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GENERALIZATION OF JENSEN’S AND JENSEN–STEFFENSEN’S

INEQUALITIES BY GENERALIZED MAJORIZATION THEOREM

M. ADIL KHAN, JAMROZ KHAN AND JOSIP PEČARIĆ

(Communicated by P. Jain)

Abstract. In this paper, we use generalized majorization theorem and give the generalizations
of Jensen’s and Jensen-Steffensen’s inequalities. We present the generalization of converse of
Jensen’s inequality. We give bounds for the identities related to the generalization of Jensen’s
inequality by using Čebyšev functionals. We also give Grüss and Ostrowski types inequalities
for these functionals. We present mean value theorems and n -exponential convexity which
leads to exponential convexity and log -convexity for these functionals. We give some families
of functions which enable us to construct a large families of functions that are exponentially
convex and also give classes of means.

1. Introduction and preliminaries

One of the most important inequality in Mathematics and Statistics is the Jensen
inequality (see [19, p. 43]).

THEOREM 1. Let I be an interval in R and f : I → R be a convex function. Let
n � 2 , x = (x1, . . . ,xn) ∈ In and w = (w1, . . . ,wn) be a positive n-tuple. Then

f

(
1

Wn

n

∑
i=1

wixi

)
� 1

Wn

n

∑
i=1

wi f (xi), (1)

where

Wk =
k

∑
i=1

wi, k = 1, . . . ,n. (2)

If f is strictly convex, then inequality (1) is strict unless x1 = · · · = xn .

The condition “w is a positive n -tuple” can be replaced by “w is a non-negative
n -tuple and Wn > 0”. Note that the Jensen inequality (1) can be used as an alternative
definition of convexity.

It is reasonable to ask whether the condition “w is a non-negative n -tuple” can be
relaxed at the expense of restricting x more severely. An answer to this question was
given by Steffensen [21] (see also [19, p. 57]).
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THEOREM 2. Let I be an interval in R and f : I → R be a convex function. If
x = (x1, . . . ,xn) ∈ In is a monotonic n-tuple and w = (w1, . . . ,wn) a real n-tuple such
that

0 � Wk � Wn , k = 1, . . . ,n−1, Wn > 0, (3)

is satisfied, where Wk are as in (2) , then (1) holds. If f is strictly convex, then in-
equality (1) is strict unless x1 = · · · = xn .

Inequality (1) under conditions from Theorem 2 is called the Jensen-Steffensen
inequality.

Now we give some basic introduction to majorization:
There is a certain intuitive appeal to the vague notion that the components of m-

tuple x are less spread out, or more nearly equal, than are the components of m-tuple
y. The notion arises in a variety of contexts, and it can be made precise in a number
of ways. But in remarkably many cases, the appropriate statement is that x majorizes y
means that the sum of k largest entries of y does not exceed the sum of k largest entries
of x for all k = 1,2, . . . ,m−1 with equality for k = m and we write as y ≺ x . A math-
ematical origin of majorization is illustrated by the work of Schur [20] on Hadamard’s
determinant inequality. Many mathematical characterization problems are known to
have solutions that involve majorization. A complete and superb reference on the sub-
ject are the books [10], [17]. The comprehensive survey by Ando [9] provides alter-
native derivations, generalizations and a different viewpoint. The following theorem
known as the majorization theorem and its convenient proof is given by Marshall and
Olkin in [17].

THEOREM 3. Let x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be two m-tuples such that
xi, yi ∈ [a,b], for i = 1,2, . . . ,m. Then for any continuous convex function f : [a,b]→R

the inequality
m

∑
i=1

f (yi) �
m

∑
i=1

f (xi)

holds if and only if y ≺ x.

The following theorem can be regarded as the generalization of Theorem 3, known
as weighted majorization theorem and is proved by Fuchs in [13].

THEOREM 4. Let x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be two decreasing real
m-tuples with xi,yi ∈ [a,b], for i = 1,2, . . . ,m. Let w = (w1, . . . ,wm) be real m-tuple
such that

l

∑
i=1

wiyi �
l

∑
i=1

wixi for l = 1,2, . . . ,m−1 (4)

and
m

∑
i=1

wiyi =
m

∑
i=1

wixi. (5)
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Then for every continuous convex function f : [a,b]→ R , we have

m

∑
i=1

wi f (yi) �
m

∑
i=1

wi f (xi).

The following theorem is a consequence of Theorem 4.

THEOREM 5. Let x,y : [a,b] → [α,β ] be decreasing and w : [a,b] → R be con-
tinuous functions. If∫ ν

a
w(t)y(t)dt �

∫ ν

a
w(t)x(t)dt for every ν ∈ [a,b], (6)

and ∫ b

a
w(t)y(t)dt =

∫ b

a
w(t)x(t)dt (7)

hold, then for every continuous convex function f : [α,β ] → R , we have

∫ b

a
w(t) f (y(t)) dt �

∫ b

a
w(t) f (x(t)) dt. (8)

In our main results we will use generalized result for n -convex function, therefore
here we recall the definition of n -convexity (see for example [19]).

DEFINITION 1. The divided difference of order n, n ∈ N , of the function
f : [a,b]→R at mutually different points x0,x1, . . . ,xn ∈ [a,b] is defined recursively by

[xi; f ] = f (xi), i = 0, . . . ,n

[x0, . . . ,xn; f ] =
[x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]

xn− x0
.

The value [x0, . . . ,xn; f ] is independent of the order of the points x0, . . . ,xn.

This definition may be extended to include the case in which some or all the points
coincide. Assuming that f ( j−1)(x) exists, we define

[x, . . . ,x︸ ︷︷ ︸
j-times

; f ] =
f ( j−1)(x)
( j−1)!

.

DEFINITION 2. A function f : [a,b]→ R is n -convex, n � 0, if for all choices of
(n+1) distinct points xi ∈ [a,b], i = 0, . . . ,n, the inequality

[x0,x1, . . . ,xn; f ] � 0

holds.
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THEOREM 6. [19, p. 16] Let f : [α,β ] → R be a function such that f (n) exists,
then f is n-convex if and only if f (n) � 0 .

From Definition 2, it follows that 2-convex functions are just convex functions.
Furthermore, 1-convex functions are increasing functions and 0-convex functions are
nonnegative functions. To complete this section we give some generalized majorization
theorems from [7], which we will use in our main results.

The following generalized Montgomery identity via Taylor’s formula given in [6,
8].

PROPOSITION 1. Let n ∈ N , f : I → R be such that f (n−1) is absolutely contin-
uous, I ⊂ R an open interval, a,b ∈ I and a < b. Then the following identity holds

f (x) =
1

b−a

∫ b

a
f (t)dt +

n−2

∑
k=0

f (k+1) (a)
k!(k+2)

(x−a)k+2

b−a
−

n−2

∑
k=0

f (k+1) (b)
k!(k+2)

(x−b)k+2

b−a

+
1

(n−1)!

∫ b

a
Tn (x,s) f (n) (s)ds, (9)

where

Tn (x,s) =

⎧⎪⎨
⎪⎩

− (x−s)n

n(b−a) + x−a
b−a (x− s)n−1 , a � s � x,

− (x−s)n

n(b−a) + x−b
b−a (x− s)n−1 , x < s � b.

(10)

In case n = 1 the sum
n−2
∑

k=0
. . . is empty, so the identity (9) reduces to the well-

known Montgomery identity

f (x) =
1

b−a

∫ b

a
f (t)dt +

∫ b

a
P(x,s) f ′ (s)ds,

where P(x,s) is the Peano kernel, defined by

P(x,s) =

⎧⎨
⎩

s−a
b−a , a � s � x,

s−b
b−a , x < s � b.

The following generalizations of majorization theorem by Montgomery identity
are given in [7].

THEOREM 7. ([7]) Suppose all the assumptions of Proposition 1 hold. Addition-
ally, suppose that xi, yi ∈ [a,b] and wi ∈ R for i = 1,2, . . . ,m. Then

m

∑
i=1

wi f (yi)−
m

∑
i=1

wi f (xi)

=
1

b−a

n−2

∑
k=0

1
k!(k+2)

m

∑
i=1

wi

[
f (k+1)(a)

{
(yi −a)k+2− (xi−a)k+2

}
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− f (k+1)(b)
{

(yi −b)k+2− (xi−b)k+2
}]

+
1

(n−1)!

∫ b

a

[
m

∑
i=1

wi (Tn(yi,s)−Tn(xi,s))

]
f (n)(s)ds, (11)

where Tn(.,s) is as defined in Proposition 1.

COROLLARY 1. ([7]) Suppose all the assumptions of Theorem 7 hold. Addition-
ally, suppose that x = (x1, . . .xm), y = (y1, . . .ym)∈ [a,b]m are two decreasing m-tuples
and w = (w1, . . . ,wm) ∈ R

m which satisfy conditions (4) and (5). If f is 2n-convex
function then the following inequality holds:

m

∑
i=1

wi f (yi)−
m

∑
i=1

wi f (xi)

� 1
b−a

2n−2

∑
k=0

1
k!(k+2)

m

∑
i=1

wi

[
f (k+1)(a)

{
(yi −a)k+2− (xi−a)k+2

}

− f (k+1)(b)
{

(yi −b)k+2− (xi−b)k+2
}]

. (12)

Moreover, if f ( j)(a) � 0 and (−1) j f ( j)(b) � 0 for j = 1, . . . ,2n−1 , then

m

∑
i=1

wi f (yi) �
m

∑
i=1

wi f (xi).

THEOREM 8. ([7]) Let x,y : [α,β ] → R be two functions and w : [α,β ] → R be
continuous function. Let f : I → R be such that f (n−1) is absolutely continuous for
some n ∈ N , I ⊂ R an open interval, a,b ∈ I, a < b, then we have the following
identity:

∫ β

α
w(t) f (y(t))dt −

∫ β

α
w(t) f (x(t))dt

=
1

b−a

n−2

∑
k=0

1
k!(k+2)

∫ β

α
w(t)

[
f (k+1)(a)

{
(y(t)−a)k+2− (x(t)−a)k+2

}

− f (k+1)(b)
{

(y(t)−b)k+2− (x(t)−b)k+2
}]

dt

+
1

(n−1)!

∫ b

a

(∫ β

α
w(t)(Tn(y(t),s)−Tn(x(t),s))dt

)
f (n)(s)ds, (13)

where Tn(.,s) is as defined in Proposition 1.
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COROLLARY 2. ([7]) Suppose all the assumptions of Theorem 8 hold. Addition-
ally, suppose that x and y are decreasing functions which satisfy conditions (6) and
(7). If f is 2n-convex function then the following inequality holds:∫ β

α
w(t) f (y(t))dt −

∫ β

α
w(t) f (x(t))dt

� 1
b−a

2n−2

∑
k=0

1
k!(k+2)

∫ β

α
w(t)

[
f (k+1)(a)

{
(y(t)−a)k+2− (x(t)−a)k+2

}

− f (k+1)(b)
{

(y(t)−b)k+2− (x(t)−b)k+2
}]

dt. (14)

Moreover, if f ( j)(a) � 0 and (−1) j f ( j)(b) � 0 for j = 1, . . . ,2n−1 , then∫ β

α
w(t) f (y(t))dt �

∫ β

α
w(t) f (x(t))dt.

For some more recent results, related to generalizations and refinements of ma-
jorization theorem, see [1]–[5], [7, 14] and some of the references in them.

In this paper we utilize generalized majorization theorem and establish generaliza-
tion of Jensen’s and Jensen-Steffensen’s inequalities for the class of 2n -convex func-
tions. We also discuss the generalization of converse of Jensen’s inequality. We use in-
equalities for Čebyšev functional to obtain bounds for the identities related to the gener-
alization of Jensen’s inequalities. We present mean value theorems and n -exponential
convexity for the functional obtained from the generalized Jensen’s and Jensen-Ste-
ffensen’s inequalities which leads to exponential convexity and log-convexity for these
functionals. Finally, we discuss the results for particular families of functions.

2. Generalization of Jensen’s inequality

First we give generalization of Jensen’s inequality associated with Montgomery
identity.

THEOREM 9. Let n∈N, f : I →R be such that f (2n−1) is absolutely continuous,
I ⊂ R an open interval, a,b ∈ I , a < b. Let x = (x1, . . . ,xm) ∈ [a,b]m be m-tuple and

w = (w1, . . .wm) be positive m-tuple, Wm =
m
∑
i=1

wi and x = 1
Wm

m
∑
i=1

wixi .

(i) If x is decreasing m-tuple and f : [a,b] → R is 2n-convex function, then we
have

1
Wm

m

∑
i=1

wi f (xi)− f (x) � 1
b−a

2n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

( m
∑
i=1

wi(xi−a)k+2

Wm
−(x−a)k+2

)

− f (k+1)(b)
( m

∑
i=1

wi(xi −b)k+2

Wm
− (x−b)k+2

)]
. (15)
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(ii) If the inequality (15) holds and the function F defined by

F(.) =
2n−2

∑
k=0

f (k+1) (a)
k!(k+2)

(.−a)k+2

b−a
−

2n−2

∑
k=0

f (k+1) (b)
k!(k+2)

(.−b)k+2

b−a
, (16)

is convex, then the right hand side of (15) is non-negative and

f (x) � 1
Wm

m

∑
i=1

wi f (xi). (17)

Proof.

(i) Let k be the largest number from {1, . . . ,m} such that xk � x, then as x is
decreasing m-tuple so we have xl � x for l = 1,2, . . . ,k and xl � x for l =
k+1,k+2, . . . ,m .

Now as xl � x for l = 1,2, . . . ,k , so we have

l

∑
i=1

wix �
l

∑
i=1

wixi for l = 1,2, . . . ,k. (18)

Similarly as xl � x for l = k+1,k+2, . . . ,m , so we have

j

∑
i=k+1

wixi �
j

∑
i=k+1

wix for j = k+1,k+2, . . . ,m.

Hence

j

∑
i=1

wixi =
m

∑
i=1

wixi −
m

∑
i= j+1

wixi �
m

∑
i=1

wix−
m

∑
i= j+1

wix =
j

∑
i=1

wix, (19)

for j = k,k+1, . . . ,m.

Using (18) and (19) we get that

l

∑
i=1

wix �
l

∑
i=1

wixi, for all l = 1,2, . . . ,m−1

and obviously
m

∑
i=1

wix =
m

∑
i=1

wixi.

Since the conditions (4) and (5) are satisfied. Therefore using Corollary 1 for
y = (x1, . . . ,xm) and x = (x, . . . ,x), we get (15).

(ii) We may write the right hand side of (15) as

1
Wm

m

∑
i=1

wiF(xi)−F(x).
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Since F is convex so by Jensen’s inequality, we have

1
Wm

m

∑
i=1

wiF(xi)−F(x) � 0.

Hence (17) holds. �

In the following theorem we give integral version of Theorem 9.

THEOREM 10. Let n∈N, f : [a,b]→R be such that f (2n−1) is absolutely contin-
uous, x : [α,β ]→R be continuous function such that x([α,β ])⊆ [a,b] , λ : [α,β ]→R

be increasing, bounded function with λ (α) �= λ (β ) and x =
∫ β

α x(t)dλ (t)∫ β
α dλ (t)

.

(i) If x is decreasing function and f : [a,b]→R is 2n-convex function, then we have∫ β
α f (x(t))dλ (t)∫ β

α dλ (t)
− f (x)

� 1
b−a

2n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

{∫ β
α (x(t)−a)k+2dλ (t)∫ β

α dλ (t)
− (x−a)k+2

}

− f (k+1)(b)
{∫ β

α (x(t)−b)k+2dλ (t)∫ β
α dλ (t)

− (x−b)k+2
}]

. (20)

(ii) If the inequality (20) holds and the function F defined as in (16) is convex, then
the right hand side of (20) is non-negative and

f (x) �
∫ β

α f (x(t))dλ (t)∫ β
α dλ (t)

. (21)

Proof.

(i) Let γ0 be the largest number in [α,β ] such that x(γ0) � x . But x is decreasing
function so we have

x(γ) � x for all γ ∈ [α,γ0] and x(γ) � x for all γ ∈ [γ0,β ].

Case 1. If x(γ) � x for all γ ∈ [α,γ0] , then we may write

x(t) � x for all t ∈ [α,γ],γ ∈ [α,γ0].

As λ is increasing so by integrating both sides with respect to λ over [α,γ], we
get ∫ γ

α
x(t)dλ (t) �

∫ γ

α
xdλ (t), γ ∈ [α,γ0]. (22)
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Case 2. If x(γ) � x for all γ ∈ [γ0,β ] , then we may write

x(t) � x for all t ∈ [γ,β ],γ ∈ [γ0,β ].

But λ is increasing so by integrating both sides with respect to λ over [γ,β ], we
get ∫ β

γ
x(t)dλ (t) �

∫ β

γ
xdλ (t).

Therefore we have∫ γ

α
x(t)dλ (t) =

∫ β

α
x(t)dλ (t)−

∫ β

γ
x(t)dλ (t)

�
∫ β

α
xdλ (t)−

∫ β

γ
xdλ (t) =

∫ γ

α
xdλ (t)

i.e. ∫ γ

α
x(t)dλ (t) �

∫ γ

α
xdλ (t), γ ∈ [γ0,β ]. (23)

From (22) and (23) we have∫ γ

α
x(t)dλ (t) �

∫ γ

α
xdλ (t), γ ∈ [α,β ].

Also the equality

∫ β

α
x(t)dλ (t) =

∫ β

α
xdλ (t) holds.

Since the conditions (6) and (7) are satisfied, therefore using Corollary 2 for
y(t) = x(t) and x(t) = x, we get the inequality (20).

(ii) We may write the right hand side of (20) as

∫ β
α F(x(t))dλ (t)∫ β

α dλ (t)
−F(x).

Since F is convex so by Jensen’s inequality, we have

∫ β
α F(x(t))dλ (t)∫ β

α dλ (t)
−F(x) � 0.

Hence (21) holds. �

REMARK 1. If we take x(t) = t , λ (t) = t , in the inequality (20), then we obtain
generalization of Hermite-Hadamard inequality.
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3. Generalization of Jensen-Steffensen’s inequality

THEOREM 11. Let n ∈ N, f : [a,b] → R be such that f (2n−1) is absolutely con-
tinuous, x = (x1, . . . ,xm) ∈ [a,b]m be decreasing m-tuple. Let w = (w1, . . . ,wm) be

real m-tuple such that 0 � Wk � Wm (k = 1,2, . . . ,m) , Wm > 0 where Wk =
k
∑
i=1

wi and

x = 1
Wm

m
∑
i=1

wixi .

(i) Then for any 2n-convex function f : [a,b]→ R , the inequality (15 ) holds.

(ii) If the inequality (15) holds and the function F defined as in (16) is convex, then
the right hand side of (15) is non-negative and (17) holds.

Proof. (i) Let k be the largest number {1,2, . . . ,m} such that xk � x then xl � x
for l = 1, . . . ,k , and we have

l

∑
i=1

wixi −Wlxl =
l−1

∑
i=1

(xi − xi+1)Wi � 0

and so we obtain
l

∑
i=1

wix = Wlx � Wlxl �
l

∑
i=1

xiwi. (24)

Also for l = k+1, . . . ,m we have xk+1 < x , therefore

xl(Wm −Wl)−
m

∑
i=l+1

wixi =
m

∑
i=l+1

(xi−1 − xi)(Wm −Wi−1) � 0.

Hence, we conclude that

m

∑
i=l+1

wix = (Wm −Wl)x > (Wm −Wl)xl �
m

∑
i=l+1

wixi. (25)

From (24) and (25), we get

l

∑
i=1

wix �
l

∑
i=1

xiwi for all l = 1,2, . . .m−1.

Obviously the equality

m

∑
i=1

wix =
m

∑
i=1

xiwi

holds. Since the conditions (4) and (5) are satisfied, therefore using Corollary 1 for
y = (x1, . . .xm) and x = (x, . . . ,x), we get (15).

(ii) The proof is similar to the proof of Theorem 9(ii). �
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THEOREM 12. Let n ∈ N, f : [a,b] → R be such that f (2n−1) is absolutely con-
tinuous, x : [α,β ] → R be continuous decreasing function such that x([α,β ]) ⊆ [a,b],
λ : [α,β ] → R is either continuous or of bounded variation with λ (α) � λ (t) � λ (β )

for all t ∈ [α,β ] and x =
∫ β

α x(t)dλ (t)∫ β
α dλ (t)

.

(i) Then for any 2n-convex function f , the inequality (20) holds.

(ii) If the inequality (20) holds and the function F defined as in (16) is convex, then
the right hand side of (20) is non-negative and (21) holds.

Proof. (i) Let γ0 be the largest number in [α,β ] such that x(γ0) � x . But x is
decreasing function so we have

x(γ) � x for all γ ∈ [α,γ0] and x(γ) � x for all γ ∈ [γ0,β ].

(a) If x(γ) � x for all γ ∈ [α,γ0] , then we may write

x(t) � x for all t ∈ [α,γ],γ ∈ [α,γ0].

Therefore we have

x
∫ γ

α
dλ (t) � x(γ)

∫ γ

α
dλ (t), γ ∈ [α,γ0]. (26)

But

∫ γ

α
x(t)dλ (t)− x(γ)

∫ γ

α
dλ (t) = −

∫ γ

α
x′(t)

(∫ t

α
dλ (x)

)
dt � 0. (27)

From (26) and (27), we get

x
∫ γ

α
dλ (t) �

∫ γ

α
x(t)dλ (t), γ ∈ [α,γ0]. (28)

(b) If x(γ) � x for all γ ∈ [γ0,β ] , then we may write

x(t) � x for all t ∈ [γ,β ],γ ∈ [γ0,β ],

therefore we have

x
∫ β

γ
dλ (t) � x(γ)

∫ β

γ
dλ (t). (29)

But

x(γ)
∫ β

γ
dλ (t)−

∫ β

γ
x(t)dλ (t) = −

∫ β

γ
x′(t)

(∫ β

t
dλ (x)

)
dt � 0. (30)

From (29) and (30), we get

x
∫ β

γ
dλ (t) �

∫ β

γ
x(t)dλ (t) for all γ ∈ [γ0,β ]. (31)
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From (28) and (31), we get

x
∫ β

α
dλ (t) �

∫ β

α
x(t)dλ (t).

The equality

x
∫ β

α
dλ (t) =

∫ β

α
x(t)dλ (t),

obviously holds for all γ ∈ [α,β ]. Since the conditions (6) and (7) are satisfied,
therefore using Corollary 2 for y(t) = x(t) and x(t) = x, we get (20).

(ii) The proof is similar to the proof of Theorem 10 (ii). �

4. Generalization of converse of Jensen’s inequality

THEOREM 13. Let n ∈ N, f : [a,b] → R be such that f (2n−1) is absolutely con-
tinuous. Let x = (x1, . . . ,xr) be real r -tuple with xi ∈ [m,M] ⊆ [a,b], i = 1,2, . . . ,r ,

w = (w1, . . .wr) be positive r -tuple, Wr =
r
∑
i=1

wi and x = 1
Wr

r
∑
i=1

wixi.

(i) Then for any 2n-convex function f : [a,b]→ R , the following inequality holds

1
Wr

r

∑
i=1

wi f (xi) � x−m
M−m

f (M)+
M− x
M−m

f (m)− 1
b−a

2n−2

∑
k=0

1
k!(k+2)

×
[

f (k+1)(a)
{

x−m
M−m

(M−a)k+2 +
M− x
M−m

(m−a)k+2− 1
Wr

r

∑
i=1

wi(xi −a)k+2
}

− f (k+1)(b)
{

x−m
M−m

(M−b)k+2+
M− x
M−m

(m−b)k+2− 1
Wr

r

∑
i=1

wi(xi−b)k+2
}]

.

(32)

(ii) If the inequality (32 ) holds and the function F defined as in (16) is convex, then

1
Wr

r

∑
i=1

wi f (xi) � x−m
M−m

f (M)+
M− x
M−m

f (m).

Proof. (i) Putting m = 2, x1 = M, x2 = m, w1 = xi−m
M−m and w2 = M−xi

M−m in (15),
we have

f (xi) � xi−m
M−m

f (M)+
M− xi

M−m
f (m)− 1

b−a

2n−2

∑
k=0

1
k!(k+2)

×
[

f (k+1)(a)
{

xi−m
M−m

(M−a)k+2 +
M− xi

M−m
(m−a)k+2− (xi−a)k+2

}

− f (k+1)(b)
{

xi −m
M−m

(M−b)k+2 +
M− xi

M−m
(m−b)k+2− (xi−b)k+2

}]
. (33)
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Multiplying (33) with wi , dividing by Wr and taking the summation from i = 1 to r,
we get (32).

(ii) Using similar arguments as in the proof of Theorem 9(ii), we get the required
result. �

REMARK 2. In Theorem 13, assume that x0,
r
∑
i=1

wixi ∈ [m,M] with x0 �=
r
∑
i=1

wixi

and (xi−x0)
( r

∑
i=1

wixi−xi
)
� 0, i = 1,2, . . . ,r . If x0 < ∑r

i=1 wixi , then by taking m = x0

and M =
r
∑
i=1

wixi , in inequality (32) we obtain the generalization of Giaccardi inequal-

ity. Similarly if x0 > ∑r
i=1 wixi , then by taking M = x0 and m =

r
∑
i=1

wixi , in inequality

(32) we obtain the generalization of Giaccardi inequality.
Moreover, if we take m = x0 = 0 in the generalized Giaccardi inequality we obtain

generalization of Jensen-Petrović’s inequality.

The integral version of the above theorem can be stated as:

THEOREM 14. Let n ∈ N, f : [a,b] → R be such that f (2n−1) is absolutely con-
tinuous, x : [α,β ] → R be continuous function such that x([α,β ]) ⊆ [m,M] ⊆ [a,b],

λ : [α,β ] → R increasing, bounded function with λ (α) �= λ (β ) and x =
∫ β

α x(t)dλ (t)∫ β
α dλ (t)

.

(i) Then for any 2n-convex function f : [a,b]→ R , the following inequality holds

∫ β
α f (x(t))dλ (t)∫ β

α dλ (t)
� x−m

M−m
f (M)+

M− x
M−m

f (m)− 1
b−a

2n−2

∑
k=0

1
k!(k+2)

×
[

f (k+1)(a)
{

x−m
M−m

(M−a)k+2 +
M− x
M−m

(m−a)k+2−
∫ β

α (x(t)−a)k+2dλ (t)∫ β
α dλ (t)

}

− f (k+1)(b)
{

x−m
M−m

(M−b)k+2 +
M− x
M−m

(m−b)k+2−
∫ β

α (x(t)−b)k+2dλ (t)∫ β
α dλ (t)

}]
.

(34)

(ii) If the inequality (34 ) holds and the function F defined as in (16) is convex, then

∫ β
α f (x(t))dλ (t)∫ β

α dλ (t)
� x−m

M−m
f (M)+

M− x
M−m

f (m).

COROLLARY 3. Let n∈N, x = (x1, . . . ,xr) be real r -tuple with xi ∈ [m,M] , w =

(w1, . . .wr) be positive r -tuple, Wr =
r
∑
i=1

wi and x = 1
Wr

r
∑
i=1

wixi. Then for 2n-convex
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function f : [m,M] → R , the following inequality holds

1
Wr

r

∑
i=1

wi f (xi) � x−m
M−m

f (M)+
M− x
M−m

f (m)− 1
M−m

2n−2

∑
k=0

1
k!(k+2)

×
[

f (k+1)(m)
{

x−m
M−m

(M−m)k+2− 1
Wr

r

∑
i=1

wi(xi−m)k+2
}

− f (k+1)(M)
{

M− x
M−m

(m−M)k+2− 1
Wr

r

∑
i=1

wi(xi−M)k+2
}]

.

Proof. Use the inequality (32) for a = m and b = M . �

REMARK 3. Similarly we can give integral version of Corollary 3.

5. Bounds for identities related to the generalization of Jensen’s inequality

For two Lebesgue integrable functions φ ,ψ : [a,b] → R , we consider Čebyšev
functional

T (φ ,ψ) =
1

b−a

∫ b

a
φ(t)ψ(t)dt− 1

b−a

∫ b

a
φ(t)dt

1
b−a

∫ b

a
ψ(t)dt. (35)

The following results can be found in [12].

THEOREM 15. Let φ : [a,b] → R be a Lebesgue integrable function and ψ :
[a,b]→ R be an absolutely continuous function with (.−a)(b− .)[ψ ′]2 ∈ L[a,b]. Then
the inequality

| T (φ ,ψ) |� 1√
2
[T (φ ,φ)]

1
2

1√
b−a

(∫ b

a
(x−a)(b− x)[ψ ′(x)]2dx

) 1
2

(36)

holds. The constant 1√
2

in (36) is the best possible.

THEOREM 16. Suppose that φ : [a,b] → R is absolutely continuous with φ ′ ∈
L∞[a,b] and ψ : [a,b]→ R is monotonic nondecreasing on [a,b]. Then the inequality

| T (φ ,ψ) |� 1
2(b−a)

‖ φ ′ ‖∞

∫ b

a
(x−a)(b− x)dψ(x) (37)

holds. The constant 1
2 in (37) is the best possible.

Let w = (w1, . . . ,wm) and x = (x1, . . . ,xm) be m-tuples with xi ∈ [a,b], wi ∈ R

i = 1, . . . ,m , x = 1
Wm

m
∑
i=1

wixi ∈ [a,b] , Wm �= 0 and the function Tn be defined as in (10),

we denote

δ (s) =
1

Wm

m

∑
i=1

wiTn(xi,s)−Tn(x,s), s ∈ [a,b]. (38)
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Let x : [α,β ] → [a,b] be continuous function and λ : [α,β ] → R be as in Theorem 10

or in Theorem 12 and let x =
∫ β

α x(t)dλ (t)∫ β
α dλ (t)

, we denote

�(s) =
∫ β

α (Tn(x(t),s)dλ (t)∫ β
α λ (t)dt

−Tn(x,s), s ∈ [a,b]. (39)

From Čebyšev functional we may write

T (δ ,δ ) =
1

b−a

∫ b

a
δ 2(s)ds−

(
1

b−a

∫ b

a
δ (s)ds

)2

,

T (�,�) =
1

b−a

∫ b

a
�2(s)ds−

(
1

b−a

∫ b

a
�(s)ds

)2

.

Now, we are in the position to state the main results of this section:

THEOREM 17. Let n ∈ N, f : [a,b] → R be such that f (n) is absolutely con-
tinuous with (.− a)(b− .)[ f (n+1)]2 ∈ L[a,b] . Let xi ∈ [a,b], wi ∈ R , i = 1,2, . . . ,m,

Wm =
m
∑
i=1

wi �= 0 and x = 1
Wm

m
∑
i=1

wixi ∈ [a,b] . Let the functions Tn , T and δ be as

defined in (10), (35) and (38) respectively. Then we have

1
Wm

m

∑
i=1

wi f (xi)− f (x) =
1

b−a

n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

{
1

Wm

m

∑
i=1

wi(xi−a)k+2−(x−a)k+2
}

− f (k+1)(b)
{

1
Wm

m

∑
i=1

wi(xi −b)k+2− (x−b)k+2
}]

+
f (n−1)(b)− f (n−1)(a)

(n−1)!(b−a)

∫ b

a
δ (s)ds+H1

n ( f ;a,b),

(40)

where the remainder H1
n ( f ;a,b) satisfies the estimation

∣∣H1
n ( f ;a,b)

∣∣� 1
(n−1)!

(
b−a

2

∣∣∣∣T (δ ,δ )
∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

∣∣∣∣
) 1

2

.

Proof. Using Theorem 7 for yi → xi and xi → x , we get

1
Wm

m

∑
i=1

wi f (xi)− f (x) =
1

b−a

n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

{
1

Wm

m

∑
i=1

wi(xi−a)k+2−(x−a)k+2
}

− f (k+1)(b)
{

1
Wm

m

∑
i=1

wi(xi −b)k+2− (x−b)k+2
}]

+
1

(n−1)!

∫ b

a
δ (s) f (n)(s)ds. (41)
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Now if we apply Theorem 15 for φ → δ and ψ → f (n) , we obtain∣∣∣∣ 1
b−a

∫ b

a
δ (s) f (n)(s)ds−

(
1

b−a

∫ b

a
δ (s)ds

)(
1

b−a

∫ b

a
f (n)(s)ds

)∣∣∣∣
� 1√

2
[T (δ ,δ )]

1
2

1√
b−a

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2dx

) 1
2

.

Therefore we have

1
(n−1)!

∫ b

a
δ (s) f (n)(s)ds =

f (n−1)(b)− f (n−1)(a)
(n−1)!(b−a)

∫ b

a
δ (s)ds+H1

n ( f ;a,b). (42)

From (41) and (42), we obtain (40). �

The integral version of the above theorem can be stated as follows:

THEOREM 18. Let n ∈ N, f : [a,b] → R be such that f (n) is absolutely continu-
ous with (.−a)(b− .)[ f (n+1)]2 ∈ L[a,b] . Let x : [α,β ] → [a,b] be continuous function
such that x([α,β ])⊆ [a,b], λ : [α,β ]→ R be as defined in Theorem 10 or Theorem 12

and x =
∫ β

α x(t)dλ (t)∫ β
α dλ (t)

. Let the functions Tn , T and � be defined in (10), (35) and (39)

respectively. Then we have

∫ β
α f (x(t))dλ (t)∫ β

α dλ (t)
− f (x)

=
1

b−a

n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

{
1∫ β

α dλ (t)

∫ β

α
(x(t)−a)k+2dλ (t)− (x−a)k+2

}

− f (k+1)(b)
{∫ β

α (x(t)−b)k+2dλ (t)∫ β
α dλ (t)

− (x−b)k+2
}]

+
f (n−1)(b)− f (n−1)(a)

(n−1)!(b−a)

∫ b

a
�(s)ds+H2

n ( f ;a,b), (43)

where the remainder H2
n ( f ;a,b) satisfies the estimation

∣∣H2
n ( f ;a,b)

∣∣� 1
(n−1)!

(
b−a

2

∣∣∣∣T (δ ,δ )
∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

∣∣∣∣
) 1

2

.

In the next theorem we obtain Grüss type inequality.

THEOREM 19. Let n ∈ N, f : [a,b] → R be such that f (n) is absolutely contin-
uous with f (n+1) � 0 on [a,b] and let the functions T and δ be defined in (35) and
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(38) respectively. Then we have the representation (40) and the remainder H1
n ( f ;a,b)

satisfies

∣∣H1
n ( f ;a,b)

∣∣� 1
(n−1)!

‖ δ ′ ‖∞

[
b−a
2

[
f (n−1)(b)+ f (n−1)(a)

]−[ f (n−2)(b)− f (n−2)(a)
]]

.

(44)

Proof. The proof is similar to the proof of Theorem 7 in [7]. �
The integral version of the above theorem can be given as:

THEOREM 20. Let n ∈ N, f : [a,b] → R be such that f (n) is absolutely continu-
ous with f (n+1) � 0 on [a,b] and let the functions T and � be defined as in (36) and
(39) respectively. Then we have the representation (43) and the remainder H2

n ( f ;a,b)
satisfies

∣∣H2
n ( f ;a,b)

∣∣� 1
(n−1)!

‖�′ ‖∞

[
b−a
2

[
f (n−1)(b)+ f (n−1)(a)

]−[ f (n−2)(b)− f (n−2)(a)
]]

.

Here, the symbol Lp[a,b] (1 � p < ∞) denotes the space of p -power integrable
functions on the interval [a,b] equipped with the norm

‖ f ‖p=
(∫ b

a
| f (t)|pdt

) 1
p

for all f ∈ Lp[a,b],

and space of essentially bounded functions on [a,b] , denoted by L∞[a,b] , with the norm

‖ f ‖∞= ess sup
t∈[a,b]

| f (t)|.

We present the Ostrowsky type inequalities related to the generalized of Jensen’s
inequality.

THEOREM 21. Let n∈ N, f : [a,b]→R be such that f (n−1) is absolutely contin-
uous and f (n) ∈ Lp[a,b] , x = (x1, . . . ,xm) ∈ [a,b]m, w = (w1, . . . ,wm) be real m-tuple,

Wm =
m
∑
i=1

wi �= 0 and x = 1
Wm

m
∑
i=1

wixi ∈ [a,b] . Let (p,q) be a pair of conjugate expo-

nents, that is, 1 � p,q � ∞ , 1
p + 1

q = 1. Then we have

∣∣∣∣∣ 1
Wm

m

∑
i=1

wi f (xi)− f (x)− 1
b−a

n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

{ m
∑
i=1

wi(xi−a)k+2

Wm
−(x−a)k+2

}

− f (k+1)(b)
{ m

∑
i=1

wi(xi −b)k+2

Wm
− (x−b)k+2

}]∣∣∣∣∣
� 1

(n−1)!
‖ f (n) ‖p

∣∣∣∣
∣∣∣∣∑m

i=1 wiTn(xi, .)
Wm

−Tn(x, .)
∣∣∣∣
∣∣∣∣
q
. (45)
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The constant on the right of (45) is sharp for 1 < p � ∞ and the best possible for
p = 1.

Proof. The arguments of the proof is similar to the proof of Theorem 9 in [7]. �

The integral version of the above theorem given as follows

THEOREM 22. Let n ∈ N, f : [a,b] → R be such that f (n−1) is absolutely con-
tinuous and f (n) ∈ Lp[a,b] . Let x : [α,β ] → R be continuous function such that
x([α,β ]) ⊂ [a,b] , λ : [α,β ] → R be as defined in Theorem 10 or Theorem 12 and

x =
∫ β

α x(t)dλ (t)∫ β
α dλ (t)

. Let (p,q) be a pair of conjugate exponents, that is, 1 � p,q � ∞ ,

1
p + 1

q = 1. Then we have

∣∣∣∣∣
∫ β

α f (x(t))dλ (t)∫ β
α dλ (t)

− f (x)− 1
b−a

n−2

∑
k=0

1
k!(k+2)

×
[

f (k+1)(a)
{∫ β

α (x(t)−a)k+2dλ (t)∫ β
α dλ (t)

−(x−a)k+2
}

− f (k+1)(b)
{∫ β

α (x(t)−b)k+2dλ (t)∫ β
α dλ (t)

− (x−b)k+2
}]∣∣∣∣∣

�‖ f (n) ‖p

∣∣∣∣
∣∣∣∣
∫ β

α (Tn(x(t), .)dλ (t)∫ β
α λ (t)dt

−Tn(x, .)
∣∣∣∣
∣∣∣∣
q
. (46)

The constant on the right of (46) is sharp for 1 < p � ∞ and the best possible for p = 1 .

6. Mean value theorems and n -exponentail convexity

Motivated by the inequalities (15), (20), (32) and (34) we define the functionals
ϒ1( f ), ϒ2( f ) , ϒ3( f ) and ϒ4( f ) respectively by

ϒ1( f ) =
1

Wm

m

∑
i=1

wi f (xi)− f (x)

− 1
b−a

2n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

{
1

Wm

m

∑
i=1

wi(xi −a)k+2− (x−a)k+2
}

− f (k+1)(b)
{

1
Wm

m

∑
i=1

wi(xi −b)k+2− (x−b)k+2
}]

. (47)



GENERALIZATION OF JENSENS’S AND JENSEN-STEFFENSEN’S INEQUALITIES 1067

ϒ2( f ) =
∫ β

α f (x(t))dλ (t)∫ β
α dλ (t)

− f (x)

− 1
b−a

2n−2

∑
k=0

1
k!(k+2)

[
f (k+1)(a)

{∫ β
α (x(t)−a)k+2dλ (t)∫ β

α dλ (t)
− (x−a)k+2

}

− f (k+1)(b)
{∫ β

α (x(t)−b)k+2dλ (t)∫ β
α dλ (t)

− (x−b)k+2
}]

. (48)

ϒ3( f ) =
1

Wr

r

∑
i=1

wi f (xi)− x−m
M−m

f (M)− M− x
M−m

f (m)+
1

b−a

2n−2

∑
k=0

1
k!(k+2)

×
[

f (k+1)(a)
{

x−m
M−m

(M−a)k+2 +
M− x
M−m

(m−a)k+2− 1
Wr

r

∑
i=1

wi(xi −a)k+2
}

− f (k+1)(b)
{

x−m
M−m

(M−b)k+2 +
M− x
M−m

(m−b)k+2− 1
Wr

r

∑
i=1

wi(xi −b)k+2
}]

.

(49)

ϒ4( f ) =
∫ β

α f (x(t))dλ (t)∫ β
α dλ (t)

− x−m
M−m

f (M)− M− x
M−m

f (m)+
1

b−a

2n−2

∑
k=0

1
k!(k+2)

×
[

f (k+1)(a)
{

x−m
M−m

(M−a)k+2+
M−x
M−m

(m−a)k+2−
∫ β

α (x(t)−a)k+2dλ (t)∫ β
α dλ (t)

}

− f (k+1)(b)
{

x−m
M−m

(M−b)k+2+
M+x
M−m

(m−b)k+2−
∫ β

α (x(t)−b)k+2dλ (t)∫ β
α dλ (t)

}]
.

(50)

THEOREM 23. Let f : [a,b] → R be such that f ∈C(2n)[a,b]. If the inequalities
(15), (20) and the reverse inequalities in (32) and (34) hold, then there exist ξk ∈ [a,b]
for k ∈ {1,2,3,4} such that

ϒk( f ) = f (2n)(ξk)ϒk( f0), k ∈ {1,2,3,4}, (51)

where f0(x) = x2n

(2n)! .

Proof. The proof is similar to the proof of Theorem 11 in [7]. �

THEOREM 24. Let f ,g : [a,b]→R be such that f ,g∈C(2n)[a,b] . If the inequality
(15) and (20) and the reverse inequality (32) and (34) hold, then there exist ξk ∈ [a,b]
for k ∈ {1,2,3,4} such that

ϒk( f )
ϒk(g)

=
f (2n)(ξk)
g(2n)(ξk)

,

provided that the denominators are non-zero.
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Proof. The proof is similar to the proof of Theorem 12 in [7]. �

REMARK 4. If the inverse of f (2n)

g(2n) exists, then from the above mean value theorem

we can give the generalized means,

ξk =
(

f (2n)

g(2n)

)−1(ϒk( f )
ϒk(g)

)
, k ∈ {1,2,3,4}.

Now, we recall definitions and facts about exponentially convex functions.(see for
example [15, 16, 18]):

DEFINITION 3. A function f : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

pip j f

(
xi + x j

2

)
� 0

holds for all choices pi ∈ R and xi ∈ I, i = 1, . . . ,n.

REMARK 5. From Definition 3 it follows that 1-exponentially convex functions
in the Jensen sense are exactly nonnegative functions. Also, n -exponentially convex
functions in the Jensen sense are k -exponentially convex in the Jensen sense for every
k ∈ N , k � n.

DEFINITION 4. A function f : I → R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

DEFINITION 5. A function f : I → R is exponentially convex if it is n -exponen-
tially convex in the Jensen sense and continuous.

PROPOSITION 2. If f : I → R is an exponentially convex, then the matrix[
f

(
xi + x j

2

)]k

i, j=1

is positive semi-definite. Particularly,

det

[
f

(
xi + x j

2

)]k

i, j=1
� 0

holds for all k ∈ N and xi ∈ I, i = 1, . . . ,k.

DEFINITION 6. A function f : I → (0,∞) is said to be log-convex if

f ((1−λ )s+ λ t) � f (s)1−λ f (t)λ

holds for all s, t ∈ I, λ ∈ [0,1].
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DEFINITION 7. A function f : I → (0,∞) is said to be log-convex in the Jensen
sense if

f

(
x+ y

2

)
�
√

f (x) f (y)

holds for all x,y ∈ I.

REMARK 6. If a function is continuous and log-convex in the Jensen sense then
it is also log-convex. We can also easily see that for positive functions exponential
convexity implies log-convexity (consider the Definition 3 for n = 2).

REMARK 7. A function f : I → (0,∞) is log-convex in Jensens sense if and only
if the inequality

v2
1 f (t1)+2v1v2 f

(
t1 + t2

2

)
+ v2

2 f (t2) � 0

holds for each t1, t2 ∈ I and v1,v2 ∈ R . It follows that a positive function is log-convex
in the J-sense if and only if it is 2-exponentially convex in the J-sense. Also, using
basic convexity theory it follows that a positive function is log-convex if and only if it
is 2-exponentially convex

THEOREM 25. Let H1 = { ft : t ∈ I} , where I an interval in R , be a family of func-
tions defined on [a,b] such that the function t → ft [z0,z1, . . . ,z2l ] is n-exponentially
convex in the Jensen sense on I for any 2l +1 mutually distinct points z0,z1, . . . ,z2l ∈
[a,b] . Let ϒk( f ) be the linear functionals for k ∈ {1,2,3,4} as defined in (47), (48),
(49) and (50). Then the following statements are valid:

(i) The function t → ϒk( ft ) is n-exponentially convex in the Jensen sense on I .

(ii) If the function t → ϒ( ft ) is continuous on I, then it is n-exponentially convex on
I.

Proof. The proof is similar to the proof of Theorem 13 in [7]. �
As a consequence of the above theorem we give the following corollaries.

COROLLARY 4. Let H2 = { ft : t ∈ I} , where I an interval in R , be a family of
functions defined on the interval [a,b] such that the function t → ft [z0,z1, . . . ,z2l] is
exponentially convex in the Jensen sense on I for any (2l +1) mutually distinct points
z0,z1, . . . ,z2l ∈ [a,b] . Let ϒk( ft ) be linear functionals for k ∈ {1,2,3,4} as defined in
(47), (48), (49) and (50). Then the following statements are valid:

(i) The function t → ϒk( ft ) is exponentially convex in the Jensen sense on I .

(ii) If the function t → ϒk( ft) is continuous on I, then it is exponentially convex on
I.

Proof. The proof follows directly from Theorem 25 by using the definition of
exponential convexity. �
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COROLLARY 5. Let H3 = { ft : t ∈ I} , where I an interval in R , be a fam-
ily of functions defined on [a,b] such that the function t → ft [z0,z1, . . . ,z2l] is 2 -
exponentially convex in the Jensen sense on I for any 2l + 1 mutually distinct points
z0,z1, . . . ,z2l ∈ [a,b] . Let ϒk be linear functionals for k ∈ {1,2,3,4} as defined in (47),
(48), (49) and (50). Then the following statements are valid:

(i) If the function t → ϒk( ft ) is continuous on I, then it is 2 -exponentially con-
vex on I. If t → ϒk( ft) is additionally positive, then it is also log-convex on I.
Furthermore, for every choice r,s,t ∈ I, such that r < s < t, it holds

[ϒk( fs)]
t−r � [ϒk( fr)]

t−s [ϒk( ft )]
s−r .

(ii) If the function t →ϒk( ft ) is positive and differentiable on I, then for all r,s,u,v∈
I such that r � u, s � v, we have

μr,s (ϒk,H3) � μu,v (ϒk,H3) , (52)

where

μr,s (ϒk,H3) =

⎧⎪⎪⎨
⎪⎪⎩
(

ϒk( fr)
ϒk( fs)

) 1
r−s

, r �= s,

exp

(
d
dr (ϒk( fr))

ϒk( fr)

)
, r = s.

(53)

Proof. The arguments of the proof is similar to the proof of Corollary 6 in [7]. �

REMARK 8. Note that the results from Theorem 25, Corollary 4 and Corollary 5
still hold when any two(all) points z0, . . . ,z2l ∈ [a,b] coincide for a family of differ-
entiable (2l times differentiable) functions ft such that the function t → ft [z0, . . . ,z2l ]
is an n -exponentially convex, exponentially convex and 2-exponentially convex in the
Jensen sense, respectively.

7. Examples

Throughout this section we denote

Ak =
1

Wm

m

∑
i=1

wi(xi −a)k+2− (x−a)k+2,Bk =
1

Wm

m

∑
i=1

wi(xi−b)k+2− (x−b)k+2,

Ck =
x−m
M−m

(M−a)k+2 +
M− x
M−m

(m−a)k+2− 1
Wr

r

∑
i=1

wi(xi −a)k+2,

Dk =
x−m
M−m

(M−b)k+2 +
M− x
M−m

(m−b)k+2− 1
Wr

r

∑
i=1

wi(xi −b)k+2.

where xi,wi,x are as defined in Theorem 9.
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EXAMPLE 1. Let us consider a family of functions

Ω1 = { ft : R → R : t ∈ R}

defined by

ft(x) =

{
etx

t2n , t �= 0,
x2n

(2n)! , t = 0.

Since d2n ft
dx2n (x) = etx > 0, the function ft is 2n -convex on R for every t ∈ R and

t → d2n ft
dx2n (x) is exponentially convex by definition. Using analogous arguing as in the

proof of Theorem 25 we also have that t → ft [z0, . . . ,z2n] is exponentially convex (and
so exponentially convex in the Jensen sense). Now, using Corollary 4 we conclude that
t → ϒk( ft ) , k ∈ {1,2,3,4} are exponentially convex in the Jensen sense. It is easy to
verify that these mappings are continuous so they are exponentially convex. For this
family of functions, μs,q (ϒk,Ω1) , from (53), k = 1, becomes

μs,q(ϒ1,Ω1) =
(

ϒ1( fs)
ϒ1( fq)

) 1
s−q

, q �= s,

μs,q(ϒ1,Ω1) =

⎛
⎜⎜⎝(q

s

)2n
1

Wm

m
∑
i=1

wiesxi − esx−K1

1
Wm

m
∑
i=1

wieqxi − eqx−K2

⎞
⎟⎟⎠

1
s−q

, s �= q,s,q �= 0

μs,s(ϒ1,Ω1) = exp

⎛
⎜⎜⎝

1
Wm

m
∑
i=1

wixiesxi − xesx −K3

1
Wm

m
∑
i=1

wiesxi − esx−K1

− 2n
s

⎞
⎟⎟⎠ , s �= 0.

μ0,0(ϒ1,Ω1) = exp

⎛
⎜⎜⎝ 1

2n+1

1
Wm

m
∑
i=1

wix
2n+1
i − x2n+1−K4

1
Wm

m
∑
i=1

wix2n
i − xn −K5

⎞
⎟⎟⎠ ,

where

K1 =
1

b−a

2n−2

∑
k=0

sk+1

k!(k+2)

[
easAk − ebsBk

]
,

K2 =
1

b−a

2n−2

∑
k=0

qk+1

k!(k+2)

[
eaqAk − ebqBk

]
,

K3 =
1

b−a

2n−2

∑
k=0

sk

k!(k+2)

[
(as+ k+1)esaAk − (bs+ k+1)esbBk

]
,

K4 =
1

b−a

2n−2

∑
k=0

2n(2n−1) . . .(2n− k)
k!(k+2)

[
a2n−kAk −b2n−kBk

]
,
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K5 =
1

b−a

2n−2

∑
k=0

2n(2n−1) . . .(2n− k)
k!(k+2)

[
a2n−k−1Ak −b2n−k−1Bk

]
.

Similarly we can give μs,q(ϒk,Ωk) for k = 2,3,4.
Now, using (52) μs,q(ϒk,Ωk) is monotonic function in parameters s and q . Using

Corollary 5 and Theorem 24 it follows that:

Ms,q(ϒk,Ω1) = lnμs,q(ϒk,Ω1), k = 1,2,3,4

satisfy
a � Ms,q(ϒk,Ω1) � b, k = 1,2,3,4.

This shows that Ms,q(ϒk,Ω1) is a mean for k = 1,2,3,4.

EXAMPLE 2. Let

Ω2 = {gt : (0,∞) → (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

gt(x) =

⎧⎪⎨
⎪⎩

t−x

(− lnt)2n , t �= 1;

x2n

(2n)! , t = 1.

Since d2ngt
dx2n (x) = t−x is the Laplace transform of a non-negative function (see [22]) it is

exponentially convex. Obviously gt is 2n -convex function for every t > 0.
For this family of functions, μs,q (ϒ1,Ω2) , from (53), becomes

μs,q (ϒ1,Ω2) =

⎛
⎜⎜⎝
(

lnq
lns

)2n
1

Wm

m
∑
i=1

wis−xi − s−x −L1

1
Wm

m
∑
i=1

wiq−xi −q−x−L2

⎞
⎟⎟⎠

1
s−q

, s �= q;

μs,s(ϒ1,Ω2) = exp

⎛
⎜⎜⎝

xs−x−1− 1
Wm

m
∑
i=1

wixis−xi−1−L3

1
Wm

m
∑
i=1

wis−xi − s−x−L1

− 2n
s lns

⎞
⎟⎟⎠ , s �= 1.

μ1,1(ϒ1,Ω2) = exp

⎛
⎜⎜⎝− 1

2n+1

1
Wm

m
∑
i=1

wix
2n+1
i − x2n+1−L4

1
Wm

m
∑
i=1

wix2n
i − x2n−L5

⎞
⎟⎟⎠ , s = 1.

where

L1 =
1

b−a

2n−2

∑
k=0

(− lns)k+1

k!(k+2)

[
s−aAk − s−bBk

]
,
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L2 =
1

b−a

2n−2

∑
k=0

(− lnq)k+1

k!(k+2)

[
q−aAk −q−bBk

]
,

L3 =
1

b−a

2n−2

∑
k=0

(− lns)k

k!(k+2)

[
(a lns− k−1)s−a−1Ak − (b lns− k−1)s−b−1Bk

]
,

L4 =
1

b−a

2n−2

∑
k=0

2n(2n−1) . . .(2n− k)
k!(k+2)

[
a2n−kAk −b2n−kBk

]
,

L5 =
1

b−a

2n−2

∑
k=0

2n(2n−1) . . .(2n− k)
k!(k+2)

[
a2n−k−1Ak −b2n−k−1Bk

]
.

Similarly we can give μs,q(ϒk,Ω2) for k = 2,3,4.
Now, using (52) it is monotonic function in parameters s and q . Using Corollary

5 and Theorem 24 it follows that:

Ms,q(ϒk,Ω2) = lnμs,q(ϒk,Ω2), k = 1,2,3,4

satisfy
a � Ms,q(ϒk,Ω2) � b, k = 1,2,3,4.

This shows that Ms,q(ϒk,Ω2) is a mean for k = 1,2,3,4. Because of the inequality
(52), this mean is also monotonic.
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[7] A. A. ALJIINOVIC, A. R. KHAN, J. PEČARIĆ, Weighted Majorization theorems via generalization of
Taylor’s formula, J. Inequal. and appl., 2015 (2015:196).

[8] A. A. ALJINOVIĆ, J. PEČARIĆ, AND A. VUKELIĆ, On some Ostrowski type inequalities via Mont-
gomery identity and Taylor’s formula II, Tamkang J. Math. 36 (4) (2005), 279–301.

[9] T. ANDO, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra
Appl. 118 (1989), 163–248.

[10] R. BHATIA, Matrix Analysis, Springer-Verlag, New York, 1997.
[11] R. P. BOAS, Representation of functions by Lidstone series, Duke Math. J. 10 (1943), 239–245.
[12] P. CERONE, S. S. DRAGOMIR, Some new Ostrowski-type bounds for the Čebyšev functional and
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