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THE LOG–MINKOWSKI INEQUALITIES FOR QUERMASSINTEGRALS

WEI WANG AND MING FENG

(Communicated by J. Pečarić)

Abstract. Recently, Stancu established the log-Minkowski inequality for non-symmetric convex
bodies. In this article, we establish the log-Minkowski inequality for quermassintegrals, which
is more general than Stancu’s results.

1. Introduction

Böröczky et al. [1] established the plane log-Brunn-Minkowski inequality and
the plane log-Minkowski inequality for origin-symmetric convex bodies. For n � 3,
they [1] conjectured that there exists the log-Brunn-Minkowski inequality and log-
Minkowski inequality for origin-symmetric convex bodies in R

n , and showed that these
two inequalities are equivalent. Saroglou [13] established the log-Minkowski inequality
for unconditional convex bodies. Ma [12] gave a new proof of the plane log-Minkowski
inequality for origin-symmetric convex bodies.

Böröczky et al. [1] also pointed out that while the log-Minkowski inequality holds
for two origin-symmetric cubes, there exists a translate of one of the cubes which makes
the inequality false. It means that the log-Minkowski inequality cannot hold for all
convex bodies.

Recently, Stancu [15] established the log-Minkowski inequality for general convex
bodies without the symmetry assumption.

THEOREM A. Let K and L be two convex bodies in R
n that contain the origin in

their interiors. Then
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with equality if and only if K is homothetic to L. Here d vL denotes the cone-volume

probability measure of L.

(
hK

hL

)
average

:=

∫
Sn−1

hK

hL
dvL∫

Sn−1 dvL
,

(
hK

hL

)
max

:= max
u∈suppvL

hK

hL
,(

hK

hL

)
min

:= min
u∈suppvK

hK

hL
. Here supp vK and supp vL will be denoted by the support of

the cone-volume measure of vK and vL , respectively.

By adapting the proofs in [15], we will generalize Stancu’s results. The main
purpose of this paper is to establish the log-Minkowski inequality for quermassintegrals
as follows.

THEOREM 1.1. Let K and L be two convex bodies in R
n that contain the origin

in their interiors. For i = 0, . . . ,n−1 , then
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with equality if and only if K is homothetic to L. Here dvi,L denotes the mixed cone-

volume probability measure of L.

(
hK

hL

)
i,average

:=

∫
Sn−1

hK

hL
dvi,L∫

Sn−1 dvi,L
,

(
hK

hL

)
i,max
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hK

hL
,

(
hK

hL

)
i,min

:= min
u∈suppvi,K

hK

hL
.

2. Notation and background material

For general reference for the theory of convex (star) bodies the reader may wish to
consult the books of Gardner [3], Gruber [7], and Schneider [14].

The setting for this paper is the n -dimensional Euclidean space R
n . Let K n

denote the set that consists of all convex bodies (compact, convex subsets with non-
empty interiors) in R

n , and let K n
0 denote the set of convex bodies that contain the

origin in their interiors. The unit ball and its surface in R
n are denoted by B and Sn−1 ,

respectively. We write V (K) for the volume of the compact set K in R
n . As usual,

V (B) = ωn . The support function of K ∈ K n,hK(·) , is defined on Sn−1 by

hK(u) = max{u · x : x ∈ K}. (2.1)

If K ∈ K n
0 , then the polar body of K , K∗ , is defined by

K∗ := {x ∈ R
n : x · y � 1,∀y ∈ K}. (2.2)

The radial function ρL : Sn−1 → [0,∞) of a compact star-shaped set about the
origin, L ∈ R

n , is defined, for u ∈ Sn−1 , by

ρL(u) = max{λ � 0 : λu ∈ L}. (2.3)
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If ρL(·) is positive and continuous, then L is called a star body about the origin.
The set of star bodies about the origin in R

n is denoted by S n .
Obviously, for K,L ∈ S n ,

K ⊆ L ⇔ ρK(u) � ρL(u), ∀ u ∈ Sn−1. (2.4)

If
ρK(u)
ρL(u)

is independent of u ∈ Sn−1 , then we say that star bodies K and L are dilates.

If s > 0, we have

ρsK(u) = sρK(u), for all u ∈ Sn−1. (2.5)

If K ∈ K n
0 , then, for ∀u ∈ Sn−1 , we have

ρK(u)−1 = hK∗(u). (2.6)

Let K1,K2 ∈ K n
0 . For 0 � i � n−1, we write Wi(K1,K2) for the mixed volume

V (K1, . . . ,K1,K2,B, . . . ,B) , where K1 appears n− i−1 times, the Euclidean unit ball B
appears i times, and K2 appears once. The mixed volume Wi(K1,K2) has the following
integral representation:

Wi(K1,K2) =
1
n

∫
Sn−1

hK2dSi,K1 , (2.7)

where dSi,K1 is the i th surface area measure of K . In particular, dS0,K1 = dSK1 is called
the surface area measure of K , and dSn−1,K1 = dS is called the Lebesgue measure on
Sn−1 .

The mixed volume Wi(K1,K1) will be written as Wi(K1) . It is called the i th quer-
massintegral of K1 and has the following integral representation:

Wi(K1) =
1
n

∫
Sn−1

hK1dSi,K1 . (2.8)

The Minkowski inequality for mixed quermassintegrals states (see [11]): For K1,K2

∈ K n and 0 � i < n−1,

Wi(K1,K2)n−i � Wi(K1)n−i−1Wi(K2), (2.9)

with equality if and only if K1 and K2 are homothetic.
For L1,L2 ∈S n and i = 0, . . . ,n−1. The dual mixed quermassintegral W̃i(L1,L2)

has the following integral representation:

W̃i(L1,L2) =
1
n

∫
Sn−1

ρn−i−1
L1

ρL2dS. (2.10)

The dual quermassintegral W̃i(L1) has the following integral representation:

W̃i(L1) =
1
n

∫
Sn−1

ρn−i
L1

dS. (2.11)
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If i = 0, then W̃0(L1) = V (L1) .
By using Minkowski’s integral inequality, we can obtain the dual Minkowski in-

equality for dual mixed quermassintegrals (see [10]): For L1,L2 ∈ S n and 0 � i <
n−1,

W̃i(L1,L2)n−i � W̃i(L1)n−i−1W̃i(L2), (2.12)

with equality if and only if L1 and L2 are dilates.
The dual Minkowski inequality for dual quermassintegrals states that (see [10]):

For L ∈ S n and 0 < i < n−1,

W̃i(L)n � V (L)n−iω i
n, (2.13)

with equality if and only if L is an origin-symmetric ball.
Applying the above dual Minkowski inequality (2.13) and Blaschke-Santaló in-

equality, we can obtain the following dual Blaschke-Santaló inequality: For L ∈ K n
0

and 0 � i � n−1,
W̃i(L)W̃i(L∗) � ω2

n , (2.14)

with equality if and only if L is an origin-symmetric ball.
Suppose that μ is a probability measure on a space X and g : X → I ⊂ R is a

μ -integrable function, where I is a possibly infinite interval. Jessen’s inequality (see
[9]) states that if φ : X → I ⊂ R is a strictly convex function, then∫

X
φ(g(x))dμ(x) � φ

(∫
X

g(x)dμ(x)
)

, (2.15)

with equality if and only if g(x) is a constant for μ -almost all x ∈ X . If φ is a strictly
concave function, then the inequality (2.15) is reversed.

3. Main results

For K,L ∈K n
0 and i = 0, . . . ,n−1, since the mixed quermassintegral Wi(L,K) =

1
n

∫
Sn−1

hKdSi,L , we denote the mixed quermassintegral measure by

dwi,L =
1
n
hLdSi,L. (3.1)

We write the mixed quermassintegral probability measure on Sn−1 by

dwi,L =
1

Wi(L,K)
dwi,L. (3.2)

If K = L , then we write dvi,L for dwi,L , and call it the mixed cone-volume proba-
bility measure of L . It is easy to check that

dvi,L =
hL

hK
dwi,L. (3.3)
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In particular, the measure dvi,B is just the Lebesgue measure on Sn−1 . We write
the quermassintegral probability measure on Sn−1 by

dvi,L =
1

Wi(L)
dvi,L. (3.4)

The measure dv0,L will be called the cone-volume probability measure, and it will
be written simply as dvL .

PROPOSITION 3.1. Let K,L ∈ K n
0 and i = 0, . . . ,n−1 . Then∫

Sn−1
ln

hK

hL
dwi,L � ln

Wi(L,K)
Wi(L)

� 1
n− i

ln
Wi(K)
Wi(L)

,

with equality if and only if K is homothetic to L.

Proof. By Lebesgue’s dominated convergence theorem, as p → ∞ ,

∫
Sn−1

(
hK

hL

) p
n+p

dvi,L →Wi(L,K) and

∫
Sn−1

(
hK

hL

) p
n+p

ln
hK

hL
dvi,L →

∫
Sn−1

hK

hL
ln

hK

hL
dvi,L =

∫
Sn−1

ln
hK

hL
dwi,L

We define the function fK,L : [1,∞] → R by

fK,L(p) =
1

Wi(L,K)

∫
Sn−1

(
hK

hL

) p
n+p

dvi,L. (3.5)

Note that

lim
p→∞

ln( fK,L(p))p+n = lim
p→∞

nWi(L,K)
(p+n)2

∫
Sn−1

(
hK
hL

) p
p+n

ln hK
hL

dvi,L

− fK,L(p)
(p+n)2

= − n
Wi(L,K)

∫
Sn−1

hK

hL
ln

hK

hL
dvi,L.

(3.6)

By (3.2), (3.3), (3.6), and (3.5), we have

exp

[
−n
∫

Sn−1
ln

hK

hL
dwi,L

]
= exp

[
− n

Wi(L,K)

∫
Sn−1

ln
hK

hL
dwi,L

]

= exp

[
− n

Wi(L,K)

∫
Sn−1

hK

hL
ln

hK

hL
dvi,L

]

= lim
p→∞
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1

Wi(L,K)

∫
Sn−1

(
hK

hL

) p
n+p

dvi,L

]p+n

.
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Then the first claim follows from Hölder’s inequality(∫
Sn−1

(
hK

hL

) p
n+p

dvi,L

) p+n
p

·
(∫

Sn−1
dvi,L

)− n
p

�
∫

Sn−1

hK

hL
dvi,L = Wi(L,K),

as
∫

Sn−1
dvi,L = Wi(L) .

Applying Minkowski’s inequality (2.9) to the first inequality of Proposition 3.1,
we obtain ∫

Sn−1
ln

hK

hL
dwi,L � 1

n− i
ln

Wi(K)
Wi(L)

. (3.7)

By the equality condition of Minkowski’s inequality (2.9), we know that equality in
(3.7) holds if and only if K is homothetic to L . �

REMARK 3.1. The case i = 0 of Proposition 3.1 was obtained by Stancu [15].
An immediate consequence of Proposition 3.1 is:

COROLLARY 3.1. Let K,L ∈ K n
0 and i = 0, . . . ,n−1 . If L ⊆ K , then

∫
Sn−1

hK

hL
ln

hK

hL
d vi,L � 1

n− i

(
Wi(K)
Wi(L)

) 1
n−i

ln
Wi(K)
Wi(L)

,

with equality if and only if K is homothetic to L.

Proof. From Proposition 3.1 and Minkowski’s inequality (2.9), it follows that∫
Sn−1

hK

hL
ln

hK

hL
d vi,L =

1
Wi(L)

∫
Sn−1

hK

hL
ln

hK

hL
dvi,L

=
Wi(L,K)
Wi(L)

∫
Sn−1

ln
hK

hL
dwi,L

� Wi(L,K)
Wi(L)

ln
Wi(L,K)
Wi(L)

� 1
n− i

(
Wi(K)
Wi(L)

) 1
n−i

ln
Wi(K)
Wi(L)

,

with equality if and only if K is homothetic to L . �

REMARK 3.2. The case i = 0 of Corollary 3.1 was firstly obtained by Gardner,
Hug, and Weil [4].

LEMMA 3.1. [2] If p,q are probability density functions on a measure space
(X ,ν) , then ∫

p ln pdν �
∫

p lnqdν.
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PROPOSITION 3.2. Let K,L ∈ K n
0 and i = 0, . . . ,n−1 . Then∫

Sn−1
ln

hK

hL
d vi,L � ln

Wi(L,K)
Wi(L)

�
∫

Sn−1
ln

hK

hL
dwi,L.

Proof. By taking pdν =
hL

hK

1
Wi(L)

dwi,L and qdν =
1

Wi(L,K)
dwi,L in Lemma 3.1,

we obtain that∫
Sn−1

hL

hK

1
Wi(L)

ln

(
hL

hK

1
Wi(L)

)
dwi,L =

∫
Sn−1

hL

hK

1
Wi(L)

(
ln

hL

hK
+ ln

1
Wi(L)

)
dwi,L

=
∫
Sn−1

1
Wi(L)

(
ln

hL

hK
+ ln

1
Wi(L)

)
dvi,L

=
∫

Sn−1

(
ln

hL

hK
+ ln

1
Wi(L)

)
dvi,L

=
∫

Sn−1
ln

hL

hK
dvi,L + ln

1
Wi(L)

�
∫

Sn−1

hL

hK

1
Wi(L)

ln
1

Wi(L,K)
dwi,L

= ln
1

Wi(L,K)
.

Thus, ∫
Sn−1

ln
hK

hL
d vi,L � ln

Wi(L,K)
Wi(L)

.

On the other hand, by taking pdν =
1

Wi(L,K)
dwi,L and qdν =

hL

hK

1
Wi(L)

dwi,L in

Lemma 3.1, we obtain the second inequality of Proposition 3.2. �

REMARK 3.3. The case i = 0 of Proposition 3.2 was firstly obtained by Stancu
[15].

There exists another proof of the first inequality of Proposition 3.2. Note that for
K,L ∈ K n

0 and i = 0, . . . ,n−1,

lim
p→∞

(
1

Wi(L)

∫
Sn−1

(
hK

hL

) 1
p+n

dvi,L

)p+n

= exp

[∫
Sn−1

ln
hK

hL
d vi,L

]
. (3.8)

From Hölder’s inequality and (3.8), it follows that(∫
Sn−1

(
hK

hL

) 1
p+n

dvi,L

)p+n

·
(∫

Sn−1
dvi,L

)1−(p+n)

�
∫

Sn−1

hK

hL
dvi,L = Wi(L,K),
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thus ∫
Sn−1

ln
hK

hL
d vi,L � ln

Wi(L,K)
Wi(L)

. (3.9)

We will denote the support of the mixed cone-volume measure of vi,K and vi,L by

supp vi,K and supp vi,L , respectively.

(
hK

hL

)
i,average

:=

∫
Sn−1

hK

hL
dvi,L∫

Sn−1 dvi,L
,

(
hK

hL

)
i,max

=

max
u∈suppvi,L

hK

hL
,

(
hK

hL

)
i,min

= min
u∈suppvi,K

hK

hL
. In particular,

(
hK

hL

)
0,average

=
(

hK

hL

)
average

,(
hK

hL

)
0,max

=
(

hK

hL

)
max

, and

(
hK

hL

)
0,min

=
(

hK

hL

)
min

.

THEOREM 3.1. Let K,L ∈ K n
0 and i = 0, . . . ,n−1 . If L ⊆ K , then

∫
Sn−1

ln
hL

hK
dvi,K �

(
hL

hK

)
i,average(

hL

hK

)
i,max

1
n− i

ln
Wi(L)
Wi(K)

, (3.10)

with equality if and only if K = L.

Proof. We define the non-negative function

G(q) :=
∫

Sn−1

(
hK

hL

)q

ln
hK

hL
dvi,L.

If u 	→ ln
(

hK
hL

)
(u) is zero on the support of the mixed cone-volume measure dvi,L ,

then G is identically zero. Assume, for now, that this is not the case which also implies
that G(1) � G(0) > 0. If G(1) = G(0) , then conclusion is trivial (as using (3.1) to
obtain K = L ), so we can assume G(1) > G(0) .

A simple verification shows that G(q) is a log-convex function. By a Hadamard
type inequality for positive log-convex function (see [6]), we have that

G(1)−G(0)
ln(G(1)/G(0))

�
∫ 1

0

[∫
Sn−1

(
hK

hL

)q

ln
hK

hL
dvi,L

]
dq

and, since G(1) > G(0) , by Fubini-Tonelli’s theorem,

G(0) � G(1) · exp

[
− G(1)−G(0)∫

Sn−1( hK
hL

−1)dvi,L

]
.

Note that

G(1)−G(0)∫
Sn−1( hK

hL
−1)dvi,L

=

∫
Sn−1 ln hK

hL
· ( hK

hL
−1)dvi,L∫

Sn−1( hK
hL

−1)dvi,L
� ln

(
hK

hL

)
i,max

,
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Then ∫
Sn−1

ln
hK

hL
d vi,L � exp

[
− ln

(
hK

hL

)
i,max

]
·Wi(L,K)

Wi(L)

∫
Sn−1

ln
hK

hL
d vi,L,

from which (3.10) follows from (3.7).
Assuming that G is identically zero, then hK(u) = hL(u) for all u ’s almost every-

where with respect to the mixed cone measure of L , or equivalently with respect to the
mixed surface area measure of L . This implies Wi(L,K) =Wi(L) , and since L ⊆ K are
convex bodies, K and L must coincide. �

REMARK 3.4. The case i = 0 of Theorem 3.1 was firstly obtained by Stancu [15].

Proof of Theorem 1.1. If L is not included in K , there exists a λ , 0 < λ < 1, such
that L̃ := λL ⊆ K and apply (3.10) for L̃ and K .

Thus,

∫
Sn−1

ln
hK

hL
d vi,L �

(
hK
hL

)
i,average(

hK
hL

)
i,max

1
n− i

ln
Wi(K)
Wi(L)

+ lnλ ·

⎛⎜⎝1−

(
hK
hL

)
i,average(

hK
hL

)
i,max

⎞⎟⎠ .

By taking λ = min
u∈suppvi,K

hK

hL
(u) , we obtain the desired inequality. �

A direct consequence of Theorem 1.1 is:

COROLLARY 3.2. Let K,L ∈ K n
0 such that there exists a positive constant c > 0

with hK(u) = chL(u) for each u in the support of the mixed cone volume measure of L.
For i = 0, . . . ,n−1 , then ∫

Sn−1
ln

hK

hL
d vi,L � 1

n− i
ln

Wi(K)
Wi(L)

,

with equality if and only if K = cL.

COROLLARY 3.3. For any L∈K n
0 whose support function restricted to supp vi,L

is constant and i = 0, . . . ,n−1 , we have that∫
Sn−1

ln
hL∗

hL
d vi,L � 2

n− i
ln

ωn

Wi(L)
,

with equality if and only if K is an origin-symmetric ball.

Proof. Taking K = B in Corollary 3.2, we have∫
Sn−1

ln
hL∗

hL
d vi,L =

∫
Sn−1

ln
1

ρLhL
d vi,L �

∫
Sn−1

ln
1

h2
L

d vi,L

= 2
∫
Sn−1 ln 1

hL
d vi,L � 2

n− i
ln

ωn

Wi(L)
,
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with equality if and only if L is an origin-symmetric ball. �

REMARK 3.5. The case i = 0 of Corollary 3.2 and Corollary 3.3 were obtained
by Stancu [15].

For K ∈ S n , we denote the dual mixed cone-volume measure by

dṽi,K =
1
n

ρn−i
K dS. (3.11)

Since
1

nW̃i(K)

∫
Sn−1

ρn−i
K dS = 1, we write the dual mixed cone-volume probabilitymea-

sure of K on Sn−1 by

d ṽi,K =
1

W̃i(K)
dṽi,K . (3.12)

If i = 0, the measure d ṽ0,K will be denoted by the dual cone-volume probability

measure, and it will be written simply as d ṽK .
Recently, Gardner et al. [5] established the dual log-Minkowski inequality (also

see [16]). Next, we will establish the following double inequalities which are more
general than the dual log-Minkowski inequality.

PROPOSITION 3.3. Let K,L ∈ S n . For i = 0, . . . ,n−1 , we have∫
Sn−1

ln
ρK

ρL
d ṽi,K � 1

n− i
ln

W̃i(K)
W̃i(L)

�
∫

Sn−1
ln

ρK

ρL
d ṽi,L.

Both equalities hold if and only if K and L are dilates.

Proof. Applying (2.10), (3.12), and Jensen’s inequality, we obtain

W̃i(L,K) =
1
n

∫
Sn−1

ρn−i−1
L ρKdS

= W̃i(K)
∫

Sn−1

(
ρL

ρK

)n−i−1

d ṽi,K

= W̃i(K)
∫

Sn−1
exp

(
ln

(
ρL

ρK

)n−i−1
)

d ṽi,K

� W̃i(K)exp
∫

Sn−1
ln

(
ρL

ρK

)n−i−1

d ṽi,K .

(3.13)

Taking the natural logarithm of both sides of (3.13) and using the dual Minkowski
inequality (2.12), one can obtain∫

Sn−1
ln

ρK

ρL
d ṽi,K � 1

n− i
ln

W̃i(K)
W̃i(L)

. (3.14)
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By the equality condition of the dual Minkowski inequality (2.12), we know that equal-
ity in (3.14) holds if and only if K and L are dilates.

On the other hand,

W̃i(L,K) =
1
n

∫
Sn−1

ρn−i−1
L ρKdSn = W̃i(L)

∫
Sn−1

ρK

ρL
d ṽi,L.

Similarly, we can obtain

∫
Sn−1

ln
ρK

ρL
d ṽi,L � 1

n− i
ln

W̃i(K)
W̃i(L)

. �

REMARK 3.6. The case i = 0 of Proposition 3.3 was firstly obtained by Garnder,
Hug and Weil [4].

PROPOSITION 3.4. Let K be an arbitrary convex body in K n
0 with its Santaló

point at the origin and i = 0, . . . ,n−1 . Then

∫
Sn−1

lnhKd ṽi,B � 1
n− i

ln
W̃i(K)

ωn
�
∫

Sn−1
lnρKd ṽi,B,

with equality if and only if K is an origin-symmetric ball.

Proof. By (2.11), (2.6), (3.12), and Jessen’s inequality, we have

W̃i(K∗) =
1
n

∫
Sn−1

ρn−i
K∗ dS =

1
n

∫
Sn−1

h−(n−i)
K dS

= ωn

∫
Sn−1

exp(ln(h−(n−i)
K ))d ṽ i,B

� ωnexp
∫

Sn−1
(ln(h−(n−i)

K ))d ṽi,B.

Thus, ∫
Sn−1

lnhKd ṽi,B � 1
n− i

ln
ωn

W̃i(K∗)
� 1

n− i
ln

W̃i(K)
ωn

,

where the last step is due to the dual Blaschke-Santaló’s inequality (2.14).
On the other hand, by taking L = B in the second inequality of Proposition 3.3,

we obtain ∫
Sn−1

lnρKd ṽi,B � 1
n− i

ln
W̃i(K)

ωn
,

with equality if and only if K is an origin-symmetric ball. �

REMARK 3.7. The case i = 0 of Proposition 3.4 was firstly obtained by Guan and
Ni [8].

The dual form of Corollary 3.3 will be established.
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PROPOSITION 3.5. For any L ∈ K n
0 and i = 0, . . . ,n−1 , we have that∫

Sn−1
ln

hL∗

hL
d ṽi,L � 2

n− i
ln

ωn

W̃i(L)
,

with equality if and only if K is an origin-symmetric ball.

Proof. By (2.6), note that hL � ρL for ∀L ∈ K n
0 , and take K = B in Proposition

3.3, then we have ∫
Sn−1

ln
ρL∗

ρL
d ṽi,L =

∫
Sn−1

ln
1

ρLhL
d ṽi,L

�
∫

Sn−1
ln

1

ρ2
L

d ṽi,L

= 2
∫

Sn−1
ln

1
ρL

d ṽi,L

� 2
n− i

ln
ωn

W̃i(L)
,

with equality if and only if L is an origin-symmetric ball. �

REMARK 3.8. The case i = 0 of Proposition 3.5 was firstly obtained by Stancu
[15].
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