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Abstract. The properties of the maximal operator of the (C,α) -means (α = (α1, . . . ,αd) ) of
the multi-dimensional Vilenkin-Fourier series are discussed, where the set of indices is inside a
cone-like set. Weisz proved that the maximal operator is bounded from martingale Hardy space
Hγ

p to the space Lp for p0 < p ( p0 = max{1/(1+ αk);k = 1, . . . ,d} ) [21]. The next question
arise. Is the boundary point p0 essential or not? In the present paper we show that the maximal
operator σα,∗

L is not bounded from the Hardy space Hγ
p0 to the space Lp0 .

1. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis (for more details
see [1, 16]).

Let us denote the set of positive integers by N+ , N := N+ ∪ {0}. Let m :=
(m0,m1, . . .) be a sequence of the positive integers not less than 2. Denote by Zmn :=
{0,1, . . . ,mn − 1} the additive group of integers modulo mn . Define the group Gm as
the complete direct product of the groups Zmn with the product of the discrete topolo-
gies of Zmn ‘s.

In this paper we discuss bounded Vilenkin groups, i.e. the case when supn mn < ∞.
The direct product μ of the measures

μn ({ j}) := 1/mn, ( j ∈ Zmn)

is a Haar measure on Gm with μ (Gm) = 1. The elements of Gm are represented by
sequences

x := (x0,x1, . . . ,xn, . . .) , (xn ∈ Zmn) .

It is easy to give a base for the neighbourhood of Gm :

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . ,yn−1 = xn−1}, (x ∈ Gm,n ∈ N).
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Let us denote In := In (0) , for n ∈ N . For a set S ⊆ Gm , we use the standard notation
S := Gm\S .

If we define the so-called generalized number system based on m in the following
way:

M0 := 1, Mn+1 := mnMn, (n ∈ N),

then every n∈N can be uniquely expressed as n = ∑∞
k=0 nkMk, where nk ∈ Zmk (k ∈N)

and only a finite number of nk‘s differ from zero. The order |n| of a positive natural
number n is defined by |n| := max{i ∈ N : ni �= 0} .

Next, we introduce on Gm an orthonormal system which is called the Vilenkin sys-
tem. At first we define the complex-valued function rk (x) : Gm → C, the generalized
Rademacher functions, by

rk (x) := exp(2π ıxk/mk) ,
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

The Vilenkin system ψ := (ψn : n ∈ N) is defined on Gm as:

ψn(x) :=
∞

∏
k=0

rnk
k (x) , (n ∈ N) .

Specifically, we call this system the Walsh-Paley system, when m ≡ 2.
The Vilenkin systems are orthonormal and complete in L2 (Gm) (see [26]).
Let 0 < α � 1 and

Aα
j :=

(
j + α

j

)
=

(α +1)(α +2) . . .(α + j)
j!

, ( j ∈ N; α �= −1,−2, . . .).

It is known that

Aα
j ∼ jα , Aα

n −Aα
n−1 = Aα−1

n ,
n

∑
k=0

Aα−1
k = Aα

n . (1)

(see Zygmund [27, page 42.]). The one-dimensional Dirichlet kernels and Cesàro ker-
nels are defined by

Dn :=
n−1

∑
k=0

ψk, Kα
n (x) :=

1
Aα

n

n

∑
k=0

Aα−1
n−k Dk(x),

It is known [25], that ∫
Gm

|Kα
N (x)|dμ(x) � c (N ∈ N+). (2)

Choosing α = 1 we defined the n th Fejér kernel, as special case. It is well-known that
the Mn th Dirichlet kernels have a closed form (see e.g. [16])

DMn(x) =

{
0, if x �∈ In,

Mn, if x ∈ In.
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For one-dimensional Walsh-Fourier series Fine [3] showed that the (C,α) means
σα

n f of an integrable function f converge almost everywhere to f as n → ∞ . The
maximal operator σα∗ f := supn |σα

n f | (0 < α < 1) was investigated by Weisz [22].
He proved that the maximal operator σα∗ is bounded from the Hardy space Hp to the
space Lp when p > 1/(1+α) . In the endpoint p = 1/(1+α) Goginava constructed a
counterexamplemartingale which shows that the assumption p > 1/(1+α) is essential
[8]. Similar result for (C,1) means on bounded Vilenkin groups are due to Simon [17].
Namely the maximal operator of Fejér means is bounded from the Hardy space H1 to
the space L1 . Recently, new aspects of the maximal operator of Vilenkin-Fejér means
are showed by Persson and Tephnadze [14, 15].

Let us set Gd
m := Gm × . . .×Gm , where the same Vilenkin group Gm appears d

times in the direct product. The Kronecker product
(
ψn : n ∈ Nd

)
of d Vilenkin system

is said to be the d -dimensional (or multi-dimensional) Vilenkin system. That is,

ψn (x) := ψn1

(
x1) . . .ψnd

(
xd

)
,

where x := (x1, . . . ,xd) ∈ Gd
m and n := (n1, . . . ,nd) .

If f ∈ L1
(
Gd

m

)
, then the number f̂ (n) :=

∫
Gd

m

fψn
(
n ∈ Nd

)
is said to be the

n th (d -dimensional) Vilenkin-Fourier coefficient of f . We can extend this definition to
martingales in the usual way (see Weisz [19, 20]).

The d -dimensional Fourier partial sums are the following:

Sn( f ;x) :=
n1

∑
i1=0

. . .
nd

∑
id=0

f̂ (i)ψi(x)

where x := (x1, . . . ,xd) and n := (n1, . . . ,nd) .
The d -dimensional (C,α) (α = (α1, . . . ,αd)) or Cesàro means of a martingale is

defined by

σα
n f (x) :=

1

∏d
i=1 Aαi

ni

n1

∑
k1=0

. . .
nd

∑
kd=0

d

∏
i=1

Aαi−1
ni−ki

Sk( f ;x),

where k := (k1, . . . ,kd) . It is known that

Kα
n (x) = Kα1

n1
(x1) . . .Kαd

nd
(xd), (x := (x1, . . . ,xd), n := (n1, . . . ,nd)).

For x = (x1,x2, . . . ,xd) ∈ Gd
m and n = (n1,n2, . . . ,nd) ∈ Nd the d -dimensional rectan-

gles are defined by In(x) := In1(x
1)× . . .× Ind(x

d) For n ∈ N
d the σ -algebra generated

by the rectangles {In(x),x ∈ Gd
m} is denoted by Fn .

Suppose that for all j = 2, . . . ,d the functions γ j : [1,∞) → [1,∞) are strictly
monotone increasing continuous functions with properties lim∞ γ j = ∞ and γ j(1) = 1
( j = 2, . . . ,d ). Moreover, suppose that there exist ζ ,c j,1,c j,2 > 1 such that the inequal-
ity

c j,1γ j(x) � γ j(ζx) � c j,2γ j(x) (3)

holds for each x � 1. In this case the functions γ j are called CRF (cone-like restriction
functions). Let γ := (γ2, . . . ,γd) and β j � 1 be fixed ( j = 2, . . . ,d ). Weisz investigated
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the maximal operator of the multi-dimensional (C,α) means and the convergence over
a cone-like set L (with respect to the first dimension), where

L := {n ∈ N
d : β−1

j γ j(n1) � n j � β jγ j(n1), j = 2, . . . ,d}.

If each γ j is the identical function then we get a cone. The cone-like sets were intro-
duced by Gát in dimension two [5]. The condition (3) on the function γ is natural,
because Gát [5] proved that to each cone-like set with respect to the first dimension
there exists a larger cone-like set with respect to the second dimension and reversely, if
and only if the inequality (3) holds.

Weisz defined a new type martingale Hardy space depending on the function γ
(see [21]). For a given n1 ∈ N set n j := |γ j(Mn1)| ( j = 2, . . . ,d ), that is, n j is the
order of γ j(Mn1) (this means that Mnj � γ j(Mn1) < Mnj+1 for j = 2, . . . ,d ). Let
n1 := (n1, . . . ,nd) . Since, the functions γ j are increasing, the sequence (n1, n1 ∈ N)
is increasing, too. It is given a class of one-parameter martingales f = ( fn1 , n1 ∈ N)
with respect to the σ -algebras (Fn1 , n1 ∈ N) . The maximal function of a martingale
f is defined by f ∗ := sup

n1∈N

| fn1 | . For 0 < p � ∞ the martingale Hardy space Hγ
p(Gd

m)

consists of all martingales for which ‖ f‖Hγ
p

:= ‖ f ∗‖p < ∞, where ‖.‖p is the usual

Lp norm. It is known (see [20]) that Hγ
p ∼ Lp for 1 < p � ∞ , where ∼ denotes the

equivalence of a norm and a space.
If f ∈ L1(Gd

m) , then it is easy to show that the sequence (SMn1 ,...,Mnd
( f ) : n1 =

(n1, . . . ,nd) , n1 ∈ N) is a one-parameter martingale with respect to the σ -algebras
(Fn1 , n1 ∈ N) . In this case the maximal function can also be given by

f ∗(x) = sup
n1∈N

1
μ(In1(x))

∣∣∣∣∣
∫

In1 (x)
f (u)dμ(u)

∣∣∣∣∣ = sup
n1∈N

|SMn1 ,...,Mnd
( f ;x)|

for x ∈ Gd
m .

We define the maximal operator σα ,∗
L by

σα ,∗
L f (x) := sup

n∈L
|σα

n f (x)|.

For double Walsh-Fourier series, Móricz, Schipp and Wade [10] proved that σn f
converge to f a.e. in the Pringsheim sense (that is, no restriction on the indices other
than min(n1,n2) → ∞) for all functions f ∈ L log+ L . In the paper [4] Gát proved that
the theorem of Móricz, Schipp and Wade can not be sharpened.

The convergence almost everywhere of double Walsh-Fejér means σn f of inte-
grable functions, where the set of indices is inside a positive cone around the identical
function, that is β−1 � n1/n2 � β is provided with some fixed parameter β � 1, was
proved by Gát [6] and Weisz [23]. Analogical results for Vilenkin-Fejér means are pre-
sented by Gát and Blahota [2], for multidimensional Vilenkin-Cesàro means by Weisz
[24].

A common generalization of results of Móricz, Schipp, Wade [10] and Gát [6],
Weisz [23] for cone-like set was given by the second author and Gát in [7]. That is,
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a necessary and sufficient condition for cone-like sets in order to preserve the conver-
gence property, was given. Recently, the properties of the maximal operator of the
(C,α) means of a multi-dimensional Vilenkin-Fourier series provided that the supre-
mum in the maximal operator is taken over a cone-like set, was discussed by Weisz
[21]. Namely, it was proved that the maximal operator is bounded from Hγ

p to Lp for
p0 < p � ∞ (with p0 := max{1/(1+ αi); i = 1, . . . ,d} ) and is of weak type (1,1) .
Consequently, the (C,α) means of multi-dimensional Vilenkin-Fourier series of an in-
tegrable function f converge almost everywhere to f . Weak type (1,1) inequality are
showed for more general systems by the second author [12, 13], but only in dimen-
sion 2.

At the endpoint p = p0 , we show that the maximal operator σα ,∗
L is not bounded

from the Hardy space Hγ
p0 to the space Lp0 . That is, we construct a counterexample

martingale in the Hardy space Hγ
p0 which shows that the boundary point p0 is essential

for the boundedness of the maximal operator σα ,∗
L .

We mention that in dimension 2 and for Fejér means a counterexample martingale
is presented by the second author [11], earlier. Unfortunately, that counterexample
martingale and method do not work for the maximal operator of (C,α) means (0 <
α1, . . . ,αd < 1). This fact motivated us to search a suitable martingale and method for
the original question.

2. Auxiliary propositions and main results

THEOREM W. (Weisz [21]) Let γ be CRF. The maximal operator σα ,∗
L is bounded

from the Hardy space Hγ
p to the space Lp for p0 < p � 1 ( p0 := max{1/(1+ αi); i =

1, . . . ,d} ).

Our main theorem shows that the boundary point p0 is essential.

THEOREM 1. Let γ be CRF and 0 < α1 � α2, . . . ,αd � 1 . The maximal operator
σα ,∗

L is not bounded from the Hardy space Hγ
p0 to the space Lp0 (where p0 := 1/(1+

α1)).

To prove our theorem we need the following Lemma.

LEMMA 1. Let n ∈ N and 0 < α � 1 . Then∫
Gm

max
1�N�Mn

(Aα
N |Kα

N (x)|)1/(α+1)dμ(x) � c(α)
n

logn
.

We note that analogical result for Walsh system was proved by Goginava in [8]. In this
paper we follow his method. But, we write only a few lines about the proof (for more
details see [8]).

Proof. Using equality ∫
Gm

Di(x)Dj(x)dμ(x) = min(i, j)
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and (1) we obtain

∫
Gm

∣∣∣∣∣ N

∑
i=1

Aα−1
N−i Di(x)

∣∣∣∣∣
2

dμ(x) =
N

∑
i=1

N

∑
j=1

Aα−1
N−i A

α−1
N− j min(i, j)

=
N

∑
i=1

i

∑
j=1

Aα−1
N−i A

α−1
N− j j +

N

∑
i=1

N

∑
j=i+1

Aα−1
N−i A

α−1
N− j i (4)

� c1(α)N2α+1.

Let us denote

ENi := {x ∈ Gm : |Kα
Ni

(x)| � c2(α)Ni}, ΩNi := ENi\
i−1⋃
j=1

ENj ,

where Ni :=
[

Mn
ni

]
, i = 1,2, . . . ,

[
n

log2 n

]
, n � 2 and c2(α) is some positive constant

(depends only on α ) discussed later. We note that the sets ΩNi and ΩNj are disjoint
sets for different i and j .

Inequalities (4) and (2) imply

c1(α)N2α+1
i �

∫
Gm

(Aα
Ni
|Kα

Ni
(x)|)2dμ(x)

=
∫

ENi

(Aα
Ni
|Kα

Ni
(x)|)2dμ(x)+

∫
ENi

(Aα
Ni
|Kα

Ni
(x)|)2dμ(x)

� c2(α)Aα
Ni

Ni

∫
ENi

Aα
Ni
|Kα

Ni
(x)|dμ(x)

+
∫

ENi

(Aα
Ni
|Kα

Ni
(x)|)(2α+1)/(α+1)(Aα

Ni
|Kα

Ni
(x)|)1/(α+1)dμ(x)

� c2(α)c3(α)N2α+1
i + c4(α)N2α+1

i

∫
ENi

(Aα
Ni
|Kα

Ni
(x)|)1/(α+1)dμ(x).

Now, we define c2(α) := c1(α)
2c3(α) , then we obtain∫

ENi

(Aα
Ni
|Kα

Ni
(x)|)1/(α+1)dμ(x) � c5(α) > 0. (5)

From the definition of the set ENi follows

c(α)Ni μ(ENi) <

∫
ENi

|Kα
Ni

(x)|dμ(x) � ‖Kα
Ni
‖1 � c6(α),
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(see also (2)), so

μ(ENi) � c7(α)
Ni

. (6)

Inequalities (5) and (6) yield

∫
ΩNi

(Aα
Ni
|Kα

Ni
(x)|)1/(α+1)dμ(x) � c5(α)− c8(α)Ni

i−1

∑
j=1

μ(ENj ) � c9(α),

if n is big enough. (For more details see [8].) This inequality implies

∫
Gm

max
1�N�Mn

(Aα
N |Kα

N (x)|)1/(α+1)dμ(x) �
[n/ log2 n]

∑
i=1

∫
ΩNi

max
1�N�Mn

(Aα
N |Kα

N (x)|)1/(α+1)dμ(x)

�
[n/ log2 n]

∑
i=1

∫
ΩNi

(Aα
Ni
|Kα

Ni
(x)|)1/(α+1)dμ(x)

� c9(α)
n

log2 n
.

This completes the proof of Lemma 1. �

In unrestricted case for double (C,α) means of Walsh-Fourier series Goginava
constructed a two-dimensional counterexample martingale at the endpoint p0 [9]. Un-
fortunately, his martingale is not suitable in our problem, but his method gave us some
idea to solve our original problem.

Now, we prove our main Theorem.

Proof of Theorem 1. Let us define a martingale in Hγ
p0

fn1(x) := (DMn1+1(x
1)−DMn1

(x1))
d

∏
j=2

ψMnj−1(x
j).

Now, we show that, it is a one-parameter martingale, where n2, . . . ,nd is defined to
n1 , earlier. Now, we calculate the k th Fourier coefficients and the j th partial sums
S j( fn1 ;x) of the Fourier series of fn1 .

f̂n1(k) =

{
1, if k1 = Mn1 , . . . ,Mn1+1 −1, and k j = Mnj−1 for all j = 2, . . . ,d,

0, otherwise,
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and

S j( fn1 ;x)

=
j1−1

∑
ν=0

f̂n1(ν,Mn2−1, . . . ,Mnd−1)ψν(x1)
d

∏
l=2

ψMnl−1(x
l)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Dj1(x
1)−DMn1

(x1))∏d
l=2 ψMnl−1(x

l) if j1 = Mn1 +1, . . . ,Mn1+1−1, and

jl > Mnl−1 for all l = 2, . . . ,d,

fn1(x) if j1 � Mn1+1 and jl > Mnl−1

for all l = 2, . . . ,d,

0 otherwise.

(7)

We immediately have that

f ∗n1
(x) = sup

m1∈N

|SMm1 ,...,Mmd
( fn1 ;x)| = | fn1(x)|.

Moreover,

‖ fn1‖Hγ
p0

= ‖ f ∗n1
‖p0 � M1−1/p0

n1 < ∞. (8)

That is, fn1 ∈ Hγ
p0 . We can write the n th Dirichlet kernel with respect to the Vilenkin

system in the following form:

Dn(x) = DM|n|(x)+ r|n|(x)Dn−M|n|(x) (9)

Let us set LN
1 := Mn1 +N where 0 < N < Mn1 and LN

j := [γ j(Mn1 +N)] for j = 2, . . . ,d ,
(where [x] denotes the integer part of x ). In this case LN := (LN

1 , . . . ,LN
d ) ∈ L . Now,

we calculate σα
LN fn1 .

By equality (7), (9) and (1) we may write that

|σα
LN fn1(x)|

=
1

∏d
j=1 A

α j

LN
j

∣∣∣∣∣∣
LN

1

∑
k1=0

. . .

LN
d

∑
kd=0

d

∏
i=1

Aαi−1
LN

i −ki
Sk( fn1 ;x)

∣∣∣∣∣∣
=

1

∏d
j=1 A

α j

LN
j

∣∣∣∣∣∣
LN

1

∑
k1=Mn1+1

. . .

LN
d

∑
kd=Mnd−1+1

d

∏
i=1

Aαi−1
LN

i −ki

d

∏
l=2

ψMnl−1(x
l)(Dk1(x

1)−DMn1
(x1))

∣∣∣∣∣∣
=

1

∏d
j=1 A

α j

LN
j

∣∣∣∣∣∣
LN

2 −Mn2−1

∑
k2=1

. . .

LN
d −Mnd−1

∑
kd=1

d

∏
i=2

Aαi−1
LN

i −Mni−1−ki

LN
1 −Mn1

∑
k1=1

Aα1−1
LN

1 −Mn1−k1
Dk1(x

1)

∣∣∣∣∣∣
=

1

∏d
j=1 A

α j

LN
j

∣∣∣∣∣∣
LN

2 −Mn2−1

∑
k2=1

. . .

LN
d −Mnd−1

∑
kd=1

d

∏
i=2

Aαi−1
LN

i −Mni−1−ki

∣∣∣∣∣∣
∣∣∣∣Aα1

LN
1 −Mn1

Kα1
LN

1 −Mn1
(x1)

∣∣∣∣ .
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Since, it is easily seen that

LN
j −Mni−1

∑
ki=1

Aαi−1
LN

i −Mni−1−ki
� ciA

αi

LN
i

for i = 2, . . . ,d , we have that

|σα
LN fn1(x)| �

c(α)
Mα1

n1

Aα1
N

∣∣Kα1
N (x1)

∣∣ .
Moreover, we have that

σα ,∗
L fn1(x) = sup

n∈L
|σα

n fn1(x)| � max
1�N<Mn1

|σα
LN fn1(x)|

� c(α)
Mα1

n1

max
1�N<Mn1

Aα1
N

∣∣Kα1
N (x1)

∣∣ .
By inequality (8) and Lemma 1 we obtain that

‖σα ,∗
L fn1‖p0

‖ fn1‖Hγ
p0

� 1

M1−1/p0
n1

(∫
Gd

m

max
1�N<Mn1

|σα
LN fn1(x)|p0dμ(x)

)1/p0

� c(α)Mα1
n1

Mα1
n1

(∫
Gm

max
1�N<Mn1

(Aα1
N

∣∣Kα1
N (x1)

∣∣)p0dμ(x1)
)1/p0

� c(α)
(

n1

logn1

)1+α1

→ ∞ as n1 → ∞.

This completes the proof of our Theorem. �
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P.O. Box 166, Nyı́regyháza, H-4400 Hungary
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