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COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF ROWWISE

EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

YI WU, YANG DING, XUEJUN WANG AND WEIYANG CHEN

(Communicated by Z. S. Szewczak)

Abstract. In this paper, a general result on complete moment convergence for arrays of rowwise
extended negatively dependent (END, in short) random variables is established. As applications,
we obtain some results on complete moment convergence for weighted sums of END random
variables. The results obtained in the paper generalize and improve some corresponding ones for
negatively dependent random variables.

1. Introduction

Firstly, let us recall the concepts of complete convergence and complete moment
convergence.

The concept of complete convergence was introduced by Hsu and Robbins [1]
as follows: a sequence {Xn,n � 1} of random variables converges completely to the
constant C if for any ε > 0,

∞

∑
n=1

P(|Xn−C| > ε) < ∞.

By the Borel-Cantelli lemma, this implies that Xn → C a.s., so complete convergence
is a stronger result than a.s. convergence.

Let {Xn,n � 1} be a sequence of random variables and an > 0, bn > 0, q > 0. If

∞

∑
n=1

anE{bn
−1|Xn|− ε}q

+ < ∞ for all ε > 0,

then the result was defined as the complete moment convergence by Chow [2]. It is
easy to check that complete moment convergence implies complete convergence, thus,
complete moment convergence is much stronger than complete convergence.
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Next, we will recall the concept of extended negative dependence, which was in-
troduced by Liu [3] as follows.

DEFINITION 1.1. A finite collection of random variables X1,X2, · · · ,Xn is said to
be extended negatively dependent (END, in short) if there exists a constant M > 0 such
that both

P(X1 > x1,X2 > x2, · · · ,Xn > xn) � M
n

∏
i=1

P(Xi > xi)

and

P(X1 � x1,X2 � x2, · · · ,Xn � xn) � M
n

∏
i=1

P(Xi � xi)

hold for all real numbers x1,x2, · · · ,xn , n � 2. An infinite sequence {Xn,n � 1} is said
to be END if every finite subcollection is END.

An array of random variables {Xni,1 � i � n,n � 1} is called rowwise END ran-
dom variables if for every n � 1, {Xni,1 � i � n} are END random variables.

Obviously the END structure is more comprehensive than negatively dependent
(ND) structure which was introduced by Lehmann [4] (cf. also Joag-Dev and Proschan
[5]). The ND structure is a special case of END structure with M = 1. The END
structure can reflect not only a negatively structure but also a positive one to some
extent. Liu [3] pointed out that the END random variables can be taken as negatively
or positively dependent and provided some interesting examples to support this idea.
Joag-Dev and Proschan [5] also pointed out that negatively associated (NA) random
variables must be ND and ND is not necessarily NA, thus NA random variables are
END.

Some probability limit properties and applications for END sequence have been
obtained. See for example, Liu [6] studied the sufficient and necessary conditions of
moderate deviations for END random variables with heavy tails; Chen et al. [7] es-
tablished the strong law of large numbers for END random variables and showed ap-
plications to risk theory and renewal theory; Shen [8, 9] presented some probability
inequalities for END random variables and gave some applications; Wang and Wang
[10] investigated the extended precise large deviations of random sums in the presence
of END structure and consistent variation; Wu and Guan [11] presented some conver-
gence properties for the partial sums of END random variables; Wang and Wang [12]
investigated a more general precise large deviation result for random sums of END
real-valued random variables in the presence of consistent variation; Qiu et al. [13] and
Wang et al. [14–16] provided some results on complete convergence for END random
variables, and so forth.

Let {kn,n � 1} be a sequence of positive integers. Recently, Sung et al. [17]
established the following complete convergence for ND random variables.

THEOREM A. Let {Xnk,1 � k � kn,n � 1} be an array of rowwise ND random
variables, {cn,n � 1} be a sequence of positive constants, and {bn,n � 1} be a se-
quence of positive constants such that lim

n→∞
bn = ∞. Suppose that

(i)
∞
∑

n=1
cn

kn

∑
k=1

P(|Xnk| > ε) < ∞ for all ε > 0 ;
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(ii)
∞
∑

n=1
cn

(
kn

∑
k=1

P(|Xnk| > 1
bn

)
)ξ

< ∞ for some ξ > 0 ;

(iii) bn

kn

∑
k=1

EX2
nkI(| Xnk |� 1

bn
) → 0 as n → ∞;

(iv)
∞
∑

n=1
cn exp{−η0bn} < ∞ for some η0 > 0 .

Then for all ε > 0 ,

∞

∑
n=1

cnP

(∣∣∣∣∣
kn

∑
k=1

(Xnk −EXnkI(|Xnk| � 1/bn))

∣∣∣∣∣> ε

)
< ∞.

The main purpose of this work is to generalize the result of Theorem A for ND
random variables to the case of END random variables and complete convergence is
improved to complete moment convergence.

Throughout this paper, C represents a positive constant which may vary in dif-
ferent places. For x � 0, the symbol �x� denotes the integer part of x . Denote
logx = lnmax(x,e) , where lnx denotes the natural logarithm. I(A) will indicate the
indicator function of the set A .

This work is organized as follows: some preliminary lemmas are provided in Sec-
tion 2. Main result and its proof are stated in Section 3. Some applications of the main
result are presented in Section 4.

2. Preliminary lemmas

In this section, we give some lemmas which will be used to prove our main results.
The first one is a basic property for END random variables, which can be found in Liu
[6].

LEMMA 2.1. Let random variables X1,X2, · · · ,Xn be END.
(i) If f1, f2, · · · , fn are all nondecreasing (or nonincreasing) functions, then ran-

dom variables f1(X1), f2(X2), · · · , fn(Xn) are END.
(ii) For each n � 1 , there exists a constant M > 0 such that

E

(
n

∏
j=1

X+
j

)
� M

n

∏
j=1

EX+
j .

The following one is a generalized version of Lemma 3 in Sung et al. [17]. Here
the details of the proof are omitted.

LEMMA 2.2. Let {Xn,n � 1} be a sequence of END random variables with
EXk = 0 and |Xk| � dk,k � 1 , where {dk,k � 1} is a sequence of positive constants.
Then for any t ∈ R , there exists a positive constant M such that

E exp

{
t

n

∑
k=1

Xk

}
� M exp

{
t2

2

n

∑
k=1

etdkEX2
k

}
.

The next one is the Kolmogorov exponential inequality for END random variables,
which was obtained by Wu and Guan [11].
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LEMMA 2.3. Let {Xn,n � 1} be a sequence of END random variables with

EXn = 0 and 0 < Bn
.=

n
∑

k=1
EX2

k < ∞ . Denote Sn =
n
∑

k=1
Xk for n � 1 . Then there

exists a constant M > 0 such that

P(|Sn| � x) � P

(
max

1�k�n
|Xk| � y

)
+2M exp

(
x
y
− x

y
log

(
1+

xy
Bn

))

for any x > 0 , y > 0 .

The last one is a generalized version of Theorem A for END random variables,
which is indispensable in proving our main result. There is no essential difference
between the proof of Lemma 2.4 and Theorem A. The only difference is the positive
constant M in the definition of END random variables, which has no influence in prov-
ing the finiteness. For convenience of the reader, we present the proof of Lemma 2.4 in
Appendix.

LEMMA 2.4. Let {Xnk,1 � k � kn,n � 1} be an array of rowwise END random
variables, {cn,n � 1} be a sequence of positive constants, and {bn,n � 1} be a se-
quence of positive constants such that lim

n→∞
bn = ∞. Suppose that

(i)
∞
∑

n=1
cn

kn

∑
k=1

P(|Xnk| > ε) < ∞ for all ε > 0 ;

(ii)
∞
∑

n=1
cn

(
kn

∑
k=1

P(|Xnk| > 1
bn

)
)ξ

< ∞ for some ξ > 0 ;

(iii) bn

kn

∑
k=1

EX2
nkI(| Xnk |� 1

bn
) → 0 as n → ∞;

(iv)
∞
∑

n=1
cn exp{−η0bn} < ∞ for some η0 > 0 .

Then for all ε > 0 ,

∞

∑
n=1

cnP

(∣∣∣∣∣
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣> ε

)
< ∞.

3. Main results

THEOREM 3.1. Let q > 0 and {Xnk,1 � k � kn,n � 1} be an array of rowwise
END random variables, {cn,n � 1} be a sequence of positive constants, and {bn,n �
1} be a sequence of positive constants such that lim

n→∞
bn = ∞. Suppose that the following

conditions hold:

(a)
∞
∑

n=1
cn

kn

∑
k=1

E|Xnk|qI(|Xnk| > ε) < ∞ f or all ε > 0;

(b) there exists some η > q, as n → ∞,

bn

kn

∑
k=1

E|Xnk|I
(
|Xnk| > 1

16η∗bn

)
→ 0,where η∗ = max

{
η ,

1
16

}
;
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(c)
∞
∑

n=1
cnb

−η
n < ∞;

(d)
∞
∑

n=1
cn

(
kn

∑
k=1

P(|Xnk| > 1
bn

)
)ξ

< ∞ for some ξ > 0 ;

(e) bn

kn

∑
k=1

EX2
nkI(| Xnk |� 1

bn
) → 0 as n → ∞.

Then for all ε > 0 ,

∞

∑
n=1

cnE

{∣∣∣∣∣
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣− ε

}q

+

< ∞. (3.1)

Proof. First we state that the conditions of Lemma 2.4 hold. For all ε > 0, it
follows by condition (a) that

∞

∑
n=1

cn

kn

∑
k=1

P(|Xnk| > ε) � C
∞

∑
n=1

cn

kn

∑
k=1

E|Xnk|qI(|Xnk| > ε) < ∞,

which implies that condition (i) of Lemma 2.4 holds.
Noting that exp{−η0bn} = o(b−η

n ) for any constants η0 > 0 and η > 0, we have
by condition (c) that

∞

∑
n=1

cn exp{−η0bn} � C
∞

∑
n=1

cnb
−η
n < ∞,

which yields that condition (iv) of Lemma 2.4 holds.
Conditions (ii) and (iii) follows by (d) and (e) , respectively. Thus, all the con-

ditions of Lemma 2.4 are satisfied.

Denote Sn =
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))
, we can see that

∞

∑
n=1

cnE

{∣∣∣∣∣
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣− ε

}q

+

=
∞

∑
n=1

cn

∫ εq

0
P
(
|Sn| > ε + t

1
q

)
dt +

∞

∑
n=1

cn

∫ ∞

εq
P
(
|Sn| > ε + t

1
q

)
dt

� I1 + I2. (3.2)

By Lemma 2.4, we can easily obtain that

I1 � εq
∞

∑
n=1

cnP(|Sn| > ε) < ∞. (3.3)

Hence, to prove (3.1), we only need to show I2 < ∞ . It is easily see that

I2 �
∞

∑
n=1

cn

∫ ∞

εq
P

(
|Sn| > t

1
q ,

kn⋃
k=1

{|Xnk| > t
1
q }
)

dt

+
∞

∑
n=1

cn

∫ ∞

εq
P

(
|Sn| > t

1
q ,

kn⋂
k=1

{|Xnk| � t
1
q }
)

dt
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�
∞

∑
n=1

cn

∫ ∞

εq
P

(
kn⋃

k=1

{|Xnk| > t
1
q }
)

dt

+
∞

∑
n=1

cn

∫ ∞

εq
P

(∣∣∣∣∣
kn

∑
k=1

(
XnkI

(
|Xnk| � t

1
q

)
−EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣> t
1
q

)
dt

� I3 + I4. (3.4)

It follows by condition (a) that

I3 �
∞

∑
n=1

cn

kn

∑
k=1

E|Xnk|qI(|Xnk| > ε) < ∞. (3.5)

For I4 , it follows by lim
n→∞

bn = ∞ that for any ε > 0, when n is large enough, 1
bn

< ε .

For t � εq , denote

Ynk = −t
1
q I(Xnk < −t

1
q )+XnkI(|Xnk| � t

1
q )+ t

1
q I(Xnk > t

1
q ),

Znk = −t
1
q I(Xnk < −t

1
q )+ t

1
q I(Xnk > t

1
q ).

Thus,

P

(∣∣∣∣∣
kn

∑
k=1

(
XnkI

(
|Xnk| � t

1
q

)
−EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣> t
1
q

)

� P

(∣∣∣∣∣
kn

∑
k=1

(Ynk −EYnk−Znk +EZnk)

∣∣∣∣∣+
kn

∑
k=1

E|Xnk|I
( 1

bn
< |Xnk| � t

1
q

)
> t

1
q

)
. (3.6)

By condition (b) , we get that

max
t�b−q

n

t−
1
q

kn

∑
k=1

E|Xnk|I
( 1

bn
< |Xnk| � t

1
q

)
� bn

kn

∑
k=1

E|Xnk|I
(
|Xnk| > 1

bn

)
→ 0, as n → ∞,

which implies that for all n large enough,

kn

∑
k=1

E|Xnk|I
( 1

bn
< |Xnk| � t

1
q

)
� 1

2
t

1
q , t � εq.

Hence, by (3.6) and the inequality above, we have that for all n large enough,

P

(∣∣∣∣∣
kn

∑
k=1

(
XnkI

(
|Xnk| � t

1
q

)
−EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣> t
1
q

)

� P

(∣∣∣∣∣
kn

∑
k=1

(Ynk −EYnk−Znk +EZnk)

∣∣∣∣∣> 1
2
t

1
q

)

� P

(∣∣∣∣∣
kn

∑
k=1

(Znk −EZnk)

∣∣∣∣∣> 1
4
t

1
q

)
+P

(∣∣∣∣∣
kn

∑
k=1

(Ynk −EYnk)

∣∣∣∣∣> 1
4
t

1
q

)
.
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Therefore,

I4 � C
∞

∑
n=1

cn

∫ ∞

εq
P

(∣∣∣∣∣
kn

∑
k=1

(Znk −EZnk)

∣∣∣∣∣> 1
4
t

1
q

)
dt

+C
∞

∑
n=1

cn

∫ ∞

εq
P

(∣∣∣∣∣
kn

∑
k=1

(Ynk −EYnk)

∣∣∣∣∣> 1
4
t

1
q

)
dt

� I5 + I6. (3.7)

Noting that |Znk| = t
1
q I(|Xnk| > t

1
q ) , we have by condition (a) that

I5 � C
∞

∑
n=1

cn

∫ ∞

εq
t−

1
q

kn

∑
k=1

E|Znk|dt

� C
∞

∑
n=1

cn

kn

∑
k=1

∫ ∞

εq
P(|Xnk| > t

1
q )dt

� C
∞

∑
n=1

cn

kn

∑
k=1

E|Xnk|qI(|Xnk| > ε) < ∞. (3.8)

For I6, applying Lemma 2.3 with x = 1
4 t

1
q , y = 1

4η t
1
q , Bn =

kn

∑
k=1

E(Ynk −EYnk)2 and

η > q , we obtain

I6 � C
∞

∑
n=1

cn

∫ ∞

εq
P

(
max

1�k�kn
|Ynk −EYnk| � 1

4η
t

1
q

)
dt

+C
∞

∑
n=1

cn

∫ ∞

εq

(
eBn

Bn + t
2
q /(16η)

)η

dt

� I7 + I8. (3.9)

By condition (b) , we can see that 0 �
kn

∑
k=1

P(|Xnk| > 1
16ηbn

) → 0 as n → ∞ , which

implies that for all n large enough,
kn

∑
k=1

P(|Xnk| > 1
16ηbn

) � 1
32η and 1

bn
< ε . Thus,

max
t�εq

max
1�k�kn

t−
1
q |EYnk| � max

t�εq
max

1�k�kn

[
t−

1
q E|Xnk|I

(
|Xnk| � 1

16ηbn

)

+t−
1
q E|Xnk|I

( 1
16ηbn

< |Xnk| � t
1
q

)
+P(|Xnk| > t

1
q )
]

� 1
ε
· 1
16ηbn

+2
kn

∑
k=1

P
(
|Xnk| > 1

16ηbn

)

� 1
16η

+2 · 1
32η

=
1

8η
,
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which implies that

I7 � C
∞

∑
n=1

cn

∫ ∞

εq
P

(
max

1�k�kn
|Xnk| � 1

8η
t

1
q

)
dt (since |Ynk| � |Xnk|)

� C
∞

∑
n=1

cn

kn

∑
k=1

∫ ∞

εq
P

(
|Xnk| � 1

8η
t

1
q

)
dt

� C
∞

∑
n=1

cn

kn

∑
k=1

E|Xnk|qI
(
|Xnk| > ε

8η

)
< ∞. (3.10)

Noting that Y 2
nk = t

2
q I(|Xnk| > t

1
q )+X2

nkI(|Xnk| � t
1
q ) , we have by Cr inequality that

I8 � C
∞

∑
n=1

cn

∫ ∞

εq
t−

2η
q

(
kn

∑
k=1

EY 2
nk

)η

dt

� C
∞

∑
n=1

cn

∫ ∞

εq
t−

2η
q

(
kn

∑
k=1

EX2
nkI
(
|Xnk| � 1

bn

))η

dt

+C
∞

∑
n=1

cn

∫ ∞

εq
t−

2η
q

(
kn

∑
k=1

EX2
nkI
( 1

bn
< |Xnk| � t

1
q

))η

dt

+C
∞

∑
n=1

cn

∫ ∞

εq

(
kn

∑
k=1

P
(
|Xnk| > t

1
q

))η

dt

� C
∞

∑
n=1

cn

∫ ∞

εq
t−

2η
q

(
kn

∑
k=1

EX2
nkI
(
|Xnk| � 1

bn

))η

dt

+C
∞

∑
n=1

cn

∫ ∞

εq
t−

η
q

(
kn

∑
k=1

E|Xnk|I
(
|Xnk| > 1

bn

))η

dt

� I9 + I10. (3.11)

From the condition (e) , we know that for all n large enough, bn

kn

∑
k=1

EX2
nk

I(|Xnk |�
1
bn

) < 1. Hence, we have by condition (c) that

I9 = C
∞

∑
n=1

cnbn
−η

(
bn

kn

∑
k=1

EX2
nkI
(
|Xnk| � 1

bn

))η ∫ ∞

εq
t−

2η
q dt � C

∞

∑
n=1

cnb
−η
n < ∞. (3.12)

Finally, we will prove I10 < ∞ .

From condition (b) , we know that for all n large enough, bn

kn

∑
k=1

E|Xnk|I(|Xnk| >
1
bn

) � 1. Hence, we have by condition (c) again and η > q that

I10 � C
∞

∑
n=1

cn

∫ ∞

εq
t−

η
q b−η

n

(
bn

kn

∑
k=1

E|Xnk|I
(
|Xnk| > 1

bn

))η

dt � C
∞

∑
n=1

cnb
−η
n < ∞. (3.13)
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Hence, the desired result (3.1) follows by (3.2)–(3.13) immediately. This completes the
proof of the theorem. �

4. Corollaries

In this section, we will give some applications of Theorem 3.1. Firstly, we will
present the concept of stochastic domination, which will be used in this section.

DEFINITION 4.1. A sequence {Xn,n � 1} of random variables is said to be stoc-
hastically dominated by a random variable X if there exists a positive constant C such
that

P(|Xn| > x) � CP(|X | > x)

for all x � 0 and n � 1.
An array {Xni, i � 1,n � 1} of rowwise random variables is said to be stochas-

tically dominated by a random variable X if there exists a positive constant C such
that

P(|Xni| > x) � CP(|X | > x)

for all x � 0, i � 1 and n � 1.
Using the integration by parts, we can get the following important property for

stochastic domination. For the proof, one can refer to Wu [18], Shen [19], or Shen et
al. [20].

LEMMA 4.1. Let {Xni, i � 1,n � 1} be an array of rowwise random variables
which is stochastically dominated by a random variable X . For any α > 0 and b > 0 ,

E|Xni|α I (|Xni| � b) � C1 [E|X |αI (|X | � b)+bαP(|X | > b)] ,

E|Xni|α I (|Xni| > b) � C2E|X |αI (|X | > b) ,

where C1 and C2 are positive constants.

With Lemma 4.1 accounted for, we can get the following corollaries by Theorem
3.1.

COROLLARY 4.1. Let α > 1
2 , p > 0 , α p > 1 and {Xn,n � 1} be a sequence of

END random variables with EXk = 0 which are stochastically dominated by a random
variable X . Suppose that E|X |p < ∞ if p � 1 and E|X | < ∞ if 0 < p < 1 . Then for
any ε > 0 and 0 < q < p,

∞

∑
n=1

nα p−αq−2E

{∣∣∣∣∣
n

∑
k=1

Xk

∣∣∣∣∣− εnα

}q

+

< ∞. (4.1)

Proof. In order to apply Theorem 3.1, let Xnk = n−αXk , cn = nα p−2 , kn = n ,
bn = nr with 0 < r < min{α − 1

p ,2α − 1}. We will check the conditions of Theorem
3.1 one by one.
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By Lemma 4.1, we can get that

∞

∑
n=1

nα p−2
n

∑
k=1

n−αqE|Xk|qI(|Xk| > nαε)

� C
∞

∑
n=1

nα(p−q)−1E|X |qI(|X | > nαε)

= C
∞

∑
m=1

E|X |qI(mα ε < |X | � (m+1)αε)
m

∑
n=1

nα(p−q)−1

� C
∞

∑
m=1

mα(p−q)E|X |qI(mα ε < |X | � (m+1)αε)

� C
∞

∑
m=1

E|X |pI(mα ε < |X | � (m+1)αε) � CE|X |p < ∞,

which yields the condition (a) of Theorem 3.1.
For condition (b) , note that r < α − 1

p . Denote p∗ = max{p,1} . Hence, if η �
1
16 , then we have by Lemma 4.1 that

nr
n

∑
k=1

n−αE|Xk|I
(
|Xk| > 1

16η
nα−r

)
� Cnr−α+1n(α−r)(1−p∗)E|X |p∗

� CE|X |p∗n1−(α−r)p∗ → 0, as n → ∞;

if η < 1
16 , then we have by Lemma 4.1 again that

nr
n

∑
k=1

n−αE|Xk|I(|Xk| > nα−r) � Cnr−α+1n(α−r)(1−p∗)E|X |p∗

� CE|X |p∗n1−(α−r)p∗ → 0, as n → ∞.

For condition (c), by taking η > α p−1
r , we have

∞

∑
n=1

nα p−2 ·n−ηr =
∞

∑
n=1

n−1+(α p−1)−ηr < ∞.

For condition (d) , by taking ξ > α p−1
(α−r)p−1 > 0, we have by Lemma 4.1 and

Markov’s inequality that

∞

∑
n=1

nα p−2

(
n

∑
k=1

P(|Xk| > nα−r)

)ξ

� C
∞

∑
n=1

nα p−2

(
n

∑
k=1

P(|X | > nα−r)

)ξ

� C
∞

∑
n=1

nα p−2+(r−α)pξ(nE|X |p)ξ

� C(E|X |p)ξ
∞

∑
n=1

n−1+α p−1−[(α−r)p−1]ξ < ∞.
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For condition (e) , if p � 2, then

nr
n

∑
k=1

n−2αEX2
k I(|Xk| � nα−r) � Cnr−2α+1 → 0, as n → ∞;

if p < 2, then by 0 < r < α − 1
p , we get 1−α p+(p−1)r < 1

p −α < 0, and thus,

nr
n

∑
k=1

n−2αEX2
k I(|Xk| � nα−r) � nr−2α

n

∑
k=1

n(α−r)(2−p)E|Xk|pI(|Xk| � nα−r)

� Cn1−α p+(p−1)r → 0, as n → ∞.

Hence, we have by Theorem 3.1 that

∞

∑
n=1

nα p−αq−2E

{∣∣∣∣∣
n

∑
k=1

(Xk −EXkI(|Xk| � nα−r))

∣∣∣∣∣− εnα

}q

+

< ∞. (4.2)

To prove (4.1), it remains to show that∣∣∣∣∣
n

∑
k=1

n−αEXkI(|Xk| � nα−r)

∣∣∣∣∣→ 0, as n → ∞.

If p � 1, we have by EXk = 0 and r < α − 1
p that

∣∣∣∣∣
n

∑
k=1

n−αEXkI(|Xk| � nα−r)

∣∣∣∣∣ � n−α
n

∑
k=1

E|Xk|I(|Xk| > nα−r)

� n−α
n

∑
k=1

n(α−r)(1−p)E|Xk|pI(|Xk| > nα−r)|

� CE|X |pn1−α p+(p−1)r � CE|X |pn 1
p−α → 0, as n → ∞;

if 0 < p < 1, it follows by α p > 1 that α > 1, and then∣∣∣∣∣
n

∑
k=1

n−αEXkI(|Xk| � nα−r)

∣∣∣∣∣ � n−α
n

∑
k=1

E|Xk|I(|Xk| > nα−r)

� Cn1−αE|X | → 0, as n → ∞.

This completes the proof of the corollary. �

COROLLARY 4.2. Let {Xnk,1 � k � n,n � 1} be an array of mean zero rowwise
END random variables which are stochastically dominated by a random variable X
with E|X |2p < ∞ for some p � 1 . Let {ank,1 � k � n,n � 1} be a array of real
numbers and {bn,n � 1} be a sequence of positive constants such that lim

n→∞
bn = ∞ .

Suppose that the following conditions are satisfied:
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(1) bn = O(nr) for some 0 < r < 1
2p ;

(2)
∞
∑

n=1
b−η

n < ∞ for some η > 2p;

(3) bn

n
∑

k=1
a2

nk = o(1);

(4) max
1�k�n

|ank| = O(n−
1
p ) .

Then for any 0 < q � p,

∞

∑
n=1

E

{∣∣∣∣∣
n

∑
k=1

ankXnk

∣∣∣∣∣− ε

}q

+

< ∞. (4.3)

Proof. Without loss of generality, we may assume that ank � 0 for 1 � k �
n,n � 1, otherwise we can prove the result for two arrays of END random variables
{a+

nkXnk,1 � k � kn,n � 1} and {a−nkXnk,1 � k � n,n � 1} separately, where a+
nk =

max{ank,0} and a−nk = max{−ank,0} . Then we can also assume that max
1�k�n

ank � n−
1
p

and bn � nr .
We apply Theorem 3.1 with cn = 1, n � 1, and replace Xnk by ankXnk , 1 � k � n ,

n � 1. In the following, we will check the conditions of Theorem 3.1.
For condition (a) , it follows by Lemma 4.1 and conditions (1) and (4) that for

any ε > 0,

∞

∑
n=1

n

∑
k=1

E|ankXnk|qI(|ankXnk| > ε) �
∞

∑
n=1

n−
q
p

n

∑
k=1

E|Xnk|qI(|Xnk| > n
1
p ε)

� C
∞

∑
n=1

n1− q
p E|X |qI(|X | > n

1
p ε)

= C
∞

∑
n=1

n1− q
p E|X |q

∞

∑
m=n

I(m
1
p ε < |X | � (m+1)

1
p ε)

� C
∞

∑
m=1

m2− q
p E|X |qI(m 1

p ε < |X | � (m+1)
1
p ε)

� CE|X |2p < ∞.

For condition (b) , noting that η > 2p � 2 and r < 1
2p , we have by Lemma 4.1

again that

nr
n

∑
k=1

E|ankXnk|I
(
|ankXnk| > 1

16ηbn

)
� Cnr− 1

p +1E|X |I
(
|X | > 1

16η
n

1
p−r
)

� Cnr− 1
p +1E|X |2pn( 1

p−r)(1−2p)

= CE|X |2pn2rp−1 → 0, as n → ∞.

Condition (c) of Theorem 3.1 holds by the assumption (2) .
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For condition (d) of Theorem 3.1, taking ξ > 1/(1− 2pr) > 0, we have by
Markov’s inequality that

∞

∑
n=1

(
n

∑
k=1

P
(
|ankXnk| > 1

bn

))ξ

� C
∞

∑
n=1

(
n

∑
k=1

P
(
|ankX | > 1

bn

))ξ

� C
∞

∑
n=1

(
b2p

n

n

∑
k=1

|ank|2pE|X |2p

)ξ

� C
∞

∑
n=1

n(2pr−1)ξ < ∞.

For condition (e) of Theorem 3.1, it follows by condition (3) that

bn

n

∑
k=1

E(ankXnk)2I
(
| ankXnk |� 1

bn

)
� bn

n

∑
k=1

a2
nkEX2

nk

� Cbn

n

∑
k=1

a2
nk → 0, as n → ∞.

Hence, by Theorem 3.1 we obtain that

∞

∑
n=1

E

{∣∣∣∣∣
n

∑
k=1

ank

(
Xnk −EXnkI

(
|ankXnk| � 1

bn

))∣∣∣∣∣− ε

}q

+

< ∞. (4.4)

To prove (4.3), it remains to show

n

∑
k=1

ankEXnkI
(
|ankXnk| � 1

bn

)
→ 0.

Noting that EXnk = 0, we have by Lemma 4.1 and r < 1
2p that

∣∣∣∣∣
n

∑
k=1

ankEXnkI
(
|ankXnk| � 1

bn

)∣∣∣∣∣ =

∣∣∣∣∣
n

∑
k=1

ankEXnkI
(
|ankXnk| > 1

bn

)∣∣∣∣∣
� C

n

∑
k=1

n−
1
p E|Xnk|I(|Xnk| > n

1
p−r)

� Cn1− 1
p E|X |2p|X |1−2pI(|X | > n

1
p−r)

� Cn−1+(2p−1)rE|X |2p

� Cn−
1
2p E|X |2p → 0, as n → ∞.

The proof is completed. �

As a special case of Corollary 4.2,we obtain Corollary 4.3.



1044 Y. WU, Y. DING, X. WANG AND W. CHEN

COROLLARY 4.3. Let {Xnk,1 � k � n,n � 1} be an array of mean zero rowwise
END random variables which are stochastically dominated by a random variable X
with E|X |2p < ∞ for some 1 � p < 2 . Then for any ε > 0 and 0 < q � p,

∞

∑
n=1

E

{
n−

1
p

∣∣∣∣∣
n

∑
k=1

Xnk

∣∣∣∣∣− ε

}q

+

< ∞.

Proof. Let ank = n−
1
p for 1 � k � n and n � 1. Then conditions of Corollary 4.2

are trivially satisfied with bn = nr for some 0 < r < min{ 1
2p , 2

p −1} . The desired result
follows by Corollary 4.2 immediately. The proof is completed. �

REMARK 4.1. It is deserved to mention that as the same assumptions of Corollary

4.3 for ND random variables, Sung et al. [17] only obtained that
n
∑

k=1
Xnk/n1/p → 0

completely. As it is mentioned in Introduction, complete moment convergence is much
stronger than complete convergence. Hence, the result of Corollary 4.3 generalizes and
improves the corresponding one of Sung et al. [17].

5. Appendix

Proof of Lemma 2.4. Let N1 =
{

n :
kn

∑
k=1

P(|Xnk| > 1
bn

) � 1

}
, N2 = N−N1 . Hence,

∑
n∈N2

cnP

(∣∣∣∣∣
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣> ε

)

� ∑
n∈N2

cn � ∑
n∈N2

cn

(
kn

∑
k=1

p(|Xnk| > 1
bn

)

)ξ

< ∞.

So it means that we also need to prove

∑
n∈N1

cnP

(∣∣∣∣∣
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))∣∣∣∣∣> ε

)
< ∞ for all ε > 0. (5.1)

Because 1
bn

→ 0 as n → ∞ , there exists a M∗ > 0 such that 1
bn

< ε
4(ξ+1) for all n > M∗ .

For fixed n � 1, denote for 1 � kn � n that

Ynk = − 1
bn

I
(
Xnk < − 1

bn

)
+XnkI

(
|Xnk| � 1

bn

)
+

1
bn

I
(
Xnk >

1
bn

)
,

Unk = − 1
bn

I
(
Xnk < − 1

bn

)
,

Vnk =
1
bn

I
(
Xnk >

1
bn

)
,
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Znk = XnkI
( 1

bn
< |Xnk| � ε

4(ξ +1)

)
.

It is easily checked that {Ynk−EYnk,1 � k � kn,n � 1} , {Unk−EUnk,1 � k � kn,n � 1}
and {Vnk −EVnk,1 � k � kn,n � 1} are all arrays of rowwise END random variables
by Lemma 2.1 (i). Hence,

∑
n∈N1

cnP

(
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))
> ε

)

= ∑
n∈N1

cnP

(
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))
> ε,

kn⋃
k=1

{|Xnk| > ε
4(ξ +1)

}
)

+ ∑
n∈N1

cnP

(
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))
> ε,

kn⋂
k=1

{|Xnk| � ε
4(ξ +1)

}
)

� ∑
n∈N1

cnP

(
kn⋃

k=1

{
|Xnk| > ε

4(ξ +1)

})

+ ∑
n∈N1

cnP

(
kn

∑
k=1

(
XnkI

(
|Xnk| � ε

4(ξ +1)

)
−EXnkI

(
|Xnk| � 1

bn

))
> ε

)

� I1 + I2. (5.2)

From condition (i) , we obtain that

I1 �
∞

∑
n=1

cn

kn

∑
k=1

P

(
|Xnk| > ε

4(ξ +1)

)
< ∞. (5.3)

For I2 , noting that it is finite when n � M∗ , so we only need to consider the case
n > M∗ . It is easily checked that

∑
n∈N1,n>M∗

cnP

(
kn

∑
k=1

(
XnkI

(
|Xnk| � ε

4(ξ +1)

)
−EXnkI

(
|Xnk| � 1

bn

))
> ε

)

� ∑
n∈N1,n>M∗

cnP

(
kn

∑
k=1

(Ynk −EYnk) >
ε
4

)
+ ∑

n∈N1,n>M∗
cnP

(
kn

∑
k=1

(−Unk +EUnk) >
ε
4

)

+ ∑
n∈N1,n>M∗

cnP

(
kn

∑
k=1

(−Vnk +EVnk) >
ε
4

)
+ ∑

n∈N1,n>M∗
cnP

(
kn

∑
k=1

Znk >
ε
4

)

� I3 + I4 + I5 + I6. (5.4)

Obviously, |Ynk −EYnk| � 2
bn

and Y 2
nk = 1

b2
n
I(|Xnk| > 1

bn
)+X2

nkI(|Xnk| � 1
bn

) . Applying

Lemma 2.2 with t = 4(η0+1)bn
ε , we have by Markov’s inequality and condition (iii) that
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for n ∈ N1 and n > M∗ ,

P

(
kn

∑
k=1

(Ynk −EYnk) >
ε

4(ξ +1)

)
� M exp

{
−ε

4
t +

t2

2
e

2t
bn

kn

∑
k=1

E(Ynk −EYnk)2

}

� M exp

{
−ε

4
t +

t2

2
e

2t
bn

kn

∑
k=1

EY 2
nk

}

� M exp{−(η0 +1)bn +o(1)bn} � M exp{−η0bn},

which together with condition (iv) yields that

I3 � ∑
n∈N1,n>M∗

Mcn exp{−η0bn} < ∞. (5.5)

For I4 , note that |Unk −EUnk| � 2
bn

. Applying Lemma 2.2 again with t = 4(η0+1)bn
ε ,

we have by Markov’s inequality that for n ∈ N1 and n > M∗ ,

P

(
kn

∑
k=1

(−Unk +EUnk) >
ε
4

)
� e−

ε
4 tE exp

{
t

kn

∑
k=1

(−Unk +EUnk)

}

� M exp

{
−ε

4
t +

t2

2
e

2t
bn

kn

∑
k=1

E(−Unk +EUnk)2

}

� M exp

{
−ε

4
t +

t2

2
e

2t
bn

kn

∑
k=1

1
b2

n
P
(
|Xnk| > 1

bn

)}

� M exp{−(η0 +1)bn +o(1)bn} � M exp{−η0bn} ,

which together with condition (iv) again yields that

I4 � ∑
n∈N1,n>M∗

Mcn exp{−η0bn} < ∞. (5.6)

Similar to the proof of I4 < ∞ , we can get I5 < ∞.

Finally, we will prove I6 < ∞. It follows by the subadditivity of probablity and the
definition of END that for n ∈ N1 ,

P

(
kn

∑
k=1

XnkI
( 1

bn
< |Xnk| � ε

4(ξ +1)

)
>

ε
4

)

� P

(
at least �ξ +1�′s Xnk have the property Xnk >

1
bn

)

= P

⎧⎨
⎩

⋃
1� j1<···< j�ξ+1��kn

(
Xn j1 >

1
bn

, · · · ,Xn j�ξ+1� >
1
bn

)⎫⎬
⎭
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� ∑
j1,···, j�ξ+1�

M
�ξ+1�
∏
k=1

P
(
Xn jk >

1
bn

)
� M

(
kn

∑
k=1

P
(
|Xnk| > 1

bn

))�ξ+1�

� M

(
kn

∑
k=1

P
(
|Xnk| > 1

bn

))ξ

,

which together with condition (ii) yields that

I6 � ∑
n∈N1,n>M∗

Mcn

(
kn

∑
k=1

P
(
|Xnk| > 1

bn

))ξ

< ∞. (5.7)

From the statement above, we have

∑
n∈N1

cnP

(
kn

∑
k=1

(
Xnk −EXnkI

(
|Xnk| � 1

bn

))
> ε

)
< ∞. (5.8)

Noting that {−Xnk,1 � k � kn,n � 1} is also an array of rowwise END random vari-
ables, we have by (5.9) that

∑
n∈N1

cnP

(
kn

∑
k=1

(
−Xnk +EXnkI

(
|Xnk| � 1

bn

))
> ε

)
< ∞. (5.9)

By (5.8) and (5.9), we can get (5.1) immediately. This completes the proof of the
lemma. �
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