,β . (36)

Hence, gγ
α ,β and G

γ,N
α ,β , N ∈ N , can be extended from Sα ,β to L2(0,π) as a bounded

operators from L2(0,π) into itself.
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Let m ∈ N . According to [3, Lemma 4] we have that∣∣∣∂m
t [te−t2/4u]

∣∣∣� Ce−t2/4uu(1−m)/2, t,u ∈ (0,∞). (37)

By (1) and by taking into account that (11) and (37) the differentiation under the integral
sign is justified, so we can write

∂m
t Pα ,β

t (θ ,ϕ) =
1√
4π

∫ ∞

0
∂m
t

[ te−t2/4u

u3/2

]
Wα ,β

u (θ ,ϕ)du, t > 0 and θ ,ϕ ∈ (0,π).

From (11) and (37) it follows that∣∣∣∂m
t Pα ,β

t (θ ,ϕ)
∣∣∣� C

∫ ∞

0

e−c(t2+(θ−ϕ)2)/u

u(m+3)/2
du

� C

(t2 +(θ −ϕ)2)(m+1)/2
, t > 0 and θ ,ϕ ∈ (0,π). (38)

Let f ∈ L2(0,π) . By (38) we obtain

∂m
t Pα ,β

t f (θ ) =
∫ π

0
∂m
t Pα ,β

t (θ ,ϕ) f (ϕ)dϕ , t > 0 and θ ∈ (0,π).

Thus, if m−1 � γ < m , (38) leads to∣∣∣∂ γ
t Pα ,β

t f (θ )
∣∣∣� C

∫ ∞

0

∫ π

0

∣∣∣∂m
t Pα ,β

t+s (θ ,ϕ)
∣∣∣ | f (ϕ)|dϕsm−γ−1ds

� C
∫ ∞

0

∫ π

0

| f (ϕ)|
[(t + s)2 +(θ −ϕ)2](m+1)/2

dϕsm−γ−1ds

� C
∫ ∞

0

sm−γ−1

(t + s)m+1 ds ‖ f‖L2(0,π) � C
tγ+1 ‖ f‖L2(0,π), t > 0 and θ ∈ (0,π).

Hence, we obtain, for every N ∈ N ,

G
γ,N
α ,β ( f )(θ ) � C

(∫ N

1/N

dt
t3

)1/2‖ f‖L2(0,π), θ ∈ (0,π). (39)

This estimate shows that, for every N ∈ N , G
γ,N
α ,β is a bounded operator from L2(0,π)

into itself. By (36) we conclude that, for every N ∈ N ,

‖G γ,N
α ,β ( f )‖2

L2(0,π) =
Γ(2γ)
22γ ‖ f‖2

L2(0,π), f ∈ L2(0,π). (40)

Note that (40), in contrast with (39), shows that the family {G γ,N
α ,β }N∈N is bounded in

L (L2(0,π)) , the space of bounded operators from L2(0,π) into itself.
Let N ∈ N . We consider the operator

T γ,N
α ,β ( f )(θ ) =

∫ π

0
Kγ,N

α ,β (θ ,ϕ) f (ϕ)dϕ ,
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where, for every θ ,ϕ ∈ (0,π) , θ �= ϕ ,

[Kγ,N
α ,β (θ ,ϕ)](t) = tγ∂ γ

t Pα ,β
t (θ ,ϕ), t ∈ (1/N,N),

and the integral is understood in the L2((1/N,N),dt/t)-Böchner sense.
From (38) we deduce that∥∥∥Kγ,N

α ,β (θ ,ϕ)
∥∥∥

L2((1/N,N),dt/t)
� C

(∫ N

1/N

∣∣∣tγ
∫ ∞

0

sm−γ−1

((t + s)2 +(θ −ϕ)2)(m+1)/2
ds
∣∣∣2 dt

t

)1/2

� C
(∫ N

1/N

t2γ−1

(t + |θ −ϕ |)2γ+2 dt
)1/2

� C
|θ −ϕ | , θ ,ϕ ∈ (0,π), θ �= ϕ . (41)

Here C > 0 does not depend on N ∈ N .
Let f ∈ L2(0,π) and θ /∈ supp( f ) . If h ∈ L2((1/N,N),dt/t) , (41) allows us to

write ∫ N

1/N
h(t)[T γ,N

α ,β ( f )(θ )](t)
dt
t

=
∫ π

0
f (ϕ)

∫ N

1/N
h(t)[Kγ,N

α ,β (θ ,ϕ)](t)
dt
t

dϕ

=
∫ π

0
f (ϕ)

∫ N

1/N
h(t)tγ∂ γ

t Pα ,β
t (θ ,ϕ)

dt
t

dϕ

=
∫ N

1/N
h(t)

∫ π

0
tγ∂ γ

t Pα ,β
t (θ ,ϕ) f (ϕ)dϕ

dt
t

.

Thus, we obtain

[T γ,N
α ,β ( f )(θ )](t) = tγ ∂ γ

t Pα ,β
t ( f )(θ ), a.e. t ∈ (1/N,N).

We are going to show, for every N ∈ N and (θ ,ϕ) ∈ (0,π)2 \D , θ �= ϕ ,∥∥∥∂θ

(
tγ∂ γ

t Pα ,β
t (θ ,ϕ)

)∥∥∥
L2((1/N,N),dt/t)

+
∥∥∥∂ϕ

(
tγ ∂ γ

t Pα ,β
t (θ ,ϕ)

)∥∥∥
L2((1/N,N),dt/t)

� C
|θ−ϕ |2 , (42)

for a certain C > 0 which does not depend on N and the domain D is as in Figure 1.
To simplify we call

Φα ,β (t,z) =
sinh t

2

(cosh t
2 −1+ z)α+β+2

, t,z > 0,

to one of the terms appearing in (23). According to [39, Lemma 4.8] we have that, for
every m ∈ N ,∣∣∣∂m

t Φα ,β (t,z)
∣∣∣� C

{
(cosh t

2 −1+ z)−α−β−(m+3)/2, t � 1, z > 0
(cosh t

2 −1+ z)−α−β−1, t > 1, z > 0,
(43)
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and for θ ,ϕ ∈ (0,π) and −1 < u,v < 1,

∣∣∣∂θ ∂m
t Φα ,β (t,q(θ ,ϕ ,u,v))

∣∣∣+ ∣∣∣∂ϕ ∂m
t Φα ,β (t,q(θ ,ϕ ,u,v))

∣∣∣
� C

{
(cosh t

2 −1+q(θ ,ϕ ,u,v))−α−β−(m+4)/2, t � 1,

(cosh t
2 −1+q(θ ,ϕ ,u,v))−α−β−3/2, t > 1.

(44)

Let m ∈ N . By using (43) and [39, Lemma 4.4] we get

∫ 1

−1

∫ 1

−1

∣∣∣∂m
t Φα ,β (t,q(θ ,ϕ ,u,v))

∣∣∣dΠα(u)dΠβ (v)

� C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ (v)
(cosh t

2 −1+q(θ ,ϕ ,u,v))α+β+(m+3)/2
, t � 1

∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ (v)
(cosh t

2 −1+q(θ ,ϕ ,u,v))α+β+1
, t > 1

� C

(cosh t
2 −1)α+β+1

, t > 0 and θ ,ϕ ∈ (0,π).

Thus, from (23) we can write for each θ ,ϕ ∈ (0,π) and t > 0,

∂m
t Pα ,β

t (θ ,ϕ) = Cα ,β

(
sin

θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2

×
∫ 1

−1

∫ 1

−1
∂m
t Φα ,β (t,q(θ ,ϕ ,u,v))dΠα(u)dΠβ (v).

Assume that m ∈ N is such that m− 1 � γ < m . From (44) and [39, trigonometric
identities in p. 738] we deduce, for every θ ,ϕ ∈ (0,π) and t > 0,

∫ ∞

0
sm−γ−1

∫ 1

−1

∫ 1

−1

∣∣∣∂θ ∂m
t Φα ,β (t + s,q(θ ,ϕ ,u,v))

∣∣∣dΠα(u)dΠβ (v)ds

� C
{∫ max{0,1−t}

0

sm−γ−1

(cosh t+s
2 −1+2sin2 θ−ϕ

4 )α+β+(m+4)/2
ds

+
∫ 1

max{0,1−t}
sm−γ−1

(cosh t+s
2 −1+2sin2 θ−ϕ

4 )α+β+3/2
ds

+
∫ ∞

1
sm−γ−1e−c(α+β+3/2)(t+s)ds

}
< ∞.
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Hence, we can write for θ ,ϕ ∈ (0,π) and t > 0,

tγ∂θ ∂ γ
t Pα ,β

t (θ ,ϕ)

= Cα ,β

(
sin

θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2 e−i(m−γ)π

Γ(m− γ)
tγ

×
[∫ ∞

0
sm−γ−1

∫ 1

−1

∫ 1

−1
∂θ ∂m

t Φα ,β (t + s,q(θ ,ϕ ,u,v))dΠα(u)dΠβ (v)ds

+
(2α +1

4

cos θ
2

sin θ
2

− 2β +1
4

sin θ
2

cos θ
2

)
×
∫ ∞

0
sm−γ−1

∫ 1

−1

∫ 1

−1
∂m
t Φα ,β (t + s,q(θ ,ϕ ,u,v))dΠα(u)dΠβ (v)ds

]
.

By proceeding as in [39, pp. 747-748] (see also the proof of Proposition 4.1), (44) and
Minkowski’s inequality leads to∥∥∥(sin

θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2
tγ

×
∫ ∞

0
sm−γ−1

∫ 1

−1

∫ 1

−1
∂θ ∂m

t Φα ,β (t + s,q(θ ,ϕ ,u,v))dΠα(u)dΠβ (v)ds
∥∥∥

L2((0,∞),dt/t)

�
(

sin
θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2∫ ∞

0
sm−γ−1

∫ 1

−1

∫ 1

−1

×
∥∥∥tγ ∂θ ∂m

t Φα ,β (t + s,q(θ ,ϕ ,u,v))
∥∥∥

L2((0,∞),dt/t)
dΠα(u)dΠβ (v)ds

� C
(

sin
θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ (v)ds

q(θ ,ϕ ,u,v)α+β+2

� C
|θ −ϕ |2 , θ ,ϕ ∈ (0,π), θ �= ϕ . (45)

In a similar way, by using (43) we obtain∥∥∥(sin
θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2
tγ

×
∫ ∞

0
sm−γ−1

∫ 1

−1

∫ 1

−1
∂m
t Φα ,β (t + s,q(θ ,ϕ ,u,v))dΠα(u)dΠβ (v)ds

∥∥∥
L2((0,∞),dt/t)

� C
(

sin
θ
2

sin
ϕ
2

)α+1/2(
cos

θ
2

cos
ϕ
2

)β+1/2∫ 1

−1

∫ 1

−1

dΠα(u)dΠβ (v)ds

q(θ ,ϕ ,u,v)α+β+3/2

� C
|θ −ϕ | � C

|θ −ϕ |2 , θ ,ϕ ∈ (0,π), θ �= ϕ . (46)

Combining (45) and (46) with (27), (28), (29) and (31), we deduce that∥∥∥∂θ Kγ
α ,β (θ ,ϕ)

∥∥∥
L2((0,∞),dt/t)

� C
|θ −ϕ |2 , (θ ,ϕ) ∈ (0,π)2 \D .
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The same procedure allows us to prove that∥∥∥∂ϕKγ
α ,β (θ ,ϕ)

∥∥∥
L2((0,∞),dt/t)

� C
|θ −ϕ |2 , (θ ,ϕ) ∈ (0,π)2 \D .

Thus, (42) is established.
By using now the local Calderón-Zygmund theory for singular integrals (see [14])

in the L2((1/N,N),dt/t)-setting and by taking into account Lemma 4.2, we conclude
that, for every 1 < p < ∞ and w ∈ Ap(0,π) , the operator T γ,N

α ,β can be extended from

L2(0,π) ∩ Lp
w(0,π) to Lp

w(0,π) as a bounded operator T̃ γ,N
α ,β from Lp

w(0,π) into

Lp
w
(
(0,π);L2((1/N,N),dt/t)

)
, and there exists C > 0, which does not depend on N ,

such that ∥∥∥T̃ γ,N
α ,β ( f )

∥∥∥
Lp

w

(
(0,π);L2((1/N,N),dt/t)

) � C‖ f‖Lp
w(0,π), f ∈ Lp

w(0,π). (47)

Let f ∈ Lp
w(0,π) where 1 < p < ∞ and w ∈ Ap(0,π) . We take a sequence ( fn)n∈N ⊆

Lp
w(0,π)∩L2(0,π) such that

fn −→ f , as n → ∞, in Lp
w(0,π).

As in (39) we obtain that

G γ,N
α ,β ( f − fn)(θ ) � C‖ f − fn‖Lp

w(0,π), n ∈ N and θ ∈ (0,π).

Hence,

G γ,N
α ,β ( fn)(θ ) −→ G γ,N

α ,β ( f )(θ ), as n → ∞ for every θ ∈ (0,π).

On the other hand,

T̃ γ,N
α ,β ( f ) = lim

n→∞
T γ,N

α ,β ( fn), in Lp
w

(
(0,π);L2((1/N,N),dt/t)

)
.

Then, there exists a monotone function φ : N −→ N such that

T γ,N
α ,β ( fφ(n))(θ ) −→ T̃ γ,N

α ,β ( f )(θ ), as n → ∞, in L2((1/N,N),dt/t),

for almost every θ ∈ (0,π) . This implies that

G
γ,N
α ,β ( fφ(n))(θ ) −→

∥∥∥T̃ γ,N
α ,β ( f )(θ )

∥∥∥
L2((1/N,N),dt/t)

, as n → ∞,

for almost every θ ∈ (0,π) . We conclude that

G
γ,N
α ,β ( f )(θ ) =

∥∥∥T̃ γ,N
α ,β ( f )(θ )

∥∥∥
L2((1/N,N),dt/t)

, a.e. θ ∈ (0,π),

and from (47) we deduce (34).
Thus the proof of this proposition is completed. �
By using [16, Theorem 1.3] from Proposition 6.1 we infer the following.
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COROLLARY 6.1. Let α,β �−1/2 and γ > 0 . Suppose that p∈B(0,π) . Then,
the fractional square function gγ

α ,β defines a bounded (quasi-linear) operator from

Lp(·)(0,π) into itself.

Also Proposition 6.1 and the polarization formula (35) allow us to obtain the con-
verse inequality for gγ

α ,β .

COROLLARY 6.2. Let α,β � −1/2 and γ > 0 .

(a) If 1 < p < ∞ and w ∈ Ap(0,π) then, for a certain C > 0 ,

‖ f‖Lp
w(0,π) � C‖gγ

α ,β ( f )‖Lp
w(0,π), f ∈ Lp

w(0,π).

(b) If p ∈ B(0,π) , then there exits C > 0 such that

‖ f‖Lp(·)(0,π) � C‖gγ
α ,β ( f )‖Lp(·)(0,π), f ∈ Lp(·)(0,π).

Proof. We are going to prove (b) , (a) can be deduced in a similar way.
For every f ∈ Lp(·)(0,π) and g ∈ Lp′(·)(0,π) , we consider the bilinear operators

T ( f ,g) =
∫ π

0
f (θ )g(θ )dθ ,

and

L( f ,g) =
22γ

Γ(2γ)

∫ π

0

∫ ∞

0
tγ∂ γ

t Pα ,β
t f (θ )tγ ∂ γ

t Pα ,β
t (g)(θ )

dt
t

dθ .

By using Hölder’s inequality in the variable exponent setting (see [18, Lemma 3.2.20])
we can see that T and L are bounded from Lp(·)(0,π)×Lp′(·)(0,π) into C . Since Sα ,β

is a dense subspace of Lp(·)(0,π) and Lp′(·)(0,π) (Proposition 2.1), equality (35) holds
for every f ∈ Lp(·)(0,π) and g ∈ Lp′(·)(0,π) .

Let f ∈ Lp(·)(0,π) . According to the norm conjugate formula ([18, Corollary
3.2.14]), by Proposition 6.1 we can write

‖ f‖Lp(·)(0,π) � 2 sup
g∈Lp′(·)(0,π)

‖g‖
Lp′(·)(0,π)

�1

∣∣∣∫ π

0
f (θ )g(θ )dθ

∣∣∣
� C sup

g∈Lp′(·)(0,π)
‖g‖

Lp′(·)(0,π)
�1

∣∣∣∫ π

0

∫ ∞

0
tγ∂ γ

t Pα ,β
t f (θ )tγ ∂ γ

t Pα ,β
t (g)(θ )

dt
t

dθ
∣∣∣

� C sup
g∈Lp′(·)(0,π)

‖g‖
Lp′(·)(0,π)

�1

∫ π

0
gγ

α ,β ( f )(θ )gγ
α ,β (g)(θ )dθ

� C sup
g∈Lp′(·)(0,π)

‖g‖
Lp′(·)(0,π)

�1

‖gγ
α ,β ( f )‖Lp(·)(0,π) ‖gγ

α ,β (g)‖Lp′(·)(0,π) � C‖gγ
α ,β ( f )‖Lp(·)(0,π).

�
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REMARK 6.1. Note that Proposition 6.1 together with Corollaries 6.1 and 6.2 tell
us that the new norms ||| · |||Lp

w(0,π) and ||| · |||Lp(·)(0,π) defined by

||| f |||Lp
w(0,π) = ‖gγ

α ,β ( f )‖Lp
w(0,π), f ∈ Lp

w(0,π),

||| f |||Lp(·)(0,π) = ‖gγ
α ,β ( f )‖Lp(·)(0,π), f ∈ Lp(·)(0,π),

are equivalent to ‖·‖Lp
w(0,π) on Lp

w(0,π) and to ‖·‖Lp(·)(0,π) on Lp(·)(0,π) , respectively,
provided that the specified conditions are satisfied.

Proof of Theorem 1.3. We first establish that Hγ/2,p(·)
α ,β (0,π) ⊆ T γ,k,p(·)

α ,β (0,π) . As-

sume that f ,g ∈ Sα ,β are such that f = L
−γ
α ,β g . We can write

∂ k
t Pα ,β

t

(
L

−γ/2
α ,β g

)
= (−1)k

∞

∑
n=0

e−t

√
λ α,β

n

(λ α ,β
n )(γ−k)/2

cα ,β
n (g)φα ,β

n = eiπγ∂ k−γ
t Pα ,β

t g, t > 0,

because ∂ δ
t e−at = eiπδ aδ e−at , δ ,a,t > 0. Hence, we get

gγ,k
α ,β
(
L

−γ/2
α ,β g

)
= gk−γ

α ,β (g). (48)

From (48) and Corollaries 6.1 and 6.2 we deduce that, for every f ∈ Sα ,β ,

1
C
‖ f‖

H
γ/2,p(·)
α,β (0,π)

� ‖gγ,k
α ,β ( f )‖Lp(·)(0,π) � C‖ f‖

H
γ/2,p(·)
α,β (0,π)

, (49)

for a certain C > 0. Since Sα ,β is a dense subspace of Hγ/2,p(·)
α ,β (0,π) , gγ,k

α ,β can

be extended to Hγ/2,p(·)
α ,β (0,π) as a bounded operator g̃γ,k

α ,β from Hγ/2,p(·)
α ,β (0,π) into

Lp(·)(0,π) . Moreover, (49) holds for every f ∈ Hγ/2,p(·)
α ,β (0,π) when gγ,k

α ,β is replaced

by g̃γ,k
α ,β .

We are going to see that g̃γ,k
α ,β = gγ,k

α ,β . For every N ∈ N , we define

G
γ,k,N
α ,β ( f )(θ ) =

(∫ N

1/N

∣∣tk−γ ∂ k
t Pα ,β

t f (θ )
∣∣2 dt

t

)1/2
, θ ∈ (0,π).

Let N ∈ N . From (49) it follows that G γ,k,N
α ,β can be extended to Hγ/2,p(·)

α ,β (0,π) as a

bounded operator G̃
γ,k,N
α ,β from Hγ/2,p(·)

α ,β (0,π) into Lp(·)(0,π) and

‖G̃ γ,k,N
α ,β ( f )‖Lp(·)(0,π) � C‖ f‖

H
γ/2,p(·)
α,β (0,π)

, f ∈ Hγ/2,p(·)
α ,β (0,π).

Note that C does not depend on N . Let f ∈ Hγ/2,p(·)
α ,β (0,π) . We choose a sequence

( fn)n∈N ⊆ Sα ,β such that

fn −→ f , as n → ∞, in Hγ/2,p(·)
α ,β (0,π).
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Then,
G γ,k,N

α ,β ( fn) −→ G̃ γ,k,N
α ,β ( f ), as n → ∞, in Lp(·)(0,π).

Since, Lp(·)(0,π)⊆ Lp−(0,π) , there exists a monotone function φ : N −→ N such that

G
γ,k,N
α ,β ( fφ(n))(θ ) −→ G̃

γ,k,N
α ,β ( f )(θ ), as n → ∞, a.e. θ ∈ (0,π).

By proceeding as in (39) we deduce that

G γ,k,N
α ,β ( fφ(n))(θ ) −→ G γ,k,N

α ,β ( f )(θ ), as n → ∞, θ ∈ (0,π).

Then, G̃ γ,k,N
α ,β = G γ,k,N

α ,β and

‖G γ,k,N
α ,β ( f )‖Lp(·)(0,π) � C‖ f‖

H
γ/2,p(·)
α,β (0,π)

.

Since
lim
N→∞

G
γ,k,N
α ,β ( f )(θ ) = gγ,k

α ,β ( f )(θ ), θ ∈ (0,π),

Fatou’s Lemma in variable exponent Lp(·) -spaces (see [18, p. 77]) leads to

‖gγ,k
α ,β ( f )‖Lp(·)(0,π) � C‖ f‖

H
γ/2,p(·)
α,β (0,π)

. (50)

From (49) we also deduce now that

‖ f‖
H

γ/2,p(·)
α,β (0,π)

� C‖gγ,k
α ,β ( f )‖Lp(·)(0,π), f ∈ Hγ/2,p(·)

α ,β (0,π). (51)

By (50) it follows that Hγ/2,p(·)
α ,β (0,π) is contained in T γ,k,p(·)

α ,β (0,π) and by Proposi-
tion 3.3

‖ f‖
T

γ,k,p(·)
α,β (0,π)

� C‖ f‖
H

γ/2,p(·)
α,β (0,π)

, f ∈ Hγ/2,p(·)
α ,β (0,π).

Suppose now that f ∈ T γ,k,p(·)
α ,β (0,π) . In order to show that f ∈ Hγ/2,p(·)

α ,β (0,π) we
can follow the procedure developed in the proof of [5, Proposition 4.1]. Indeed, that
method works because the following properties hold:

(i) There exists C > 0 such that, for every n ∈ N ,

‖φα ,β
n ‖Lp(·)(0,π) � C(n+1)α+β+5/2.

Indeed, according to [18, Theorem 3.3.11], Lp+(0,π) is continuously contained
in Lp(·)(0,π) . Then, from [39, (3)] it follows that

‖φα ,β
n ‖Lp(·)(0,π) � C‖φα ,β

n ‖Lp+(0,π) � C(n+1)α+β+5/2, n ∈ N.

Assume that h ∈ Lp(·)(0,π) . Hölder’s inequality ([18, Lemma 3.2.20]) implies
that

|cα ,β
n (h)| � C(n+1)α+β+5/2‖h‖Lp(·)(0,π), n ∈ N.
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(ii) For every δ > 0, we define fδ = Pα ,β
δ ( f ) and

Fδ =
∞

∑
n=0

(λ α ,β
n )γ/2e−δ

√
λ α,β

n cα ,β
n ( fδ )φα ,β

n .

Property (i) implies that Fδ ∈ Lp(·)(0,π) and fδ = L
−γ/2
α ,β Fδ ∈ Hγ/2,p(·)

α ,β (0,π) ,
δ > 0. We choose � ∈ N such that 2(�− γ) > 1 and � > k . (51) allows us to
write

‖Fδ‖Lp(·)(0,π) = ‖ fδ‖Hγ/2,p(·)
α,β (0,π)

� C‖gγ,�
α ,β ( fδ )‖Lp(·)(0,π), δ > 0.

(iii) As in [5, Proposition 2.6] we can prove that

‖gγ,�
α ,β ( f )‖Lp(·)(0,π) � C‖gγ,k

α ,β ( f )‖Lp(·)(0,π).

Moreover, straightforward manipulations lead to

gγ,�
α ,β ( fδ )(θ ) � gγ,�

α ,β ( f )(θ ), θ ∈ (0,π), δ > 0,

because 2(�− γ) > 1. Then, we obtain

‖Fδ‖Lp(·)(0,π) � C‖gγ,k
α ,β ( f )‖Lp(·)(0,π), δ > 0.

(iv) By using Banach-Alaoglu’s Theorem, Proposition 3.3 and [18, Theorem 3.2.13]

we conclude that f = L
−γ/2
α ,β F , for a certain F ∈ Lp(·)(0,π) such that

‖F‖Lp(·)(0,π) � C‖gγ,k
α ,β ( f )‖Lp(·)(0,π).

Thus, we prove that f ∈ Hγ/2,p(·)
α ,β (0,π) and

‖ f‖
Hγ/2,p(·)

α,β (0,π)
� C‖ f‖

T γ,k,p(·)
α,β (0,π)

. �

7. Proof of Theorem 1.4

In order to establish this theorem we use the ideas developed in the proof of [37,
Proposition 4.3]. First of all, we introduce some spectral multipliers of Hörmander
type, associated with the Jacobi operator.

LEMMA 7.1. Let γ > 0 , 1 < p < ∞ , w ∈ Ap(0,π) and α,β � −1/2 such that
α + β �= −1 . We consider, for each t > 0 , the functions

• m�
ε(t) =

�

∑
j=0

ε j2 jγ

(t +1)γ a
( t

2 j−1

)
, � ∈ N and ε = (ε j)�j=0 ∈ {−1,1}�+1 .
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• M(t) =
(

t +1
t

)γ
φ(t) , where φ ∈ C∞(0,∞) is such that φ(t) = 0 , 0 < t <

λ α ,β
0 /2 ; and φ(t) = 1 , t � λ α ,β

0 .

Then, the spectral multipliers m�
ε(Lα ,β ) and M(Lα ,β ) define bounded operators in

Lp
w(0,π) . Moreover,

sup
�,ε

‖m�
ε(Lα ,β )‖Lp

w(0,π)→Lp
w(0,π) < ∞.

Proof. By Proposition 3.1, it is enough to notice that, for every k ∈ N , there exists
C > 0 such that

sup
t>0

∣∣∣tk dk

dtk
m�

ε(t)
∣∣∣� C, � ∈ N and ε ∈ {−1,1}�+1.

and

sup
t>0

∣∣∣tk dk

dtk
M(t)

∣∣∣� C. �

Proof of Theorem 1.4; the case of Hγ,p(·)
α ,β (0,π)⊆Fγ,2,p(·)

α ,β (0,π) . Let ε =(ε j)�j=0 ∈
{−1,1}�+1 with � ∈ N . We can write,

∞

∑
n=0

m�
ε(λ α ,β

n )(λ α ,β
n +1)γcα ,β

n ( f )φα ,β
n

=
∞

∑
n=0

(λ α ,β
n +1)γcα ,β

n ( f )φα ,β
n

�

∑
j=0

ε j2 jγ

(λ α ,β
n +1)γ

a

(
λ α ,β

n

2 j−1

)

=
�

∑
j=0

ε j2 jγ
∞

∑
n=0

a

(
λ α ,β

n

2 j−1

)
cα ,β
n ( f )φα ,β

n

=
�

∑
j=0

ε j2 jγΦα ,β
j ( f ), f ∈ Lp

w(0,π). (52)

Note that the series
∞

∑
n=0

is actually a finite sum. From Lemma 7.1, it follows that

∥∥∥ �

∑
j=0

ε j2 jγΦα ,β
j ( f )

∥∥∥
Lp

w(0,π)
=
∥∥∥ ∞

∑
n=0

m�
ε (λ

α ,β
n )M(λ α ,β

n )(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp

w(0,π)

� C
∥∥∥ ∞

∑
n=0

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp

w(0,π)
, f ∈ Lp

w(0,π),
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provided that
∞

∑
n=0

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n ∈ Lp

w(0,π) . Also, we get for f ∈ Lp
w(0,π)

∥∥∥ �

∑
j=0

ε j2 jγΦα ,β
j ( f )

∥∥∥
Lp

w(0,π)
� C

∥∥∥ ∑
n∈N

λ α,β
n �2�

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp

w(0,π)
. (53)

Observe that, the constant C > 0 does not depend on ε or � .
By using Khintchine’s inequality ([50, Vol. I, p. 213]) from (53) we deduce that,

for f ∈ Lp
w(0,π)∥∥∥( �

∑
j=0

(2 jγ |Φα ,β
j ( f )|)2

)1/2∥∥∥
Lp

w(0,π)
� C

∥∥∥ ∑
n∈N

λ α,β
n �2�

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp

w(0,π)
,

where C > 0 does not depend on � . According to [16, Theorem 1.3], there exists C > 0
such that∥∥∥( �

∑
j=0

(2 jγ |Φα ,β
j ( f )|)2

)1/2∥∥∥
Lp(·)(0,π)

�C
∥∥∥∑

n∈N

λ α,β
n �2�

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp(·)(0,π)

, f ∈Lp(·)(0,π).

We have taken into account that:

(a) For every n ∈ N , the mapping f �−→ cα ,β
n ( f ) is bounded from Lp(·)(0,π) into

C .

(b) For every j ∈ N , the mapping f �−→ Φα ,β
j ( f ) is bounded from Lp(·)(0,π) into

itself (Proposition 3.1). Also, we used that
√

a2 +b2 � a+b , a,b � 0.

(c) Sα ,β is dense in Lp(·)(0,π) (Proposition 2.1).

Taking � → ∞ , Proposition 3.5 allow us to deduce that∥∥∥( ∞

∑
j=0

(2 jγ |Φα ,β
j ( f )|)2

)1/2∥∥∥
Lp(·)(0,π)

� C‖ f‖
Hγ,p(·)

α,β (0,π)
, f ∈ Hγ,p(·)

α ,β (0,π). �

Next, we prove the converse inclusion of Theorem 1.4. As before, we need to study
previously some Jacobi spectral multipliers. It is convenient to introduce the following
notation. We define,

Ns = {4�+ s : � ∈ N}\{0}, s = 0,1,2,3.

Also we consider the function

b(t) = a(t/2)+a(t)+a(2t), t > 0.

Note that suppb ⊆ [1/4,4] and b(t) = 1, t ∈ [1/2,2] , because a(t)+ a(2t) = 1, t ∈
[1/2,1] , and suppa ⊆ [1/2,2] .
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LEMMA 7.2. Let 1 < p < ∞ , w ∈ Ap(0,π) and α,β � −1/2 such that α +β �=
−1 . We consider, for each t > 0 , the functions

• m�
ε,s(t) =

�

∑
j=0, j∈Ns

ε jb
( t

2 j−1

)
, s = 0,1,2,3 , � ∈ N and ε = (ε j)�j=0 ∈

{−1,1}�+1 ;

• M�(t) =
�

∑
j=0

2 jγ

(t +1)γ a
( t

2 j−1

)
, � ∈ N;

• R�(t) = φ/M�(t) , where φ is as in Lemma 7.1;

• R(t) =
(

t
t +1

)γ
.

Then, the spectral multipliers m�
ε,s(Lα ,β ) , M�(Lα ,β ) , R�(Lα ,β ) and R(Lα ,β ) define

bounded operators in Lp
w(0,π) . Moreover,

sup
s,�,ε

‖m�
ε,s(Lα ,β )‖Lp

w(0,π)→Lp
w(0,π) < ∞,

and
sup

�

(
‖M�(Lα ,β )‖Lp

w(0,π)→Lp
w(0,π) +‖R�(Lα ,β )‖Lp

w(0,π)→Lp
w(0,π)

)
< ∞.

Proof. Again, by Proposition 3.1, it suffices to take into account that, for every
k ∈ N there exists C > 0 for which

sup
t∈(0,∞)

∣∣∣tk dk

dtk
m�

ε,s(t)
∣∣∣� C,

where C > 0 does not depend on s , � or ε . Also, M� = m�
ε in Lemma 7.1, for ε =

(1)�j=0 . Finally, for every k ∈ N , there exists C > 0 such that

sup
t�λ α,β

0 /2

∣∣∣tk dk

dtk
1

M�(t)

∣∣∣� C,

where C > 0 does not depend on � . �

Proof of Theorem 1.4; the case of Fγ,2,p(·)
α ,β (0,π) ⊆ Hγ,p(·)

α ,β (0,π) . Suppose that
s ∈ {0,1,2,3} and n ∈ N\{0} . We define

gα ,β
s,� ( f ) =

�

∑
j=0, j∈Ns

2 jγΦα ,β
j ( f ), � ∈ N and f ∈ L1(0,π).
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There exists at most an unique jn ∈ Ns such that λ α ,β
n ∈ [2 jn−2,2 jn) . Hence,

b

(
λ α ,β

n

2 jn−1

)
= 1 and b

(
λ α ,β

n

2 j−1

)
= a

(
λ α ,β

n

2 j−1

)
= 0, j ∈ Ns, j �= jn.

Observe that m�
ε,s(λ

α ,β
n ) = ε jn , provided that jn � � , and m�

ε,s(λ
α ,β
n ) = 0, otherwise.

We can write

gα ,β
s,� ( f ) =

�

∑
j=0, j∈Ns

2 jγ
∞

∑
n=0

a

(
λ α ,β

n

2 j−1

)
cα ,β
n ( f )φα ,β

n =
∞

∑
n=0

an cα ,β
n ( f )φα ,β

n , f ∈ L1(0,π).

where an = 2 jnγa
(

λ α ,β
n /2 jn−1

)
, if jn � � , and an = 0, otherwise. Note that the above

serie is actually a finite sum. Also, we have that

m�
ε,s(Lα ,β )gα ,β

s,� ( f ) =
∞

∑
n=0

m�
ε,s

(
λ α ,β

n

)
an cα ,β

n ( f )φα ,β
n =

∞

∑
n=0

ε jnan cα ,β
n ( f )φα ,β

n

=
�

∑
j=0, j∈Ns

2 jγε j

∞

∑
n=0

a

(
λ α ,β

n

2 j−1

)
cα ,β
n ( f )φα ,β

n

=
�

∑
j=0, j∈Ns

2 jγε jΦα ,β
j ( f ).

Then,

m�
ε,s(Lα ,β )m�

ε,s(Lα ,β )gα ,β
s,� ( f ) =

∞

∑
n=0

an cα ,β
n ( f )φα ,β

n = gα ,β
s,� ( f ).

Assume that 1 < p < ∞ and w ∈ Ap(0,∞) . From Lemma 7.2 we get

‖gα ,β
s,� ( f )‖Lp

w(0,π) � C‖m�
ε,s(Lα ,β )gα ,β

s,� ( f )‖Lp
w(0,π)

� C
∥∥∥ �

∑
j=0, j∈Ns

2 jγε jΦα ,β
j ( f )

∥∥∥
Lp

w(0,π)
, f ∈ Lp

w(0,π),

where C > 0 does not depend on ε or � . By using Khintchine’s inequality argument
we obtain

‖gα ,β
s,� ( f )‖Lp

w(0,π) � C
∥∥∥ �

∑
j=0, j∈Ns

(2 jγε j|Φα ,β
j ( f )|)2)1/2

∥∥∥
Lp

w(0,π)
, f ∈ Lp

w(0,π),

where C > 0 does not depend on � . According to [16, Theorem 1.3],

‖gα ,β
s,� ( f )‖Lp(·)(0,π) � C

∥∥∥ �

∑
j=0, j∈Ns

(2 jγε j|Φα ,β
j ( f )|)2)1/2

∥∥∥
Lp(·)(0,π)

, f ∈ Sα ,β ,
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where C > 0 does not depend on � . As in the proof of the first inclusion we obtain, for
f ∈ Lp(·)(0,π) ,

‖gα ,β
s,� ( f )‖Lp(·)(0,π) � C

∥∥∥ �

∑
j=0, j∈Ns

(2 jγε j|Φα ,β
j ( f )|)2)1/2

∥∥∥
Lp(·)(0,π)

. (54)

According to (52) we have that, for every f ∈ L1(0,π) ,

∞

∑
n=0

M�(λ α ,β
n )(λ α ,β

n +1)γcα ,β
n ( f )φα ,β

n =
∞

∑
n=0,λ α,β

n �2�

ε jn c
α ,β
n ( f )φα ,β

n =
�

∑
j=0

2 jγΦα ,β
j ( f ).

By using (54), Lemma 7.2 and [16, Theorem 1.3] we can write∥∥∥ ∞

∑
n=0,λ α,β

n �2�

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp(·)(0,π)

=
∥∥∥ ∞

∑
n=0

R(λ α ,β
n )(λ α ,β

n +1)γR�(λ α ,β
n )M�(λ α ,β

n )cα ,β
n ( f )φα ,β

n

∥∥∥
Lp(·)(0,π)

� C
∥∥∥ �

∑
j=0

2 jγΦα ,β
j ( f )

∥∥∥
Lp(·)(0,π)

� C
( 3

∑
s=0

∥∥∥ �

∑
j=0, j∈Ns

2 jγΦα ,β
j ( f )

∥∥∥
Lp(·)(0,π)

+‖Φα ,β
0 ‖Lp(·)(0,π)

)
� C

( 3

∑
s=0

∥∥∥( �

∑
j=0, j∈Ns

(2 jγ |Φα ,β
j ( f )|)2

)1/2∥∥∥
Lp(·)(0,π)

+‖Φα ,β
0 ‖Lp(·)(0,π)

)
� C

∥∥∥( �

∑
j=0

(2 jγ |Φα ,β
j ( f )|)2

)1/2∥∥∥
Lp(·)(0,π)

, f ∈ Lp(·)(0,π). (55)

Suppose now that f =
�

∑
n=m

cα ,β
n ( f )φα ,β

n , where m, � ∈ N , m � � . Since suppa ⊆
[1/2,2] , we have that

Φα ,β
j =

∞

∑
n=0

a

(
λ α ,β

n

2 j−1

)
cα ,β
n ( f )φα ,β

n =
�

∑
n=m

a

(
λ α ,β

n

2 j−1

)
cα ,β
n ( f )φα ,β

n = 0,

provided that j > 2+ log2 � or j < log2 m . Then, from (55) we deduce that∥∥∥ �

∑
n=m

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n

∥∥∥
Lp(·)(0,π)

� C
∥∥∥( 2+log2 �

∑
j=log2 m

(2 jγ |Φα ,β
j ( f )|)2

)1/2∥∥∥
Lp(·)(0,π)

. (56)

Let f ∈ Fγ,2,p(·)
α ,β (0,π) . By (56), the series

�

∑
n=m

(λ α ,β
n )γcα ,β

n ( f )φα ,β
n converges in

Lp(·)(0,π) . Hence, f ∈ Hγ,p(·)
α ,β (0,π) and by (55) and Proposition 3.5, we conclude
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that
‖ f‖

Hγ,p(·)
α,β (0,π)

� C‖ f‖
Fγ,2,p(·)

α,β (0,π)
. �
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variable exponents, vol. 2017 of Lecture Notes in Mathematics, Springer, Heidelberg, 2011.
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