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ALMOST SURE CONVERGENCE FOR END SEQUENCES AND

ITS APPLICATION TO M ESTIMATOR IN LINEAR MODELS

XIN DENG, SHIJIE WANG, RUI WANG, XIUJUAN XIE AND XUEJUN WANG ∗

(Communicated by J. Pečarić)

Abstract. In the paper, an almost sure convergence result for weighted sums of extended nega-
tively dependent random variables is obtained. By using the almost sure convergence result, we
further study the strong consistency of M estimator of the regression parameter in linear models
based on extended negatively dependent random errors under some mild conditions.

1. Introduction

1.1. Brief review

Consider the linear model

Yi = x′iβ + ei, i = 1, . . . ,n, n � 1, (1.1)

where x1,x2, · · · ,xn are p× 1 known design vectors, e1,e2, · · · ,en are random errors,
and β is a p× 1 unknown parameter vector. Suppose that ρ is some suitably chosen
function on R1 . The M estimator of β is defined by β̂n as follows:

n

∑
i=1

ρ(Yi − x′iβ̂n) = min
β∈Rp

n

∑
i=1

ρ(Yi− x′iβ ). (1.2)

M estimators are very generally-used and important examples include maximum
likelihood estimators (MLE) with ρ(x) = − ln f (x) , where f is the common density
function of ei , Huber’s estimators with ρ(x) = x2I(|x|� c)/2+(c|x|−c2/2)I(|x|> c) ,
c > 0, the regression quantile estimators with ρ(x) = αx+ +(1−α)(−x)+ , 0 < α < 1,
where x+ = max(x,0) , and the L q regression estimators with ρ(x) = |x|q , 1 � q � 2.

After Huber (1973) studied M estimators, many statisticians have been interested
in studying this topic. A series of useful results were established. For the details on
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M estimators, one can refer to Chen and Zhao (1995,1996), He and Shao (1996), Yang
(2002), Collins and Szatmari (2004), Georgios (2005), Wu (2006a), Djalil and Didier
(2007), Seija et al. (2007), and so forth. Huber (1973) commented that the restriction
about the assumption of independence is serious. Recently, Wu and Jiang (2011) re-
laxed the independent assumption in the classical M estimators theory and established
the strong consistent estimator of β in the linear model (1.1) with negatively dependent
random errors. Inspired by the literatures above, we will study the M estimator in the
linear model (1.1) with extended negatively dependent random errors, which include
independent random errors and negatively dependent random errors as special cases.

1.2. Concept of extended negatively dependence structure

In this section, we will present the extended negatively dependence structure in-
troduced in Liu (2009).

DEFINITION 1.1. We call random variables {Xn,n � 1} extended negatively de-
pendent (END, in short) if there exists a constant M > 0 such that both

P(X1 > x1,X2 > x2, · · · ,Xn > xn) � M
n

∏
i=1

P(Xi > xi) (1.3)

and

P(X1 � x1,X2 � x2, · · · ,Xn � xn) � M
n

∏
i=1

P(Xi � xi) (1.4)

hold for each n � 1 and all real numbers x1,x2, · · · ,xn.
The concept of END sequence was introduced by Liu (2009). In the case M = 1,

the notion of END random variables reduces to the well-known notion of so-called neg-
atively dependent (ND, in short) random variables, which was introduced by Lehmann
(1966) (cf. also Joag-Dev and Proschan, 1983). For more details about ND random
variables, one can refer to Volodin (2002), Zarei and Jabbari (2011), Sung (2012), Shen
(2011a, 2013), Wang and Si (2015) among others. As it mentioned in Liu (2009), the
END structure is substantially more general than ND structure, it can reflect not only a
negative dependence structure but also a positive one.

Some applications for END sequence have been found. See, for example, Liu
(2009) obtained the precise large deviations for dependent random variables with heavy
tails. Liu (2010) studied the sufficient and necessary conditions of moderate deviations
for dependent random variables with heavy tails. Chen et al. (2010) established the
strong law of large numbers for extend negatively dependent random variables and
showed applications to risk theory and renewal theory. Chen et al. (2011) obtained
the precise large deviations of random sums in presence of negative dependence and
consistent variation. Shen (2011b) presented some probability inequalities for END
sequences and gave some applications. Wu and Guan (2012), Wang et al. (2013, 2014),
Qiu et al. (2013), Wu et al. (2014) and Hu et al. (2015) obtained complete convergence
results for sums or weighted sums of END random variables. Wang and Wang (2013)
established the precise large deviations for random sums of END real-valued random
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variables with consistent variation. Shen (2014) studied the asymptotic approximation
of inverse moments for nonnegative END random variables. Wang et al. (2015) and
Yang et al. (2016) investigated the complete consistency for the estimator of regression
models based on END errors, and so forth. Since END random variables are much
weaker than independent random variables, negatively associated random variables and
ND random variables, studying the limit behavior of END sequence is of interest.

The main purpose of the paper is to study the almost sure convergence for weighted
sums of END random variables. By using the almost sure convergence, we will further
study the strong consistency of M estimator in the linear model (1.1) with END random
errors, which generalizes the corresponding one with ND random errors.

The following concept of stochastic domination will be used in the paper.

DEFINITION 1.2. A sequence of randomvariables {Xn,n � 1} is said to be stochas-
tically dominated by a random variable X if there exists a positive constant C such that

P(|Xn| > x) � CP(|X | > x)

for all x � 0 and n � 1.
This work is organized as follows: some important lemmas will be presented in

Section 2. The almost sure convergence for weighted sums of END random variables
will be provided in Section 3 and the strong consistency of M estimator in a linear
model with END errors will be studied in Section 4, respectively.

For the sake of convenience, throughout this article, �x� denotes the maximum
integer not exceeding x , x+ = max{x,0} � 0, x− = max{−x,0} � 0. And we always
assume that ρ is a nonmonotonic convex function on R1 which ensures the existence of
a M estimator for the linear model (1.1) (see Chen and Zhao, 1996). ψ− and ψ+ stand
for left and right derivatives of ρ , respectively. Choose increasing function ψ such that
ψ−(u) � ψ(u) � ψ+(u) for all u ∈ R1 . The function ψ(·) plays an important role in
the study of the strong consistency of β̂n . Let a denote p× 1 column vector and a′
denote its transpose. Write

‖ a ‖2�
p

∑
i=1

a2
i = a′a, |a| � max

1�i�p
|ai|.

Let Sn � x1x′1 + x2x′2 + · · ·+ xnx′n, suppose that S−1
n exists, and hence, Sn is a positive

definite matrix. Let dn = max1�i�n x′iS−1
n xi.

2. Preliminary lemmas

To prove the main results of the paper, we need the following useful lemmas.

LEMMA 2.1. (cf. Liu, 2010) Let random variables X1,X2, · · · ,Xn be END.
(i) If f1, f2, · · · , fn are all nondecreasing (or nonincreasing) functions, then the

random variables f1(X1), f2(X2), · · · , fn(Xn) are END.
(ii) For each n � 1 , there exists a constant M > 0 such that

E

(
n

∏
j=1

X+
j

)
� M

n

∏
j=1

EX+
j . (2.1)
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LEMMA 2.2. (cf. Shen, 2011b) Let {Xn,n � 1} be a sequence of END ran-
dom variables and {tn,n � 1} be a sequence of nonnegative numbers (or nonpositive
numbers), then for each n � 1 , there exists a constant M > 0 such that

E

(
n

∏
j=1

etiXi

)
� M

n

∏
j=1

EetiXi . (2.2)

LEMMA 2.3. Let t > 0 and {Xn,n � 1} be a sequence of END random variables
with EXi = 0 and |Xi| � bi a.s. (i = 1,2, . . .) , where bi is a positive constant. Denote
Bn = ∑n

i=1 EX2
i . Assume that t ·max1�i�n bi � 1 . Then there exists a constant M > 0

such that

P

(∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣> u

)
� 2M exp{−tu+ t2Bn}, f or all u > 0.

Proof. It follows by |tXi| � 1 a.s. that

etXi =
∞

∑
k=0

(tXi)k

k!
� 1+ tXi +(tXi)2

∞

∑
k=2

1
k!

� 1+ tXi + t2X2
i a.s.,

which together with EXi = 0 yields that

E(etXi) � 1+ tEXi + t2EX2
i � et2EX2

i .

By the inequality above, Markov’s inequality and Lemma 2.2, we can see that for any
u > 0, t > 0, there exists a positive constant M such that

P

(
n

∑
i=1

Xi > u

)
= P(et ∑n

i=1 Xi > etu) � e−tuEet ∑n
i=1 Xi

� Me−tu
n

∏
i=1

EetXi � Me−tu
n

∏
i=1

et2EX2
i

= M exp{−tu+ t2Bn}.
Let −Xi take the place of Xi in the above inequality, we have

P

(
n

∑
i=1

(−Xi) > u

)
= P

(
n

∑
i=1

Xi < −u

)
� M exp{−tu+ t2Bn}.

Therefore,

P

(∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣> u

)
= P

(
n

∑
i=1

Xi > u

)
+P

(
n

∑
i=1

Xi < −u

)

� 2M exp{−tu+ t2Bn}.
The proof is completed. �

The last one is a basic property for stochastic domination. For the proof, one can
refer to Wu (2006b), or Shen et al. (2015).
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LEMMA 2.4. Let {Xn,n � 1} be a sequence of random variables which is stochas-
tically dominated by a random variable X . For any α > 0 and b > 0 , the following
two statements hold:

E|Xn|α I (|Xn| � b) � C1 [E|X |αI (|X | � b)+bαP(|X | > b)] , (2.3)

E|Xn|α I (|Xn| > b) � C2E|X |αI (|X | > b) , (2.4)

where C1 and C2 are positive constants.

3. Almost sure convergence for weighted sums of END random variables

In this section, we will study the almost sure convergence for weighted sums of
END random variables, which can be applied to establish the strong consistency of M
estimator in a linear model with END errors.

Our main result is as follows.

THEOREM 3.1. Let {Xn,n � 1} be a sequence of END identically distributed
random variables with mean zero, and for some 0 < β � 1,

E|X1|1/β < ∞. (3.1)

Let {ank,1 � k � n,n � 1} be an array of constants such that

|ank| � cn−β for 1 � k � n, n � 1, (3.2)

where c is a positive constant. Assume further that there exists a constant α > 0 such
that

n

∑
k=1

|ank|p � cn−α for all n, (3.3)

where p = min( 1
β ,2) . Then,

Tn �
n

∑
k=1

ankXk → 0 a.s. n → ∞. (3.4)

Proof. It is easily seen that Tn = ∑n
k=1 a+

nkXk −∑n
k=1 a−nkXk, so, without loss of

generality, we assume that ank > 0 for all 1 � k � n,n � 1.

Let ε > 0 be given, N = � 2
α +1� , Ank = a−1

nk n−αβ/2 , Bk = εkβ

Nc . For k � n , let

X (1)
nk = XkI(Xk�Ank) +AnkI(Xk>Ank),

X (2)
nk = XkI(Xk>Bk),

X (3)
nk = Xk −X (1)

nk −X (2)
nk = (Xk −Ank)I(Ank<Xk�Bk) −AnkI(Xk>Bk),

and

T (i)
n =

n

∑
k=1

ankX
(i)
nk , i = 1,2,3.
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Then,

Tn =
3

∑
i=1

T (i)
n . (3.5)

Let Ynk = nαβ/2ankX
(1)
nk . For fixed n � 1, it is easily seen that {Ynk,1 � k � n}

are also END random variables by Lemma 2.1. And Ynk � nαβ/2ankAnk = 1,EYnk =
nαβ/2ankEX (1)

nk � nαβ/2ankEXk = 0. It is easy to verify

ey � 1+ y+ |y|p for y � 1, 1 � p � 2,

which implies that

eYnk � 1+Ynk + |Ynk|p.

It follows by the inequality above and the fact EYnk � 0 that

EeYnk � 1+EYnk +E|Ynk|p � 1+E|Ynk|p � eE|Ynk|p . (3.6)

Noting that |X (1)
nk | � |Xk| , p � 1/β , E|X1|p < ∞, we have by Lemma 2.2, (3.3) and

(3.6) that

E exp(nαβ/2T (1)
n ) = E exp

(
n

∑
k=1

Ynk

)
� M

n

∏
k=1

E exp(Ynk) � M
n

∏
k=1

exp(E|Ynk|p)

= M
n

∏
k=1

exp
(
nαβ p/2ap

nkE|X (1)
nk |p

)
� M exp(nα/2E|X1|p

n

∑
k=1

ap
nk)

� M exp(cE|X1|pn−α/2) � c1,

where c1 is a positive constant. It follows by Markov’s inequality and the inequality
above that

∞

∑
n=1

P(T (1)
n � ε) �

∞

∑
n=1

exp(−εnαβ/2)E exp(nαβ/2T (1)
n )

� c1

∞

∑
n=1

exp(−εnαβ/2) < ∞.

By the Borel-Cantelli lemma,

P(T (1)
n � ε, i.o.) = 0.

Thus,

P

(
limsup

n→∞
T (1)
n � ε

)
� P(T (1)

n � ε, i.o.) = 0.
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Since ε > 0 is arbitrary, we have

P(limsup
n→∞

T (1)
n > 0) = 0,

i.e.,

limsup
n→∞

T (1)
n � 0 a.s. (3.7)

It follows by (3.1) that

∞

∑
k=1

P(|Xk| > Bk) =
∞

∑
k=1

P(|X1| > Bk)

=
∞

∑
k=1

∞

∑
i=k

P
( ε

Nc
iβ < |X1| � ε

Nc
(i+1)β

)

=
∞

∑
i=1

i

∑
k=1

EI
( ε

Nc
iβ < |X1| � ε

Nc
(i+1)β

)

=
∞

∑
i=1

E
(
iI
( ε

Nc
iβ < |X1| � ε

Nc
(i+1)β

))

�
(

Nc
ε

)1/β ∞

∑
i=1

E|X1|1/β I
( ε

Nc
iβ < |X1| � ε

Nc
(i+1)β

)

�
(

Nc
ε

)1/β
E|X1|1/β < ∞.

By the Borel-Cantelli lemma,

P(|Xk| > Bk, i.o.) = 0.

Therefore,

∞

∑
k=1

X2
k I(|Xk| > Bk) < ∞ a.s..

Thus, by the Schwarz’s inequality and (3.3),

0 � T (2)
n =

n

∑
k=1

ankX
(2)
nk �

(
n

∑
k=1

a2
nk

)1/2( n

∑
k=1

X2
k I(Xk>Bk)

)1/2

�
(

c2−p
n

∑
k=1

ap
nk

)1/2( n

∑
k=1

X2
k I(Xk>Bk)

)1/2

�
√

c3−pn−α/2

(
n

∑
k=1

X2
k I(Xk>Bk)

)1/2

→ 0 a.s., n → ∞. (3.8)
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Now we prove limsupn→∞ T (3)
n � 0 a.s. . It follows by (3.2) that

ank(Xk −Ank)I(Ank<Xk�Bk) � ankBk � ε/N.

Therefore,

{T (3)
n � ε} =

{
n

∑
k=1

ank(Xk −Ank)I(Ank<Xk�Bk) −
n

∑
k=1

ankAnkI(Xk>Bk) � ε

}

⊂
{

n

∑
k=1

ank(Xk −Ank)I(Ank<Xk�Bk) � ε

}

⊂ {There exist at least N subscripts k such that Xk > Ank} .

Noting that β p � 1 and E|X1|p < ∞ , we have by (3.3) that

P(T (3)
n � ε) � ∑

1�k1<k2<···<kN�n

P(Xk1 > Ank1 ,Xk2 > Ank2 , · · · ,XkN > AnkN )

� M ∑
1�k1<k2<···<kN�n

N

∏
i=1

P(Xki > Anki)

� M ∑
1�k1<k2<···<kN�n

N

∏
i=1

P(|Xki | > Anki)

� M

(
n

∑
k=1

P(|Xk| > Ank)

)N

� M

(
n

∑
k=1

A−p
nk E|X1|p

)N

= M

(
n

∑
k=1

ap
nkn

αβ p/2E|X1|p
)N

� M(cE|X1|p)Nn−αN/2.

Choosing N = � 2
α + 1� such that αN/2 > 1, we have ∑∞

n=1 P(T (3)
n � ε) < ∞ for any

given ε > 0. Similar to the proof of (3.7), we have

limsup
n→∞

T (3)
n � 0 a.s.

Combining (3.5), (3.7) and (3.8), we get

limsup
n→∞

Tn � 0 a.s. (3.9)

Replacing Xi by −Xi in (3.9), we can get

liminf
n→∞

Tn � 0 a.s. (3.10)

The desired result (3.4) follows from (3.9) and (3.10) immediately. This completes the
proof of the theorem. �

Similar to the proof of Theorem 3.1, we can get the following result by using
Lemma 2.4. The details are omitted.
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THEOREM 3.2. Let {Xn,n � 1} be a sequence of END random variables, which
is stochastically dominated by a random variable X . Suppose that E|X |1/β < ∞ for
some 0 < β � 1 and EXn = 0 . If conditions (3.2) and (3.3) are satisfied, then (3.4)
holds.

4. Strong consistency of M estimator in a linear model with END errors

In Section 3, we give an almost sure convergence result for weighted sums of END
random variables. By using the almost sure convergence result, we will further study
the strong consistency of M estimator in a linear model with END errors. The main
idea is inspired by Wu and Jiang (2011). Our main results are as follows.

THEOREM 4.1. In the model (1.1), assume that e,e1,e2, · · · are END random
errors with identical distribution. There exist positive constants Δ,c1,c2, and δ ∈ (0,1]
such that the following conditions are satisfied:

ψ(u± t)−ψ(u) is monotonic on u ∈ R1, and ψ(u± t)−ψ(u) � c1,

for t ∈ (0,Δ),u ∈ R1, (4.1)

or
|ψ(u)| � c1, for u ∈ R1; (4.1′)

Eψ(e) = 0, and |Eψ(e+u)|� c2|u|, for |u| < Δ; (4.2)

dn � c1n
−δ ; (4.3)

E|ψ(e)|1/δ < ∞ when 0 < δ < 1, and E|ψ(e)|α < ∞ for some α > 1 when δ = 1.
(4.4)

Then, β̂n is a strongly consistent estimator of β .

Proof. Let β̂n be the minimizer of (1.2) and β0 be the true parameter. Let xni =
S−1/2

n xi , βn0 = S1/2
n β0 , 1 � i � n. The model (1.1) can be rewritten as

Yi = x′niβn0 + ei, 1 � i � n, (4.5)

and we have
n

∑
i=1

xnix
′
ni = Ip,

n

∑
i=1

‖xni‖2 = p, dn = max
1�i�n

‖xni‖2, (4.6)

where Ip is the p× p identity matrix.

Let β̂n0 be an M estimator of βn0 in the model (4.5), it follows that β̂n0 = S1/2
n β̂n .

Without loss of generality, we can suppose that the true parameter β0 = 0 in the model
(1.1), i.e., βn0 = 0 in the model (4.5). Let

n

∑
i=1

ρ(ei− x′iβ̂n0) = min
β∈Rp

n

∑
i=1

ρ(ei− x′iβ ). (4.7)
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Denote the unit sphere U = {β : β ∈ Rp,‖β‖ = 1} . Let ε > 0 be any given con-
stant. Without loss of generality, it can be assumed that 2

√
c1ε < Δ. Define

Dn(β ) =
n

∑
i=1

{ρ(ei− x′niβ )−ρ(ei)}, β ∈ Rp.

Then, Dn(·) is a convex function and Dn(0) = 0.
Let ωni = −εnδ/2xni,r ∈U, by the definition of ψ , we have

Dn(εnδ/2r) =
n

∑
i=1

{ρ(ei− εnδ/2x′nir)−ρ(ei)}

=
n

∑
i=1

∫ ωnir

0
{ψ(ei + t)−ψ(ei)}dt +

n

∑
i=1

ω ′
nirψ(ei)

� I1n(r)+ I2n(r).

Hence,

inf
r∈U

Dn(εnδ/2r) � inf
r∈U

I1n(r)+ inf
r∈U

I2n(r) � inf
r∈U

I1n(r)− sup
r∈U

|I2n(r)|. (4.8)

We can divide U into N equal parts, U1,U2, · · · ,UN , such that the diameter of
each part is less than n−2 , and N � (2n2 +1)p. Let Tj be the smallest close convex set
covering Uj. For a fixed Tj , there are following three cases.

(i) ω ′
nir � 0 for all r∈Tj, then there exists a ri j ∈Tj such that ω ′

niri j = infr∈Tj{ω ′
nir} ;

(ii) ω ′
nir � 0 for all r∈Tj, then there exists a ri j ∈Tj such that ω ′

niri j = supr∈Tj
{ω ′

nir} ;

(iii) ω ′
nir1 > 0 for some r1 ∈ Tj, and ω ′

nir2 < 0 for some r2 ∈ Tj, then there exists a
ri j ∈ Tj such that ω ′

niri j = 0.

Let

Ri(t) = ψ(ei + t)−ψ(ei), R̃i(t) = Ri(t)−ERi(t).

By the monotonicity of ψ , we know that Ri(t) and ERi(t) are increasing on t , com-
bining the selection of ri j and U ⊂ ∪N

j=1Tj, we get

inf
r∈U

I1n(r) = inf
r∈U

n

∑
i=1

∫ ω ′
nir

0
Ri(t)dt � inf

1� j�N
inf
r∈Tj

n

∑
i=1

∫ ω ′
nir

0
Ri(t)dt

� inf
1� j�N

n

∑
i=1

∫ ω ′
niri j

0
Ri(t)dt = inf

1� j�N

{
n

∑
i=1

∫ ω ′
niri j

0
R̃i(t)dt+

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

}

= min
1� j�N

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

[
1+

∑n
i=1

∫ ω ′
niri j

0 R̃i(t)dt

∑n
i=1

∫ ω ′
niri j

0 ERi(t)dt

]

� min
1� j�N

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

⎡
⎣1−

∣∣∣∑n
i=1

∫ ω ′
niri j

0 R̃i(t)dt
∣∣∣

∑n
i=1

∫ ω ′
niri j

0 ERi(t)dt

⎤
⎦ . (4.9)
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Let r ∈Uj and ri j ∈ Tj. By (4.6) and the definitions of Uj and Tj , for sufficiently large
n ,

−
n

∑
i=1

(x′niri j)2 +
n

∑
i=1

(x′nir)
2 �

∣∣∣∣∣
n

∑
i=1

((x′niri j)2 − (x′nir)
2)

∣∣∣∣∣=
∣∣∣∣∣

n

∑
i=1

(ri j − r)′xnix
′
ni(ri j + r)

∣∣∣∣∣
�

n

∑
i=1

‖ri j − r‖‖xni‖2(‖ri j − r‖+2‖r‖)

�
n

∑
i=1

n−2(n−2 +2)‖xni‖2 � 3n−2p < 1/2,

which combing (4.6) yields that

n

∑
i=1

(x′niri j)2 >
n

∑
i=1

(x′nir)
2 −1/2 =

n

∑
i=1

r′xnix
′
nir−1/2

= r′
n

∑
i=1

xnix
′
nir−1/2 = ‖r‖2−1/2

= 1/2, 1 � j � N. (4.10)

By (4.3), (4.6) and the selection of ε , for sufficiently large n , and for i = 1,2, . . . ,n and
j = 1,2, . . . ,N,

|ω ′
niri j| = |εnδ/2x′niri j| � εnδ/2‖xni‖(‖ri j − r‖+‖r‖)

� εnδ/2d1/2
n (n−2 +1) � 2

√
c1ε < Δ, (4.11)

and by (4.2) and (4.10),

min
1� j�N

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt � min

1� j�N

n

∑
i=1

∫ ω ′
niri j

0
c2tdt

� c2

2
min

1� j�N

n

∑
i=1

(ω ′
niri j)2

=
c2ε2nδ

2
min

1� j�N

n

∑
i=1

(x′niri j)2

� c2ε2nδ /4. (4.12)

For fixed j = 1,2, . . . ,N, let Yni =
∫ ω ′

niri j
0 R̃i(t)dt.

(i) If (4.1) holds, then ψ(ei + t)−ψ(ei) is monotonic on ei , and thus for fixed n �
1, {Yni, i � n} are monotonic on ei , which implies that for fixed n � 1, {Yni,1 � i � n}
are END random variables with EYni = 0 by Lemma 2.1. It follows by (4.1) and (4.11)
that

|Yni| � 2c1|ω ′
niri j| < 2c1Δ � c3.
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By (4.1) and (4.11) again, we have

Bn �
n

∑
i=1

EY 2
ni =

n

∑
i=1

E

(∫ ω ′
niri j

0
R̃i(t)dt

)2

=
n

∑
i=1

E

(∫ ω ′
niri j

0
Ri(t)dt−E

(∫ ω ′
niri j

0
Ri(t)dt

))2

�
n

∑
i=1

E

(∫ ω ′
niri j

0
Ri(t)dt

)2

=
n

∑
i=1

E

(∫ ω ′
niri j

0
Ri(t)dt

∫ ω ′
niri j

0
Ri(t)dt

)

� c1

n

∑
i=1

|ω ′
niri j|

∫ ω ′
niri j

0
ERi(t)dt � c3

2

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt. (4.13)

Let u = 1
2 ∑n

i=1
∫ ω ′

niri j
0 ERi(t)dt,t = 1/(2c3). It follows that tc3 � 1. Applying

Lemma 2.3 for {Yni,1 � i � n} , we have by (4.12), (4.13) and N � (2n2 +1)p that

P

(
N⋃

j=1

(∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣� 1
2

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

))

�
N

∑
j=1

P

(∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣� 1
2

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

)

� 2M
N

∑
j=1

exp

(
− 1

4c3

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt +

1

4c2
3

Bn

)

� 2M
N

∑
j=1

exp

(
− 1

4c3

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt +

1
8c3

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

)

� 2M
N

∑
j=1

exp

(
− c2ε2

32c3
nδ
)

� 2M(2n2 +1)p exp

(
− c2ε2

32c3
nδ
)

,

which implies that

∞

∑
n=1

P

(
N⋃

j=1

(∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣� 1
2

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

))
< ∞. (4.14)

(ii) If (4.1′) hold, i.e., |ψ(u)|� c1 . Since Yni =
∫ ω ′

niri j
0 (ψ(ei +t)−Eψ(ei+t))dt−∫ ω ′

niri j
0 (ψ(ei)−Eψ(ei))dt �Y (1)

ni −Y (2)
ni , it follows that for fixed n � 1, {Y (1)

ni ,1 � i � n}
and {Y (2)

ni ,1 � i � n} are both monotonic on ei . Hence, for fixed n � 1, it can be

checked that {Y (1)
ni ,1 � i � n} and {Y (2)

ni ,1 � i � n} are both END random variables

with EY ( j)
ni = 0, j = 1,2. It follows by (4.1′) and (4.11) that

|Y ( j)
ni | � 2c1|ω ′

niri j| < 2c1Δ � c3, j = 1,2.
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By (4.1′) and (4.11) again, we have

B( j)
n �

n

∑
i=1

E(Y ( j)
ni )2 �

n

∑
i=1

4c2
1|ω ′

niri j|2 =
n

∑
i=1

4c2
1ε2nδ |x′niri j|2

� 4c2
1ε2nδ

n

∑
i=1

‖xni‖2‖ri j‖2 � 4c2
1ε2nδ

n

∑
i=1

‖xni‖2(‖ri j − r‖+‖r‖)2

� 4c2
1ε2nδ

n

∑
i=1

‖xni‖2(n−2 +1)2 � 16pc2
1ε2nδ . (4.15)

Choose 0 < ε1 � 1 such that A � c2ε1
2×162pc2

1
� 1

c3
. Let u = 1

16c2ε2nδ > 0,t = A > 0.

It follows that tc3 � 1. Applying Lemma 2.3 for {Y (1)
ni ,1 � i � n} and {Y (2)

ni ,1 � i � n} ,
we have by (4.12) and (4.15) that

P

(
N⋃

j=1

(∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣� 1
2

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

))

�
N

∑
j=1

P

(∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣� c2ε2nδ

8

)

�
N

∑
j=1

[
P

(∣∣∣∣∣
n

∑
i=1

Y (1)
ni

∣∣∣∣∣� c2ε2nδ

16

)
+P

(∣∣∣∣∣
n

∑
i=1

Y (2)
ni

∣∣∣∣∣� c2ε2nδ

16

)]

�
N

∑
j=1

4M exp(−tu+ t2Bn) �
N

∑
j=1

4M exp

(
− c2

2ε1ε2

4×163pc2
1

nδ
)

� 4M(2n2 +1)p exp

(
− c2

2ε1ε2

4×163pc2
1

nδ
)

.

Thus, (4.14) is also established. By Borel-Cantelli Lemma,

P

(
N⋃

j=1

(∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣� 1
2

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

)
, i.o.

)
= 0,

thus,

P

(
N⋂

j=1

(∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣< 1
2

n

∑
i=1

∫ ω ′
niri j

0
ERi(t)dt

)
, for sufficiently large n

)
= 1.

By the definition of Yni , with probability one (wp1, in short), for sufficiently large n ,
for ∀ j = 1,2, · · · ,N , ∣∣∣∑n

i=1
∫ ω ′

niri j
0 R̃i(t)dt

∣∣∣
∑n

i=1
∫ ω ′

niri j
0 ERi(t)dt

<
1
2
.
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So, wp1, for sufficiently large n ,

max
1� j�N

∣∣∣∑n
i=1

∫ ω ′
niri j

0 R̃i(t)dt
∣∣∣

∑n
i=1

∫ ω ′
niri j

0 ERi(t)dt
<

1
2
. (4.16)

Substitute the above inequality and (4.12) in (4.9), we can see that wp1, for sufficiently
large n ,

inf
r∈U

I1n(r) � 1
8
c2ε2nδ . (4.17)

Denote

xni =

⎛
⎜⎜⎜⎝

xni1

xni2
...

xnip

⎞
⎟⎟⎟⎠ , r =

⎛
⎜⎜⎜⎝

r1

r2
...
rp

⎞
⎟⎟⎟⎠ , ani =

{ xni j

nδ/2 , i � n,

0, i > n
for fixed j = 1,2, . . . , p.

It follows by (4.3) and (4.6) that for fixed j = 1,2, . . . , p , |xni j| � ‖xni‖ � d1/2
n �√

c1n−δ/2, and ∑n
i=1 x2

ni j = 1, thus

|ani| � √
c1n

−δ , n � 1, 1 � i � n.

(i) When δ � 1/2, i.e., 1
δ � 2, it follows that p � min( 1

δ ,2) = 2 and

n

∑
i=1

|ani|p =
n

∑
i=1

a2
ni = n−δ

n

∑
i=1

x2
ni j = n−δ .

(ii) When 1
2 < δ < 1, we have 1 < 1/δ < 2. Thus, p � min( 1

δ ,2) = 1
δ , and 1

2( 1
δ −1) >

0, by Hölder’s inequality,

n

∑
i=1

|ani|p =
n

∑
i=1

|ani|1/δ = n−
1
2

n

∑
i=1

|xni j|1/δ

� n−
1
2

(
n

∑
i=1

|xni j| 1
δ ·2δ

) 1
2δ

n
2δ−1
2δ = n−

1
2 ( 1

δ −1).

(iii) When δ = 1, without loss of generality, we can assume that 1 < α < 2 in (4.4).
Thus, p � min(α,2) = α , by the Hölder’s inequality,

n

∑
i=1

|ani|p =
n

∑
i=1

|ani|α = n−
α
2

n

∑
i=1

|xni j|α

� n−
α
2

(
n

∑
i=1

|xni j|α 2
α

) α
2

n
2−α

2 = n−(α−1).



ALMOST SURE CONVERGENCE FOR END SEQUENCES 979

Because ψ(ei) is increasing on ei, by Lemma 2.1, {ψ(ei); i � 1} is also a sequence of
END random variables. By applying Theorem 3.1 for {ψ(ei), i � 1} and {ani,1 � i �
n,n � 1}, we have by (4.4) that for fixed j = 1,2, . . . , p,

n

∑
i=1

aniψ(ei) = n−δ/2
n

∑
i=1

xni jψ(ei) → 0 a.s., n → ∞.

Thus,

n−δ sup
r∈U

|I2n(r)| = n−δ sup
r∈U

∣∣∣∣∣
n

∑
i=1

ω ′
nirψ(ei)

∣∣∣∣∣= n−δ sup
r∈U

∣∣∣∣∣
n

∑
i=1

εnδ/2x′nirψ(ei)

∣∣∣∣∣
= εn−δ/2 sup

r∈U

∣∣∣∣∣
n

∑
i=1

p

∑
j=1

xni jr jψ(ei)

∣∣∣∣∣= εn−δ/2 sup
r∈U

∣∣∣∣∣
p

∑
j=1

(
n

∑
i=1

xni jψ(ei)

)
r j

∣∣∣∣∣
� εn−δ/2 sup

r∈U

√√√√ p

∑
j=1

(
n

∑
i=1

xni jψ(ei)

)2
√√√√ p

∑
j=1

r2
j

= ε

√√√√ p

∑
j=1

(
n−δ/2

n

∑
i=1

xni jψ(ei)

)2

→ 0 a.s., n → ∞,

which implies that wp1, for sufficiently large n ,

sup
r∈U

|I2n(r)| � c2ε2

16
nδ .

Substitute the above inequality and (4.17) in (4.8), we have wp1, for sufficiently large
n ,

inf
r∈U

Dn(εnδ/2r) � c2ε2nδ /16 > 0. (4.18)

Closed surface S =
{

β : β ∈ Rp,‖β‖ = εnδ/2
}

divides Rp into two parts,

A =
{

β : β ∈ Rp,‖β‖ < εnδ/2
}

and

B =
{

β : β ∈ Rp,‖β‖ � εnδ/2
}

.

Because Dn(·) is a convex function, Dn(0) = 0, 0 is a interior point of A , and
infβ∈S Dn(β ) = infr∈U Dn(εnδ/2r) > 0 = Dn(0) from (4.18). Thus, for all β ∈B,Dn(β )
> 0. On the other hand, it follows by the definition (4.7) of β̂n0 that Dn(β̂n0) � 0. Thus,
β̂n0 ∈ A, i.e. wp1, for sufficiently large n ,

‖β̂n0‖ < εnδ/2, for any given ε > 0,
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which implies that wp1,

n−δ/2‖β̂n0‖→ 0, n → ∞. (4.19)

Let λn be the smallest eigenvalue of Sn which is a positive definite matrix. Then

λ 1/2
n is the smallest eigenvalue of S1/2

n , and λ−1
n is the maximum eigenvalue of S−1

n .
By (3.10) of Chen and Zhao (1996) and (4.3), for fixed n0 ,

λn0λ−1
n � tr(Sn0S

−1
n ) =

n0

∑
i=1

tr(xi(x′iS
−1
n ))

=
n0

∑
i=1

tr((x′iS
−1
n )xi) =

n0

∑
i=1

x′iS
−1
n xi

� n0dn � n0c1n
−δ .

Therefore, let c4 =
√

n0c1
λn0

> 0, we have 1 � c4λ 1/2
n n−δ/2. Combining ‖S1/2

n β̂n‖ �

λ 1/2
n ‖β̂n‖ and (4.19), we can get that wp1,

‖β̂n‖ � c4n
−δ/2‖λ 1/2

n β̂n‖ � c4n
−δ/2‖S1/2

n β̂n‖
= c4n

−δ/2‖β̂n0‖→ 0, n → ∞,

i.e. wp1,

β̂n → 0, n → ∞.

This completes the proof of the theorem. �

By using Lemma 2.4 and Theorem 3.2, we can get the following result for END
random errors, which is stochastically dominated by a random variable. The proof is
similar to that of Theorem 4.1, so the details are omitted.

THEOREM 4.2. In the model (1.1), assume that e1,e2, · · · are END random er-
rors, which are stochastically dominated by a random variable e. There exist positive
constants Δ,c,c1,c2,δ ∈ (0,1] such that (4.1) (or (4.1′)), (4.3), (4.4) hold, and

Eψ(ek) = 0, and |Eψ(ek +u)|� c2|u|, for |u| < Δ,k � 1.

Then β̂n is a strongly consistent estimator of β .
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