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SINGULAR INTEGRALS RELATED TO HOMOGENEOUS

MAPPINGS IN TRIEBEL–LIZORKIN SPACES

FENG LIU AND HUOXIONG WU

(Communicated by A. Meskhi)

Abstract. In this note we establish the boundedness for the singular integral operators related
to homogeneous mappings with rough kernels in Triebel-Lizorkin spaces. Some previous re-
sults are improved and extended substantially. A main ingredient in the proofs is to establish a
criterion of boundedness for the convolution type operator in the above function spaces, which
presents a systematic treatment for the related singular integral operators.

1. Introduction

The main purpose of this paper is to establish the bounds of singular integral op-
erators with rough kernels supported by homogeneous mappings in Triebel-Lizorkin
spaces. Let us recall some definitions. For m � 2, α ∈ R and 0 < p, q � ∞ (p �= ∞) ,
the homogeneous Triebel-Lizorkin spaces Ḟ p,q

α (Rm) is defined by

Ḟ p,q
α (Rm) :=

{
f ∈ S ′(Rm) : ‖ f‖Ḟ p,q

α (Rm) =
∥∥∥(
∑
i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥

Lp(Rm)
< ∞

}
,

(1)
where S ′(Rm) denotes the tempered distribution class on Rm , Ψ̂i(ξ ) = φ(2iξ ) for
i ∈ Z and φ ∈ C ∞

c (Rm) satisfies the conditions: 0 � φ(x) � 1; supp(φ) ⊂ {x ∈ Rm :
1/2 � |x| � 2} ; φ(x) > c > 0 if 3/5 � |x| � 5/3. The inhomogeneous versions of
Triebel-Lizorkin spaces, which are denoted by Fp,q

α (Rm) , are obtained by adding the
term ‖Φ ∗ f‖Lp(Rm) to the right hand side of (1) with ∑i∈Z replaced by ∑i�1 , where
Φ ∈ S (Rm) , supp(Φ̂) ⊂ {ξ ∈ Rm : |ξ | � 2} , Φ̂(x) > c > 0 if |x| � 5/3. It is well
known that

Ḟ p,2
0 (Rm) = Lp(Rm) ∀1 < p < ∞; (2)

F p,q
α (Rm) ∼ Ḟ p,q

α (Rm)∩Lp(Rm) and ‖ f‖F p,q
α (Rm) ∼ ‖ f‖Ḟ p,q

α (Rm) +‖ f‖Lp(Rm) ∀α > 0.
(3)
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See [20, 21, 30] for more properties of Ḟ p,q
α (Rm) .

Let n � 2 and K(y) be a Calderón-Zygmund type kernel of the form

K(y) = h(|y|)Ω(y)
|y|n , (4)

where Ω is homogeneous of degree 0, integrable over Sn−1 and satisfies∫
Sn−1

Ω(u)dσ(u) = 0, (5)

and h : [0,∞) → C is a measurable function. For a suitable mapping Φ : Rn → Rm , we
define the singular integral operator Th,Ω,Φ associated to Φ by

Th,Ω,Φ( f )(x) := p.v.

∫
Rn

f (x−Φ(y))K(y)dy, (6)

where x∈Rm and f ∈S (Rm) (the space of Schwartz functions). If m = n and Φ(y) =
y , we denote simply Th,Ω,Φ by Th,Ω .

The operator Th,Ω was initiated by Fefferman [18] and has been studied by many
authors (see [1, 14, 16, 17] etc.). For a general mapping Φ , the operator Th,Ω,Φ belongs
to the class of singular Radon transforms whose Lp mapping properties are relatively
well understood when the kernel K(y) is smooth away from the origin. In the case
of Φ = P being a polynomial mapping from Rn to Rm , Fan and Pan [16] proved
that Th,Ω,P is bounded on Lp(Rm) for p satisfying |1/p− 1/2| < min{1/2,1/γ ′} ,
provided that Ω ∈ H1(Sn−1) and h ∈ Δγ (R+) for some γ > 1, which certainly implies
that Th,Ω has the same Lp -mapping properties. Here H1(Sn−1) is the Hardy space
on Sn−1 (see the definition in Section 3), and Δγ (R+)(γ � 1) denotes the set of all
measurable functions h defined on R+ := (0,∞) satisfying the condition

‖h‖Δγ(R+) := sup
R>0

(
R−1

∫ R

0
|h(t)|γdt

)1/γ
< ∞.

Clearly, L∞(R+) = Δ∞(R+) � Δγ2(R
+) � Δγ1(R

+) for 1 � γ1 < γ2 < ∞ . Also, by
imposing a more restrictive condition on h , Al-Qassem [1] showed that Th,Ω is bounded
on Lp(Rn) for all 1 < p <∞ , provided that Ω ∈ L(log+ L)1/γ ′(Sn−1) and h∈ Hγ (R+)
for some 1 < γ �∞ (see also [17] for the generalization in non-isotropic setting). Here
Hγ (R+) , γ > 0, is the set of all measurable functions h on R+ satisfying

‖h‖Hγ(R+) :=
(∫ ∞

0
|h(t)|γ dt

t

)1/γ
< ∞,

and L(log+ L)β (Sn−1)(for β > 0) denotes the space of all those functions Ω on Sn−1 ,
which satisfy ∫

Sn−1
|Ω(θ )| logβ (2+ |Ω(θ )|)dσ(θ ) < ∞.

Note that

L∞(R+) = H∞(R+) and Hγ (R+) � Δγ (R+), 1 � γ < ∞;
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L(log+ L)β1(Sn−1) � L(log+ L)β2(Sn−1), 0 < β2 < β1;

L(log+ L)β (Sn−1) � H1(Sn−1), β � 1;

L(log+ L)β (Sn−1) � H1(Sn−1) � L(log+ L)β (Sn−1), 0 < β < 1.

On the other hand, the boundedness of Th,Ω and the general operator Th,Ω,P in
Triebel-Lizorkin spaces Ḟ p,q

α (Rm) have been studied by many authors (see [3, 5, 6,
9, 24, 25, 27] etc.). Recently, Yabuta et al. [13, 28] investigated the boundedness
of singular integrals associated to surfaces of revolution on the Ḟ p,q

α (Rm)-valued Lr

function space on R , which is denoted by Lr(R, Ḟ p,q
α (Rm)) . Other interesting works

related to this topic are [23, 29, 31, 33].
The primary focus of our investigation is the singular integral operators Th,Ω,Φ

with Φ being a homogeneous mapping. Let d = (d1, . . . ,dm) ∈ Rm . We say that Φ :
Rn → Rm is a (non-isotropic) homogeneous mappings of degree d if

Φ(ty) = δt(Φ(y)), ∀t > 0 and y ∈ Rn,

where {δt}t>0 is the family of dilations on Rm by

δt(x1, . . . ,xm) = (td1x1,t
d2x2, . . . ,t

dmxm).

The Lp -mapping properties of Th,Ω,Φ have been studied by several authors (see
[2, 7, 15, 26] etc.). In particular, Cheng [7] established the following result.

THEOREM 1. ([7]) Let h(t) = 1 and Φ= (Φ1, . . . ,Φm) be a homogeneous map-
ping of degree d = (d1, . . . ,dm) with di �= 0 for 1 � i � m. Assume that Ω ∈H1(Sn−1)
satisfying (5) and Φ|Sn−1 is real-analytic. Then for 1 < p < ∞ , there exists Cp > 0
such that

‖Th,Ω,Φ( f )‖Lp(Rm) � Cp‖ f‖Lp(Rm).

A question that arises naturally is whether the condition Ω ∈ H1(Sn−1) is also
sufficient for the Ḟ p,q

α -boundedness of Th,Ω,Φ with Φ being as in Theorem 1. We will
give a positive answer by our next theorem.

THEOREM 2. Let Φ = (Φ1, . . . ,Φm) be a homogeneous mapping of degree d =
(d1, . . . ,dm) with di ∈ N\{0} for 1 � i � m and Φ|Sn−1 real-analytic. Assume that Ω
satisfies (5) and one of the following conditions holds:

(a) h ∈ Δγ(R+) for some γ > 1 and Ω ∈ H1(Sn−1);
(b) h ∈ Hγ (R+) for some γ > 1 and Ω ∈ L(log+ L)1/γ ′(Sn−1) .
Then Th,Ω,Φ is bounded on Ḟ p,q

α (Rm) for α ∈ R and (1/p,1/q)∈ Rγ , where Rγ
is the interior of the convex hull of three squares ( 1

2 , 1
2 + 1

max{2,γ ′})
2 , ( 1

2 − 1
max{2,γ ′} ,

1
2 )2

and ( 1
2γ ,1− 1

2γ )
2 .

REMARK 1. Theorem 2 essentially generalizes Theorem 1 in the following two-
folds: (i) add the roughness of kernels in the radial direction; (ii) extend the bound-
edness of Th,Ω,Φ on Lebesgue spaces to Triebel-Lizorkin spaces. On the other hand,
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the results of Theorem 2 for h,Ω with satisfying the condition (b) are new even in the
special case of that α = 0 with q = 2, i.e., in Lebesgue spaces. It should be pointed out
that Theorem 2 is not true, if replacing h∈Hγ (R+) by h∈ Δγ(R+) for γ > 1, because
of that L∞(R+)⊂ Δγ(R+) , L log+ L(Sn−1) � L(log+ L)α(Sn−1) for any 0 <α < 1, and
Calderón-Zygmund’s celebrated result in [8].

See the following Figures 1–3 for Rγ . Here P1 = ( 1
2 − 1

max{2,γ ′} ,
1
2 − 1

max{2,γ ′} ) ,
P2 = ( 1

2 , 1
2 − 1

max{2,γ ′} ) , P3 = ( 1
2 + 1

max{2,γ ′} ,
1
2 ) , P4 = ( 1

2 + 1
max{2,γ ′} ,

1
2 + 1

max{2,γ ′} ) , P5 =

( 1
2 , 1

2 + 1
max{2,γ ′}) , P6 = ( 1

2 − 1
max{2,γ ′} ,

1
2 ) , R1 = (1− 1

2γ ,
1
2γ ) , R2 = ( 1

2γ ,1− 1
2γ ) , Q1 =

(0,0) , Q2 = (1,0) , Q3 = (1,1) and Q4 = (0,1) .

Figure 1: (1 < γ � 2) Figure 2: (2 < γ � ∞) Figure 3: (γ = ∞)

REMARK 2. We remark that the range of Rγ was first given by Yabuta in [32].
One can easily see that the ranges of p , and q belong to (1,∞) when γ = ∞ . Thus
Theorem 2 generalizes the result of [5] (see Section 5 in [5])

Applying (2)–(3) and Theorem 2, we have the following conclusion immediately.

COROLLARY 1. Under the same conditions of Theorem 2 with α > 0 , the oper-
ator Th,Ω,Φ is bounded on F p,q

α (Rm) .

The paper is organized as follows. A few lemmas will be recalled or proved
in Section 2. The proof of Theorem 2 for the case Ω ∈ H1(Sn−1) will be given in
Section 3. In Section 4, we shall present the proof of Theorem 2 for the case Ω ∈
L(log+ L)1/γ ′(Sn−1) . Finally, we end this paper by presenting some more general results
in Section 5. We remark that our works and ideas are motivated by [6, 15, 16, 26, 32].
The main ingredient is to present a criterion of boundedness for the operator of convo-
lution type on the Triebel-Lizorkin spaces (see Lemma 5) and a switched technique on
the linear transformations in estimating the Fourier transforms of some measures (see
Section 3).

We end this section by giving some notations: we denote p′ by the conjugate index
of p , which satisfies 1/p+1/p′ = 1; δRn denotes the Dirac delta function on Rn ; J−1

denotes the inverse transform of linear transformation J ; Dt denotes the transpose of
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the linear transformation D and πm
n denotes the projection operator from Rm to Rn ; f̂

denotes the Fourier transform of f . Finally, we set ∑ j∈ /0 a j = 0 and ∏ j∈ /0 a j = 1.

2. Preliminary lemmas

In this section, we shall present some necessary lemmas, which will play key roles
in the proof of Theorem 2.

LEMMA 1. ([7]) Let l ∈N\{0} , μ1, . . . ,μl ∈R and d1, . . . ,dl be distinct nonzero
real numbers. Let ψ ∈ C 1([0,1]) . Then there exists C > 0 , independent of {μ j}l

j=1 ,
such that∣∣∣∫ τ

δ
exp(i(μ1t

d1 + . . .+ μlt
dl ))ψ(t)dt

∣∣∣ � C|μ1|−1/l
(
|ψ(τ)|+

∫ τ

δ
|ψ ′(t)|dt

)
holds for 1/2 � δ < τ � 1 .

LEMMA 2. ([26]) Let l ∈ N\{0} and h1, . . . ,hl be distinct nonzero real numbers
and

Q(t,u) = th1 ∑
|α |�s

aαuα +
l

∑
j=2

th jw j(u),

where t ∈ R , u = (u1, . . . ,un−1) ∈ Rn−1 , α ∈ Nn−1 , aα ∈ R , and wj(·) are real-
valued. Let r > 0 and b(·) be a measurable function on [−r,r]n−1 that satisfies ‖b‖∞ �
r−(n−1) . Then there exist positive constants C and γ independent of {aα} , {wj(·)} , r
such that ∫ 1

1/2

∣∣∣∫
[−r,r]n−1

exp(iQ(t,u))b(u)du
∣∣∣dt � C

(
rs ∑

|α |=s

|aα |
)−γ

.

Below are two important vector-valued norm inequalities.

LEMMA 3. ([6]) Let P = (P1, . . . ,Pm) with Pj being real-valued polynomials in
Rn . For 1 < p, q < ∞ , the operator MP given by

MP( f )(x) = sup
r>0

1
rn

∫
|y|�r

| f (x−P(y))|dy

satisfies the following Lp(Rm, �q) inequality∥∥∥(
∑
i∈Z

(MP( fi))q
)1/q∥∥∥

Lp(Rm)
� Cp,q

∥∥∥(
∑
i∈Z

| fi|q
)1/q∥∥∥

Lp(Rm)
,

where Cp,q > 0 is independent of the coefficients of Pj for 1 � j � m.
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LEMMA 4. ([24]) Let 0 < M � N and H : RM → RM, G : RN → RN be two
nonsingular linear transformations. Let {ak}k∈Z be a lacunary sequence of positive

numbers satisfying infk∈Z ak+1/ak � a > 1 . Let Φ̃(ξ ) ∈ S (RM) with ̂̃Φ(0) = 0 and
Φ̃k(ξ ) = a−M

k Φ̃(ξ/ak) . Define the transformations J and Xk by

J( f )(x) = f (Gt (Ht ⊗ idRN−M)x) and Xk( f )(x) = J−1((Φ̃k ⊗ δRN−M)∗ J( f ))(x).

Then for any 1 < p, q < ∞ , {g j} j∈Z ∈ Lp(RN , �q) and {gk, j} j,k∈Z ∈ Lp(RN , �q(�2)) ,
there exists a positive constant CM,a such that∥∥∥(

∑
j∈Z

(
∑
k∈Z

|Xk(g j)|2
)q/2)1/q∥∥∥

Lp(RN)
� CM,a

∥∥∥(
∑
j∈Z

|g j|q
)1/q∥∥∥

Lp(RN )
;

∥∥∥(
∑
j∈Z

(
∑
k∈Z

|Xk(gk, j)|2
)q/2)1/q∥∥∥

Lp(RN)
� CM,a

∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|2
)q/2)1/q∥∥∥

Lp(RN)
.

To prove Theorem 2, we will establish a criterion on the bounds of the convolution
operators in Triebel-Lizorkin spaces.

LEMMA 5. Let Λ, v ∈ N\{0} and {σs,k : 0 � s � Λ and k ∈ Z} be a family of
measures on Rm with σ0,k = 0 for every k∈Z . For 1 � s �Λ , let ηs > 1, δs,βs,γs > 0 ,
�s ∈ N\{0} and Ls : Rm → R�s be linear transformations. Suppose that there exist
some 1 < p0, q0 < ∞ with satisfying (p0,q0) �= (2,2) and c, A > 0 independent of v
and {Ls}Λs=1 such that the following conditions are satisfied for any 1 � s � Λ , k ∈ Z ,
ξ ∈ Rm and {gk, j}k, j∈Z ∈ Lp0(Rm, �q0(�2)):

(i) |σ̂s,k(ξ )| � cAmin{1, |ηkvγs
s Ls(ξ )|−δs/v} ;

(ii) |σ̂s,k(ξ )− σ̂s−1,k(ξ )| � cA|ηkvγs
s Ls(ξ )|βs/v ;

(iii)∥∥∥(
∑
j∈Z

(
∑
k∈Z

|σs,k ∗ gk, j|2
)q0/2)1/q0

∥∥∥
Lp0 (Rm)

� CA
∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|2
)q0/2)1/q0

∥∥∥
Lp0 (Rm)

.

Then for α ∈ R and (1/p,1/q)∈ A1A2\{(1/p0,1/q0),(1/2,1/2)} , there exists C > 0
independent of v and {Ls}l

s=1 such that∥∥∥∑
k∈Z

σΛ,k ∗ f
∥∥∥

Ḟ p,q
α (Rm)

� CA‖ f‖Ḟ p,q
α (Rm), (7)

where A1 = (1/2,1/2) , A2 = (1/p0,1/q0) and A1A2 is the line segment from A1 to
A2 .

Proof. For any 1 � s � Λ , we set r(s) = rank(Ls) . By [16, Lemma 6.1], there are
two nonsingular linear transformations Hs : Rr(s) → Rr(s) and Gs : Rm → Rm such that

|Hsπm
r(s)Gsξ | � |Ls(ξ )| � �s|Hsπm

r(s)Gsξ |. (8)
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Let φ̃ ∈ C ∞
0 (R) such that φ̃ (t) ≡ 1 for |t| � 1/2 and φ̃(t) ≡ 0 for |t| � 1. Let ψ̃(t) =

φ̃(t2) . For any 1 � s � l , define the family of measures {μs,k}k∈Z by

μ̂s,k(ξ ) = σ̂s,k(ξ )
Λ

∏
j=s+1

ψ̃(|ηkvγ j
j Hjπm

r( j)Gjξ |)− σ̂s−1,k(ξ )
Λ

∏
j=s
ψ̃(|ηkvγ j

j Hjπm
r( j)Gjξ |).

(9)
One can easily check that

σΛ,k =
Λ

∑
s=1

μs,k, (10)

|μ̂s,k(ξ )| � CAmin{1,(|ηkvγs
s Ls(ξ )|βs/v + |ηkvγs

s Ls(ξ )|1/v)}, (11)

|μ̂s,k(ξ )| � CA|ηkvγs
s Ls(ξ )|−δs/v, if |ηkvγs

s Hsπm
r(s)Gsξ |� 1. (12)

From (10) we can write

∑
k∈Z

σΛ,k ∗ f = ∑
k∈Z

Λ

∑
s=1

μs,k ∗ f =
Λ

∑
s=1
∑
k∈Z

μs,k ∗ f :=
Λ

∑
s=1

As( f ). (13)

Thus, to prove (7), it suffices to prove that for any 1 � s � Λ , there exists C > 0
independent of {Ls}Λs=1 such that

‖As( f )‖Ḟ p,q
α (Rm) � CA‖ f‖Ḟ p,q

α (Rm) (14)

for α ∈ R and p, q satisfying the condition in Lemma 5.
Let ζ ∈ S (R+) such that

ζ (0) = 0; 0 � ζ (t) � 1; supp(ζ ) ⊂ [η−vγs
s ,ηvγs

s ]; ∑
k∈Z

ζ 2
k (t) = 1,

where ζk(t)= ζ (ηkvγs
s t) . For any 1 � s �Λ , we define the family of operators {Sk,s}k∈Z

by
Ŝk,s f (ξ ) := ζk(|Hsπm

r(s)Gsξ |) f̂ (ξ ). (15)

We can write

As( f ) = ∑
k∈Z

μs,k ∗
(
∑
j∈Z

S j+k,sS j+k,s f
)

= ∑
j∈Z
∑
k∈Z

S j+k,s(μs,k ∗ S j+k,s f ) := ∑
j∈Z

As, j( f ).

(16)
By (11)–(12), Littlewood-Paley theory and Plancherel’s theorem,

‖As, j( f )‖L2(Rm)

� CA
(
∑
k∈Z

∫
{ξ∈Rm: η−( j+k+1)vγs

s �|Hsπm
r(s)Gsξ |�η−( j+k−1)vγs

s }
|μ̂s,k(ξ )|2| f̂ (ξ )|2dξ

)1/2

� CAη−c| j|
s ‖ f‖L2(Rm),

(17)

where c > 0 is independent of v . Combining (17) with (2) yields

‖As, j( f )‖
Ḟ2,2
0 (Rm) � CAη−c| j|

s ‖ f‖
Ḟ2,2
0 (Rm). (18)
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Below we estimate ‖As, j( f )‖Ḟ p,q
α (Rm) . Let ξ = (ξ 1,ξ 2) with ξ 1 = (ξ1, . . . ,ξr(s)) and

ξ 2 = (ξr(s)+1, . . . ,ξm) . We set �̂k(ξ 1) = �̂(ηkvγs
s ξ 1) = ζk(|πm

r(s)ξ |) , where ζk is as

in (15). It is clear that � ∈ S (Rr(s)) and �̂(0) = 0. Define the nonsingular linear
transformation J on Rm by J = G−1

s (H−1
s ⊗ δRm−r(s) ) . It is easy to verify that

Sk,s( f )(x) = |J|�k ⊗ δRm−r(s) ∗ f J(Jtx), (19)

where f J(x) = |J|−1 f ((Jt)−1x) . By change of variables, (19) and Lemma 4 we have
that for any 1 < p,q <∞ and {gi}i∈Z ∈ Lp(Rm, �q) , there exists a constant C > 0 such
that ∥∥∥(

∑
i∈Z

(
∑
k∈Z

|Sk,s(gi)|2
)q/2)1/q∥∥∥

Lp(Rm)
� C

∥∥∥(
∑
i∈Z

|gi|q
)1/q∥∥∥

Lp(Rm)
. (20)

By our assumption (iii), Lemma 4 and the arguments similar to those used in deriving
[6, Proposition 2.3], we get∥∥∥(
∑
i∈Z

(
∑
k∈Z

|μs,k ∗ gi,k|2
)q0/2)1/q0

∥∥∥
Lp0 (Rm)

� CA
∥∥∥(
∑
i∈Z

(
∑
k∈Z

|gi,k|2
)q0/2)1/q0

∥∥∥
Lp0 (Rm)

.

(21)
From the duality and (20)–(21) it follows that there exists C > 0 such that∥∥∥(

∑
i∈Z

|As, j(gi)|q0

)1/q0
∥∥∥

Lp0 (Rm)

= sup
‖{ fi}‖

L
p′0 (Rm ,�

q′0 )
�1

∣∣∣∫
Rm
∑
i∈Z
∑
k∈Z

S j+k,s(μs,k ∗ S j+k,s(gi))(x) fi(x)dx
∣∣∣

� C sup
‖{ fi}‖

L
p′0 (Rm ,�

q′0 )
�1

∥∥∥(
∑
i∈Z

(
∑
k∈Z

|S∗j+k,s( fi)|2
)q′0/2)1/q′0

∥∥∥
Lp′0 (Rm)

×
∥∥∥(
∑
i∈Z

(
∑
k∈Z

|μs,k ∗ S j+k,s(gi)|2
)q0/2)1/q0

∥∥∥
Lp0 (Rm)

� CA
∥∥∥(
∑
i∈Z

|gi|q0

)1/q0
∥∥∥

Lp0 (Rm)
,

(22)

which leads to

‖As, j( f )‖Ḟ
p0,q0
α (Rm) =

∥∥∥(
∑
i∈Z

2−iαq0 |Ψi ∗As, j( f )|q0

)1/q0
∥∥∥

Lp0 (Rm)

�
∥∥∥(
∑
i∈Z

|As, j(2−iαΨi ∗ f )|q0

)1/q0
∥∥∥

Lp0 (Rm)

= CA‖ f‖Ḟ
p0,q0
α (Rm)

(23)

for any α ∈ R , where Ψi is given as in (1). Interpolation (see [19, 21]) between (18)
and (23) implies that for α ∈ R , (1/p,1/q) ∈ A1A2\{(1/p0,1/q0),(1/2,1/2)} and
1 � s � Λ , there exists ε > 0 such that

‖As, j( f )‖Ḟ p,q
α (Rm) � CABεj‖ f‖Ḟ p,q

α (Rm). (24)
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Combining (24) with (16) yields (14) and completes the proof of Lemma 5. �
In what follows, we set

‖|h|‖μ,γ = sup
k∈Z

(∫ 2(μ+1)k

2(μ+1)(k−1)
|h(t)|γ dt

t

)1/γ
, γ > 1.

For a suitable mapping Γ : Rn → Rm and μ ∈ N , define the sequence of measures
{σk,μ,Γ,Ω}k∈Z by ∫

Rm
f dσk,μ,Γ,Ω =

∫
Dμ ,k

f (Γ(x))K(x)dx,

where K(·) is as in (4) and Dμ,k = {x ∈ Rn : 2(μ+1)(k−1) � |x| < 2(μ+1)k} .

LEMMA 6. Let Γ(y) = (P1(|y|)a1(
y
|y| ), . . . ,Pm(|y|)am( y

|y| )) , where P1, . . . ,Pm are

real-valued polynomials on R+ and a1, . . . ,am are arbitrary functions defined on Sn−1 .
Suppose that Ω ∈ L1(Sn−1) satisfying (5) and ‖|h|‖μ,γ < ∞ for some μ ∈ N and
γ > 1 . If (1/p,1/q) ∈ Rγ with Rγ being as in Theorem 2 . Then for {gk, j}k, j∈Z ∈
Lp(Rm, �q(�2)) , there exists C > 0 , independent of μ and γ , such that∥∥∥(

∑
j∈Z

(
∑
k∈Z

|σk,μ,Γ,Ω ∗ gk, j|2
)q/2)1/q∥∥∥

Lp(Rm)

� C(μ+1)1/γ ′‖Ω‖L1(Sn−1)‖|h|‖μ,γ

∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|2
)q/2)1/q∥∥∥

Lp(Rm)
.

(25)

Proof. We consider the following two cases:
Case 1 (1 < γ � 2) . Firstly we shall prove (25) for 2 < p,q < 2γ/(2− γ) . Given

functions { f j} j∈Z with ‖{ f j}‖L(p/2)′ (Rm,�(q/2)′ ) � 1. By the similar arguments as in
getting (7.7) in [16], we have∫

Rm
|σk,μ,Γ,Ω ∗ gk, j(x)|2| f j(x)|dx � C‖Ω‖L1(Sn−1)‖|h|‖γμ,γ

∫
Rm

|gk, j(x)|2MΓ( f j)(x)dx,

(26)
where

MΓ( f )(x) = sup
k∈Z

∫ 2(μ+1)k

2(μ+1)(k−1)

∫
Sn−1

| f (x+Γ(ty′))||Ω(y′)|dσ(y′)|h(t)|2−γ dt
t

.

Using Hölder’s inequality we obtain

MΓ( f )(x)

� ‖|h|‖2−γ
μ,γ

∫
Sn−1

(
sup
k∈Z

∫ 2(μ+1)k

2(μ+1)(k−1)
| f (x+Γ(ty′))|γ ′/2 dt

t

)2/γ ′ |Ω(y′)|dσ(y′)

� ‖|h|‖2−γ
μ,γ

∫
Sn−1

( μ

∑
i=0

sup
k∈Z

∫ 2(μ+1)(k−1)+i+1

2(μ+1)(k−1)+i
| f (x+Γ(ty′))|γ ′/2 dt

t

)2/γ ′ |Ω(y′)|dσ(y′)

� (μ+1)2/γ ′‖|h|‖2−γ
μ,γ

∫
Sn−1

|Ω(y′)|
(

sup
r>0

1
r

∫
|t|�r

| f (x+Γ(ty′))|γ ′/2dt
)2/γ ′

dσ(y′).
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Invoking Lemma 4 and Minkowski’s inequality we get∥∥∥(
∑
j∈Z

|MΓ( f j)|v
)1/v∥∥∥

Lu(Rm)
� (μ+1)2/γ ′‖|h|‖2−γ

μ,γ ‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

| f j|v
)1/v∥∥∥

Lu(Rm)

(27)
for γ ′/2 < u,v < ∞ . Then (27) together with (26) yields∥∥∥(

∑
j∈Z

(
∑
k∈Z

|σk,μ,Γ,Ω ∗ gk, j|2
)q/2)1/q∥∥∥2

Lp(Rm)

= sup
‖{ f j}‖L(p/2)′ (Rm,�(q/2)′ )�1

∫
Rm
∑
j∈Z
∑
k∈Z

|σk,μ,Γ,Ω ∗ gk, j(x)|2 f j(x)dx

� C‖Ω‖L1(Sn−1)‖|h|‖γμ,γ sup
‖{ f j}‖L(p/2)′ (Rm ,�(q/2)′ )�1

∫
Rm
∑
j∈Z
∑
k∈Z

|gk, j(x)|2MΓ( f j)(x)dx

� C‖Ω‖L1(Sn−1)‖|h|‖γμ,γ sup
‖{ f j}‖L(p/2)′ (Rm ,�(q/2)′ )�1

∥∥∥(
∑
j∈Z

|MΓ( f j)|v
)1/v∥∥∥

Lu(Rm)

×
∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|2
)q/2)1/q∥∥∥2

Lp(Rm)

� C(μ+1)2/γ ′‖Ω‖2
L1(Sn−1)‖|h|‖2

μ,γ

∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|2
)q/2)1/q∥∥∥2

Lp(Rm)
,

where we take u = (p/2)′ and v = (q/2)′ . From this we prove (25) for 1 < γ � 2
and (1/p,1/q) belonging to the interior of the square ( 1

2 − 1
γ ′ ,

1
2)2 . By duality we

can obtain (25) for 1 < γ � 2 and (1/p,1/q) belonging to the interior of the square
( 1

2 , 1
2 + 1

γ ′ )
2 . Interpolating these two cases, we get (25) for the case 1 < γ � 2 and

(1/p,1/q) belonging to the interior of the convex hull of two squares ( 1
2 − 1

γ ′ ,
1
2 )2 and

( 1
2 , 1

2 + 1
γ ′ )

2 . Note that in this case the interior of the square ( 1
2γ ,1− 1

2γ )
2 contains in

the interior of the convex hull of two squares ( 1
2 − 1

max{2,γ ′} ,
1
2 )2 and ( 1

2 , 1
2 + 1

max{2,γ ′} )
2 .

Case 2 (γ > 2) . Since ‖|h|‖μ,2 � (μ+1)1/2−1/γ‖|h|‖μ,γ for γ > 2. We get (25)
for (1/p,1/q) belonging to the interior of the convex hull of two squares (0, 1

2 )2 and
( 1

2 ,1)2 . Below we shall prove (25) for (1/p,1/q) belonging to the interior of the square
( 1

2γ ,1− 1
2γ )

2 . For convenience, we define the measure |σk,μ,Γ,Ω| in the same way as
σk,μ,Γ,Ω , but with Ω replaced by |Ω| and h replaced by |h| . For any arbitrary functions
{g j} ∈ Lp(Rm, �q) with p, q > γ ′ . By a change of variable and Hölder’s inequality,

|σk,μ,Γ,Ω| ∗ |g j|(x)

�
∫ 2(μ+1)k

2(μ+1)(k−1)

∫
Sn−1

|g j(x−Γ(ty′))||Ω(y′)|dσ(y′)|h(t)|dt
t

� ‖|h|‖μ,γ‖Ω‖1/γ
L1(Sn−1)

(∫
Sn−1

∫ 2(μ+1)k

2(μ+1)(k−1)
|g j(x−Γ(ty′))|γ ′ dt

t
|Ω(y′)|dσ(y′)

)1/γ ′
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� (μ+1)1/γ ′‖|h|‖μ,γ‖Ω‖1/γ
L1(Sn−1)

×
(∫

Sn−1
sup
r>0

1
r

∫
|t|�r

|g j(x−Γ(ty′))|γ ′dt|Ω(y′)|dσ(y′)
)1/γ ′

,

which combining Minkowski’s inequality with Lemma 4 implies∥∥∥(
∑
j∈Z

(
sup
k∈Z

|σk,μ,Γ,Ω| ∗ |g j|
)q)1/q∥∥∥

Lp(Rm)

� (μ+1)1/γ ′‖|h|‖μ,γ‖Ω‖1/γ
L1(Sn−1)

×
∥∥∥(
∑
j∈Z

(∫
Sn−1

sup
r>0

1
r

∫
|t|�r

|g j(·−Γ(ty′))|γ ′dt|Ω(y′)|dσ(y′)
)q/γ ′)1/q∥∥∥

Lp(Rm)

� Cp,q(μ+1)1/γ ′‖|h|‖μ,γ‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

|g j|q
)1/q∥∥∥

Lp(Rm)

(28)
for any γ ′ < p,q < ∞ , It follows from (28) that∥∥∥(

∑
j∈Z

(
sup
k∈Z

|σk,μ,Γ,Ω ∗ gk, j|
)q)1/q∥∥∥

Lp(Rm)

�
∥∥∥(
∑
j∈Z

(
sup
k∈Z

|σk,μ,Γ,Ω| ∗ sup
k∈Z

|gk, j|
)q)1/q∥∥∥

Lp(Rm)

� Cp,q(μ+1)1/γ ′‖|h|‖μ,γ‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

(
sup
k∈Z

|gk, j|
)q)1/q∥∥∥

Lp(Rm)

(29)

for any {gk, j}k, j∈Z ∈ Lp(Rm, �q(�∞)) with γ ′ < p,q < ∞ . On the other hand, for any
1 < p,q < γ , then γ <′ p′,q′ < ∞ . By the dual argument, there exists {h j} j∈Z ∈
Lp′(Rm, �q′) with ‖{h j}‖Lp′ (Rm,�q′ ) = 1 such that∥∥∥(

∑
j∈Z

(
∑
k∈Z

|σk,μ,Γ,Ω ∗ gk, j|
)q)1/q∥∥∥

Lp(Rm)

= ∑
j∈Z

∫
Rm
∑
k∈Z

|σk,μ,Γ,Ω ∗ gk, j(x)|h j(x)dx

� ∑
j∈Z

∫
Rm
∑
k∈Z

|gk, j(x)||σk,μ,Γ,Ω| ∗ |h̃ j|(−x)dx

�
∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|
)q)1/q∥∥∥

Lp(Rm)

∥∥∥(
∑
j∈Z

(
sup
k∈Z

|σk,μ,Γ,Ω| ∗ |h̃ j|
)q′)1/q′∥∥∥

Lp′ (Rm)
,

where h̃ j(x) = h j(−x) . This together with (29) implies∥∥∥(
∑
j∈Z

(
∑
k∈Z

|σk,μ,Γ,Ω ∗ gk, j|
)q)1/q∥∥∥

Lp(Rm)

� Cp,q(μ+1)1/γ ′‖|h|‖μ,γ‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|
)q)1/q∥∥∥

Lp(Rm)
.

(30)
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for any 1 < p, q < γ . Interpolation between (29) and (30) yields (25) for (1/p,1/q)
belonging to the interior of the square ( 1

2γ ,1− 1
2γ )

2 . By interpolation we get (25) for
the case γ � 2 and complete the proof of Lemma 6. �

3. Proof of Theorem 2 for Ω ∈ H1(Sn−1)

Let us begin with recalling Hardy space on Sn−1 and its atomic decomposition.
The Hardy space H1(Sn−1) is the set of all functions Ω ∈ L1(Sn−1) with satisfying

‖Ω‖H1(Sn−1) :=
∥∥∥ sup

0�r<1

∣∣∣∫
Sn−1

Ω(θ )Pr(·)(θ )dσ(θ )
∣∣∣∥∥∥

L1(Sn−1)
< ∞,

where Prw(θ ) denotes the Poisson kernel on Sn−1 defined by

Prw(θ ) =
1− r2

|rw−θ |n , 0 � r < 1 and θ , w ∈ Sn−1.

Now we give the definition of atom and atomic decomposition of H1(Sn−1) .

DEFINITION 1. A function a(·) on Sn−1 is a regular atom if there exist ε ∈ Sn−1

and ρ ∈ (0,2] such that

supp(a) ⊂ Sn−1∩B(ε,ρ), where B(ε,ρ) = {y ∈ Rn : |y− ε| < ρ}; (31)

‖a‖L2(Sn−1) � ρ (1−n)/2; (32)∫
Sn−1

a(y)dσ(y) = 0. (33)

Following from [10, 11], we have the following atomic decomposition of Hardy
space.

LEMMA 7. If Ω∈H1(Sn−1) satisfies (5) , then there are complex numbers {c j} j∈Z
and regular atoms {Ω j} j∈Z such that

Ω=∑
j

c jΩ j and ‖Ω‖H1(Sn−1) ≈∑
j

|c j|.

Proof of Theorem 2 for Ω ∈ H1(Sn−1) . In what follows, we denote Vn−1 by the
set of polynomials in n−1 variables with real coefficients and set [x] := max{k ∈ N :
k � x} for any x ∈ R . For s ∈ N , let Vn−1,s denote the subset of Vn−1 which contains
homogeneous polynomials of degree s .

By Lemma 7, it suffices to prove Theorem 2 for Ω being an H1 atom on Sn−1

satisfying (31)–(33). Without loss of generality we may assume that 0 < ρ < 1
4 . Let λ

be the number of distinct d j . We may assume that

Φ= (Φ1, . . . ,Φm) = (Φ1, . . . ,Φλ ),
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where Φs = (Φs,1, . . . ,Φs,as) with Φs, j(ty) = tdrsΦs, j(y) for any 1 � s � λ and 1 �
j � s . Obviously, ∑λ

s=1 as = m and {r1, . . . ,rλ} ⊂ {1, . . . ,m} . We also assume that
{Φs,1, . . . ,Φs,os} forms a basis for span{Φs,1, . . . ,Φs,as} for any 1 � s � λ . Thus there
exist {bs, j,k} such that

Φs, j(y) = bs, j,1Φs,1(y)+ · · ·+bs, j,osΦs,os(y)

for any 1 � s � λ and 1 � j � as . In what follows, let ξ = (ξ1, . . . ,ξm) = (ξ 1, . . . ,ξλ )
with ξ s = (ξs,1, . . . ,ξs,as) for 1 � s � λ . For any 1 � s � λ , let Φ̃s = (Φs,1, . . . ,Φs,os)
and ξ̃ s = (ξs,1, . . . ,ξs,os) . We define two sequences of linear transformations {Hs,i}as

i=1 :
Ros → R and {Rs, j}os

j=1 : Ras → R as follows:

Hs,i(x) = bs,i,1x1 + · · ·+bs,i,osxos , 1 � i � as;

Rs, j(y) = bs,1, jy1 + · · ·+bs,as, jyas , 1 � j � os.

Define the family of linear transformations {Hs}λs=1 and {Rs}λs=1 by

Hs = (Hs,1, . . . ,Hs,as), Rs = (Rs,1, . . . ,Rs,os). (34)

It is easy to verify that

x ·Hs(y) = Rs(x) · y, (x,y) ∈ Ras ×Ros. (35)

Thus we have
ξ s ·Φs = ξ s ·Hs(Φ̃s) = Rs(ξ s) · Φ̃s. (36)

For any 1 � s � λ and z ∈ Sos−1 , since {Φs,1, . . . ,Φs,os} is linearly independent, thus
z · Φ̃i(·) is a nonzero real-analytic function. By (3.8) in [26], there exists δs > 0 such
that ∫∫

(Sn−1)2

∣∣∣z · (Φ̃s(y)− Φ̃s(u))
∣∣∣−δs

dσ(y)dσ(u) < ∞. (37)

Let εs = min{1/drs,1/s,δs/2} . Follows from (5.30) in [15], for any 1 � s � λ , there
exists an orthogonal n× n matrix U such that εU = e = (0, . . . ,0,1) ∈ Sn−1 and a
polynomial Ps, j ∈ Vn−1 such that deg(Ps, j) � [ n−1

εs ] and

|Φs, j(yU−1)−Ps, j(ỹ)| � Cρ (n−1)/εs (38)

for every y ∈ B(e,ρ)∩ Sn−1 and 1 � j � as , where ỹ = ( y1
|y| , . . . ,

yn−1
|y| ) . For any 1 �

s � λ , let Ps = (Ps,1, . . . ,Ps,as) and deg(Ps) = max1� j�as deg(Ps, j) . Then there are
integers 0 �Λs,1 <Λs,2 < · · ·<Λs,Ms � deg(Ps) and Qs, j,Λs,l ∈Vn−1,Λs,l for 1 � j � as

and 1 � l � Ms such that

Ps =
Ms

∑
l=1

Qs,Λs,l , (39)

where Qs,Λs,l = (Qs,1,Λs,l ,Qs,2,Λs,l , . . . ,Qs,as,Λs,l ) and Qs,Λs,l �= (0, . . . ,0) . For any 1 �
l � Ms , let Q̃s,Λs,l = (Qs,1,Λs,l ,Qs,2,Λs,l , . . . ,Qs,os,Λs,l ) and

P̃s =
Ms

∑
l=1

Q̃s,Λs,l . (40)



1088 F. LIU AND H. WU

We get form (38) that

|Φ̃s(y)−P̃s(ỹU)| � Cρ (n−1)/εs (41)

for every y∈ B(ε,ρ)∩Sn−1 and 1 � s � λ . For 1 � s � λ , 1 � l � Ms and 1 � j � as ,
we set

Qs, j,Λs,l (y) = ∑
|β |=Λs,l

bs, j,l,βyβ . (42)

Let ϖ(u) = ∑u
s=1(Ms + 1) for 1 � u � λ , ϖ(0) = 0, and define Θ0, . . . ,Θϖ(λ ) by

Θ0(y) = (0, . . . ,0) and

Θϖ(u)+θ (y) =
(
Φ1(y), . . . ,Φu(y), |y|dru+1 Hu+1

( θ

∑
l=1

Q̃u+1,Λu+1,l

( ỹU
|y|

))
,0, . . . ,0

)
(43)

for 0 � u � λ −1, 0 � θ < ϖ(u+1)−ϖ(u) , and

Θϖ(λ )(y) =Φ(y). (44)

It follows from (43) that

Θϖ(u)−1(y) =
(
Φ1(y), . . . ,Φu−1(y), |y|dru Hu

(
P̃u

( ỹU
|y|

))
,0, . . . ,0

)
, 1 � u � λ . (45)

For 0 � s � ϖ(λ ) , let νk,s = σk,0,Θs,Ω . Note that

Th,Ω,Φ( f ) = ∑
k∈Z

νk,ϖ(λ ) ∗ f ; (46)

νk,0(y) = 0, ∀k ∈ Z and y ∈ Rm. (47)

For any 1 � s � ϖ(λ ) , by a change of variable, Hölder’s inequality and the fact that
‖Ω‖L1(Sn−1) � C ,

|ν̂k,s(ξ )| =
∣∣∣∫ 2k

2k−1

∫
Sn−1

Ω(y′)exp(−2π iξ ·Θs(ty′))dσ(y′)h(t)
dt
t

∣∣∣
� 2‖h‖Δγ(R+)

(∫ 2k

2k−1

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Θs(ty′))dσ(y′)
∣∣∣γ ′ dt

t

)1/γ ′

� C
(∫ 2k

2k−1

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Θs(ty′))dσ(y′)
∣∣∣2 dt

t

)1/max{2,γ ′}
.

(48)
For any 1 � s � ϖ(λ ) , let

Is,k(ξ ) =
∫ 2k

2k−1

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Θs(ty′))dσ(y′)
∣∣∣2 dt

t
.
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By a change of variable and Lemma 1 we have

|Iϖ(u),k(ξ )| =
∣∣∣∫ 2k

2k−1

∫∫
(Sn−1)2

Ω(y′)Ω(z′)

×exp
(
−2π i

u

∑
j=1

ξ j · (Φ j(y′)−Φ j(z′))tdr j

)
dσ(y′)dσ(z′)

dt
t

�
∫∫

(Sn−1)2
|Ω(y′)Ω(z′)|

×
∣∣∣∫ 2k

2k−1
exp

(
−2π i

u

∑
j=1

Rj(ξ j) · (Φ̃ j(y′)− Φ̃ j(z′))tdr j

)dt
t

∣∣∣dσ(y′)dσ(z′)

� C
∫∫

(Sn−1)2
|Ω(y′)Ω(z′)||2kdru Ru(ξ u) · (Φ̃u(y′)− Φ̃u(z′))|−εdσ(y′)dσ(z′)

� C|2kdru Ru(ξ u)|−ε‖Ω‖2
L2(Sn−1)

×
(∫∫

(Sn−1)2

∣∣∣ Ru(ξ u)
|Ru(ξ u)| · (Φ̃

u(y′)− Φ̃u(z′))
∣∣∣−2ε

dσ(y′)dσ(z′)
)1/2

for any 1 � u � λ and 0 < ε � min{1/dru,1/u} . This together with (32), (37) and
(48) yields that

|ν̂k,ϖ(u)(ξ )| � C|2kdruρ (n−1)/εuRu(ξ u)|−εu/max{2,γ ′}, 1 � u � λ . (49)

For 0 � u � λ −1 and 0 < θ <ϖ(u+1)−ϖ(u) , by a change of variable and Hölder’s
inequality again,

| ̂νk,ϖ(u)+θ (ξ )|

=
∣∣∣∫ 2k

2k−1

∫
Sn−1

exp(−2π iξ ·Θϖ(u)+θ(ty
′))Ω(y′)dσ(y′)h(t)

dt
t

∣∣∣
� 2‖h‖Δγ(R+)

(∫ 2k

2k−1

∣∣∣∫
Sn−1

exp(−2π iξ ·Θϖ(u)+θ(ty
′))Ω(y′)dσ(y′)

∣∣∣γ ′ dt
t

)1/γ ′

� C
(∫ 1

1/2

∣∣∣∫
Sn−1

exp
(
−2π i

( u

∑
j=1

ξ j ·Φ j(y′)(2kt)dr j

+ξ u+1 ·Hu+1

( θ

∑
l=1

Q̃u+1,Λu+1,l (ỹ′U)
)
(2kt)dru+1

))
Ω(y′)dσ(y′)

∣∣∣dt
)1/γ ′

= C
(∫ 1

1/2

∣∣∣∫
Sn−1

exp
(
−2π i

( u

∑
j=1

ξ j ·Φ j(yU−1)(2kt)dr j

+ξ u+1 ·Hu+1

( θ

∑
l=1

Q̃u+1,Λu+1,l (ỹ)
)
(2kt)dru+1

))
Ω(yU−1)dσ(y)

∣∣∣dt
)1/γ ′

.



1090 F. LIU AND H. WU

We get from (35) and (45) that

ξ u+1 ·Hu+1

( θ

∑
l=1

Q̃u+1,Λu+1,l(ỹ)
)

= Ru+1(ξ u+1) ·
( θ

∑
l=1

Q̃u+1,Λu+1,l(ỹ)
)

=
ou+1

∑
j=1

Ru+1, j(ξ u+1) ·
( θ

∑
l=1

Qu+1, j,Λu+1,l(ỹ)
)

=
θ

∑
l=1

∑
|β |= Λu+1,l

( ou+1

∑
j=1

bu+1, j,l,βRu+1, j(ξ u+1)
)
(ỹ)β .

Invoking Lemma 2, there exists γu,θ > 0 such that

| ̂νk,ϖ(u)+θ (ξ )| � C|2kdru+1ρΛu+1,θL(Λu+1,θ )(ξ )|−γu,θ/γ ′ (50)

for 0 � u � λ −1 and 0 < θ < ϖ(u+1)−ϖ(u) , where

L(Λu+1,θ )(ξ ) =
( ou+1

∑
j=1

bu+1, j,l,βRu+1, j(ξ u+1)
)
|β |=Λu+1,θ

. (51)

Note that L(Λu+1,θ ) is a linear transformation from Rn to R
dim(Vn−1,Λu+1,θ )

. On the other
hand, by a change of variable, (35)–(36), (41) and (45) we have

|ν̂k,ϖ(u)(ξ )− ̂νk,ϖ(u)−1(ξ )|
=

∣∣∣∫
2k−1�|y|<2k

(exp(−2π iξ ·Θϖ(u)(y))− exp(−2π iξ ·Θϖ(u)−1(y)))
Ω(y)h(|y|)

|y|n dy
∣∣∣

� C2kdru

∫ 2k

2k−1
|h(t)|dt

t

∫
Sn−1

|Ω(y)||ξ u ·Φu(y)− ξ u ·Hu(Pu(ỹU))|dσ(y)

� C2kdru ‖h‖Δγ(R+)

∫
Sn−1

|Ω(y)||Ru(ξ u) · (Φ̃u(y)−P̃u(ỹU))|dσ(y)

� C|2kdruρ (n−1)/εuRu(ξ u)|
(52)

for 1 � u � λ . By (36), (42)–(43) and a change of variable we have

| ̂νk,ϖ(u)+θ (ξ )− ̂νk,ϖ(u)+θ−1(ξ )|
=

∣∣∣∫
2k−1�|y|<2k

(exp(−2π iξ ·Θϖ(u)+θ(y))− exp(−2π iξ ·Θϖ(u)+θ−1(y)))

×Ω(y)h(|y|)
|y|n dy

∣∣∣
� C

∫
2k−1�|y|<2k

∣∣∣2kdru+1ξ u+1 ·Hu+1

(
Q̃u+1,Λu+1,θ

( ỹU
|y|

))∣∣∣ |Ω(y)h(|y|)|
|y|n dy

= C
∫ 2k

2k−1
|h(t)|dt

t

∫
Sn−1

|2kdru+1ξ u+1 ·Hu+1(Q̃u+1,Λu+1,θ (ỹ))Ω(yU−1)|dσ(y)

� C|2kdru+1ρΛu+1,θL(Λu+1,θ )(ξ )|

(53)

for 1 � u � λ − 1 and 1 � θ < ϖ(u)−ϖ(u− 1) . Define the linear transformations

{Ls}ϖ(λ )
s=1 by

Ls(ξ )=
{
ρΛu+1,θ L(Λu+1,θ )(ξ ), s = ϖ(u)+θ , 0 � u � λ−1, 0 < θ < ϖ(u+1)−ϖ(u);
ρ (n−1)/εuRu(ξ u), s = ϖ(u), 1 � u � λ .
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Also, we define N1, . . . ,Nϖ(λ ) and η1, . . . ,ηϖ(λ ) by

Ns :=

{ γu,θ
γ ′ , s = ϖ(u)+θ , 0 � u � λ −1, 0 < θ < ϖ(u+1)−ϖ(u);

εu
max{2,γ ′} , s = ϖ(u), 1 � u � λ .

ηs :=
{

dru+1 , s = ϖ(u)+θ ,0 � u � λ −1, 0 < θ < ϖ(u+1)−ϖ(u);
dru , s = ϖ(u), 1 � u � λ .

It follows from (49)–(50) and (52)–(53) that for any 1 � s � ϖ(λ ) ,

|ν̂k,s(ξ )− ν̂k,s−1(ξ )| � C|2kηsLs(ξ )|; (54)

|ν̂k,s(ξ )| � C|2kηsLs(ξ )|−Ns . (55)

On the other hand, invoking Lemma 6 with μ = 0, we have that∥∥∥(
∑
j∈Z

(
∑
k∈Z

|νk,s ∗ gk, j|2
)q/2)1/q∥∥∥

Lp(Rm)
� C

∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|2
)q/2)1/q∥∥∥

Lp(Rm)
(56)

holds for any 1 � s � ϖ(λ ) , {gk, j}k, j∈Z ∈ Lp(Rm, �q(�2)) and (1/p,1/q) ∈ Rγ . By
(46)–(47), (54)–(56), Lemma 5 and interpolation, we get Theorem 2 for Ω being an H1

atom on Sn−1 satisfying (31)–(33). This proves Theorem 2 for Ω ∈ H1(Sn−1) . �

4. Proof of Theorem 2 for Ω ∈ L(log+ L)1/γ ′(Sn−1)

Let Ω ∈ L(log+ L)α (Sn−1) for α > 0 and satisfy (5). Employing the notation in
[4], let Eμ = {y′ ∈ Sn−1 : 2μ < |Ω(y′)| � 2μ+1} for μ ∈ N\{0} and E0 = {y′ ∈ Sn−1 :
|Ω(y′)| � 2} . Set A(Ω) = {μ ∈ N : σ(Eμ) > 2−4μ} and for μ � 1,

Ωμ(y′) =Ω(y′)χEμ (y
′)− (σ(Sn−1))−1

∫
Eμ
Ω(y′)dσ(y′),

and Ω0(y′) = Ω(y′)−∑μ∈A(Ω)Ωμ(y′) , where σ(Eμ) =
∫
Eμ dσ(θ ) and σ(Sn−1) =∫

Sn−1 dσ(θ ) . One can easily check that∫
Sn−1

Ωμ(y′)dσ(y′) = 0, for μ ∈ A(Ω)∪{0}; (57)

‖Ω0‖L1(Sn−1) � C, ‖Ωμ‖L1(Sn−1) � C‖Ω‖L1(Eμ ), for μ ∈ A(Ω); (58)

‖Ω0‖L2(Sn−1) � C, ‖Ωμ‖L2(Sn−1) � C22μ‖Ω‖L1(Eμ ), for μ ∈ A(Ω); (59)

Ω(y′) = ∑
μ∈A(Ω)∪{0}

Ωμ(y′); (60)

∑
μ∈A(Ω)∪{0}

(μ+1)α‖Ω‖L1(Eμ ) � C‖Ω‖L(log+ L)α (Sn−1), for α > 0; (61)
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Th,Ω,Φ( f ) = ∑
μ∈A(Ω)∪{0}

Th,Ωμ ,Φ( f ). (62)

We now give the proof of Theorem 2 for Ω ∈ L(log+ L)1/γ ′(Sn−1) .

Proof of Theorem 2 for Ω∈ L(log+ L)1/γ ′(Sn−1) . Let λ be the number of distinct
d j . We may assume without loss of generality that

Φ= (Φ1, . . . ,Φm) = (Φ1, . . . ,Φλ ), (63)

where Φs = (Φs,1, . . . ,Φs,as) with Φs, j(ty) = tdrsΦs, j(y) for any 1 � s � λ and 1 �
j � s . Obviously, ∑λ

s=1 as = m and {r1, . . . ,rλ} ⊂ {1, . . . ,m} . We also assume that
{Φs,1, . . . ,Φs,os} forms a basis for span{Φs,1, . . . ,Φs,as} for any 1 � s � λ . Let Φ̃s =
(Φs,1, . . . ,Φs,os) and ξ = (ξ1, . . . ,ξm) = (ξ 1, . . . ,ξλ ) with ξ s = (ξs,1,ξs,2, . . . ,ξs,as) for
any 1 � s � λ . Following from the proof of Theorem 2 for the case Ω ∈ H1(Sn−1) ,
there exists a sequence of linear transformations {Rs}λs=1 such that

ξ s ·Φs = Rs(ξ s) · Φ̃s. (64)

Let δs be given as in (37) and εs = min{1/drs,1/s,δs/2} . Define the mappings:
Γ0, . . . ,Γλ by

Γ0(y) = (0, . . . ,0);

Γs(y) = (Φ1, . . . ,Φs,0, . . . ,0), 1 � s � λ .

For 0 � s � λ , let ωs,μ,k = σk,μ,Γs,Ωμ . It is obvious that

ω0,μ,k(y) = 0, ∀k ∈ Z and y ∈ Rm; (65)

Th,Ωμ ,Φ( f ) = ∑
k∈Z

ωλ ,μ,k ∗ f . (66)

For convenience, we set Aμ = (μ+1)1/γ ′‖Ω‖L1(Eμ )‖|h|‖μ,γ for γ > 1. By a change of
variable, (58), (64) and Hölder’s inequality,

|ω̂s,μ,k(ξ )− ω̂s−1,μ,k(ξ )|
=

∣∣∣∫ 2(μ+1)k

2(μ+1)(k−1)

∫
Sn−1

Ωμ(y′)(exp(−2π iξ ·Γs(ty′))

−exp(−2π iξ ·Γs−1(ty′)))dσ(y′)h(t)
dt
t

∣∣∣
�

∫ 2(μ+1)k

2(μ+1)(k−1)

∫
Sn−1

|Ωμ(y′)||Rs(ξ s) · Φ̃s(y′)tdrs |dσ(y′)|h(t)|dt
t

� C|2(μ+1)kdrs Rs(ξ s)|‖Ωμ‖L1(Sn−1)

∫ 2(μ+1)k

2(μ+1)(k−1)
|h(r)|dr

r
� CAμ |2(μ+1)kdrs Rs(ξ s)|.

(67)
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On the other hand, by a change of variable and Hölder’s inequality again,

|ω̂s,μ,k(ξ )| =
∣∣∣∫ 2(μ+1)k

2(μ+1)(k−1)

∫
Sn−1

Ωμ(y′)exp(−2π iξ ·Γs(ty′))dσ(y′)h(t)
dt
t

∣∣∣
� ‖|h|‖μ,γ

(∫ 2(μ+1)k

2(μ+1)(k−1)

∣∣∣∫
Sn−1

Ωμ(y′)exp(−2π iξ ·Γs(ty′))dσ(y′)
∣∣∣γ ′ dt

t

)1/γ ′

=: ‖|h|‖μ,γH̃s,μ,k(ξ ).
(68)

For 1 < γ � 2, then γ ′ � 2 and

H̃s,μ,k(ξ ) =
(∫ 2(μ+1)k

2(μ+1)(k−1)

∣∣∣∫
Sn−1

Ωμ(y′)exp(−2π iξ ·Γs(ty′))dσ(y′)
∣∣∣γ ′−2

×
∣∣∣∫

Sn−1
Ωμ(y′)exp(−2π iξ ·Γs(ty′))dσ(y′)

∣∣∣2 dt
t

)1/γ ′

� C‖Ωμ‖1−2/γ ′
L1(Sn−1)

×
(∫ 2(μ+1)k

2(μ+1)(k−1)

∣∣∣∫
Sn−1

Ωμ(y′)exp(−2π iξ ·Γs(ty′))dσ(y′)
∣∣∣2 dt

t

)1/γ ′
.

(69)

For γ > 2, then 1 � γ ′ < 2, by Hölder’s inequality,

H̃s,μ,k(ξ ) � (μ+1)1/γ ′−1/2

×
(∫ 2(μ+1)k

2(μ+1)(k−1)

∣∣∣∫
Sn−1

Ωμ(y′)exp(−2π iξ ·Γs(ty′))dσ(y′)
∣∣∣2 dt

t

)1/2
.

(70)

Let

Ĩs,μ,k(ξ ) :=
∫ 2(μ+1)k

2(μ+1)(k−1)

∣∣∣∫
Sn−1

Ωμ(y′)exp(−2π iξ ·Γs(ty′))dσ(y′)
∣∣∣2 dt

t
.

We get from (64) that

Ĩs,μ,k(ξ )

=
∫ 2(μ+1)k

2(μ+1)(k−1)

∫∫
(Sn−1)2

Ωμ(y′)Ωμ(x′)exp(−2π iξ · (Γs(ty′)−Γs(tx′)))dσ(y′)dσ(x′)
dt
t

=
∫∫

(Sn−1)2
Ωμ(y′)Ωμ(x′)

∫ 2(μ+1)k

2(μ+1)(k−1)
exp(−2π iξ · (Γs(ty′)−Γs(tx′)))

dt
t

dσ(y′)dσ(x′)

=
∫∫

(Sn−1)2
Ωμ(y′)Ωμ(x′)

×
∫ 2(μ+1)k

2(μ+1)(k−1)
exp

(
−2π i

s

∑
j=1

Rj(ξ j) · (Φ̃ j(y′)− Φ̃ j(x′))tdr j

)dt
t

dσ(y′)dσ(x′).
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Invoking Lemma 1 we have∣∣∣∫ 2(μ+1)k

2(μ+1)(k−1)
exp

(
−2π i

s

∑
j=1

Rj(ξ j) · (Φ̃ j(y′)− Φ̃ j(x′))tdr j

)dt
t

∣∣∣
=

∣∣∣ μ

∑
v=0

∫ 2(μ+1)(k−1)+v+1

2(μ+1)(k−1)+v
exp

(
−2π i

s

∑
j=1

Rj(ξ j) · (Φ̃ j(y′)− Φ̃ j(x′))tdr j

)dt
t

∣∣∣
�

μ

∑
v=0

∣∣∣∫ 1

1/2
exp

(
−2π i

s

∑
j=1

Rj(ξ j) · (Φ̃ j(y′)− Φ̃ j(x′))2((μ+1)(k−1)+v+1)dr j tdr j

)dt
t

∣∣∣
� (μ+1)|2(μ+1)(k−1)drsRs(ξ s) · (Φ̃s(y′)− Φ̃s(x′))|−ε

for any 0 < ε � min{1/s,1/drs} . Then by Hölder’s inequality we have

|Ĩs,μ,k(ξ )| � (μ+1)
∫∫

(Sn−1)2
|Ωμ(y′)Ωμ(x′)|

×|Rs(ξ s) · (Φ̃s(y′)− Φ̃s(x′))2(μ+1)(k−1)drs |−εdσ(y′)dσ(x′)

� (μ+1)‖Ωμ‖2
L2(Sn−1)(2

(μ+1)(k−1)drs |Rs(ξ s)|)−ε

×
(∫∫

(Sn−1)2

∣∣∣ Rs(ξ s)
|Rs(ξ s)| · (Φ̃

s(y′)− Φ̃s(x′))
∣∣∣−2ε

dσ(y′)dσ(x′)
)1/2

for any 0 < ε � min{1/s,1/drs} . By letting εs = min{1/s,1/rs,δs/2} and (37) we
have

|Ĩs,μ,k(ξ )| � (μ+1)‖Ωμ‖2
L2(Sn−1)(2

(μ+1)(k−1)drs |Rs(ξ s)|)−εs . (71)

This together with (68)–(70) implies

|ω̂s,μ,k(ξ )| � CAμ24μ/max{2,γ ′}(2(μ+1)(k−1)drs |Rs(ξ s)|)−εs/max{2,γ ′}. (72)

On the other hand, one can easily check that

|ω̂s,μ,k(ξ )| � CAμ . (73)

Interpolation between (72) and (73) yields

|ω̂s,μ,k(ξ )| � CAμ(2(μ+1)kdrs |Rs(ξ s)|)−εs/(max{2,γ ′}(μ+1)). (74)

It follows from (67) and (73) that

|ω̂s,μ,k(ξ )− ω̂s−1,μ,k(ξ )| � CAμ(2(μ+1)kdrs |Rs(ξ s)|)1/(μ+1). (75)

On the other hand, invoking Lemma 6 and (59),∥∥∥(
∑
j∈Z

(
∑
k∈Z

|ωs,μ,k ∗ gk, j|2
)q/2)1/q∥∥∥

Lp(Rm)
� CAμ

∥∥∥(
∑
j∈Z

(
∑
k∈Z

|gk, j|2
)q/2)1/q∥∥∥

Lp(Rm)

(76)
holds for any 1 � s � λ , functions {gk, j}k, j∈Z ∈ Lp(Rm, �q(�2)) and (1/p,1/q)∈ Rγ .
Here C > 0 is independent of μ and γ . Then by (61)–(62), (65)–(66), (73)–(76),
Lemma 5 and interpolation, we get Theorem 2 for Ω ∈ L(log+ L)1/γ ′(Sn−1) . �
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5. Concluding results

In this section, we will show that our main results can be extended to a class of
singular integral operators associated to more general compound mappings. Precisely,
using Theorem 2 and a switched method followed from [12], we can obtain the corre-
sponding results for the more general singular integral operators Th,Ω,Φ,ϕ defined by

Th,Ω,Φ,ϕ( f )(x) := p.v.

∫
Rn

f (x−Φ(ϕ(|y|)y′))K(y)dy, x ∈ Rm,

where K(·) is as in (4) and ϕ ∈ G . Here G is the set of all nonnegative (or non-

positive) and monotonic C 1(R+) functions ϕ such that ϒϕ (t) := ϕ(t)
tϕ ′(t) with |ϒϕ(t)|�

Cϕ , where Cϕ is a positive constant which depends only on ϕ . Clearly, Th,Ω,Φ is the
special case of Th,Ω,Φ,ϕ for ϕ(t) = t . The general result can be formulated as follows.

THEOREM 3. Let ϕ ∈ G and Φ be given as in Theorem 2 . Under the same
conditions of Theorem 2 (resp., Corollary 1 ), the operator Th,Ω,Φ,ϕ is also bounded on
Ḟ p,q
α (Rm)(resp., F p,q

α (Rm) .

REMARK 3. If ϕ ∈ G , the following facts are obvious (see [12]):
(i) limt→0ϕ(t) = 0 and limt→∞ |ϕ(t)| = ∞ if ϕ is nonnegative and increasing, or

non-positive and decreasing;
(ii) limt→0 |ϕ(t)|=∞ and limt→∞ ϕ(t) = 0 if ϕ is nonnegative and decreasing, or

non-positive and increasing.

REMARK 4. Theorem 3 implies [32, Theorem 1] even in the special case m = n
and Φ(y) = y .

In order to prove Theorem 3, we need the following two lemmas.

LEMMA 8. ([12, 24]) Let ϕ ∈ G . Suppose h ∈ Δγ(R+) , or Hγ (R+) , for some
γ > 1 , then h(ϕ−1)ϒϕ (ϕ−1) ∈ Δγ(R+), orHγ (R+) . Precisely, we have

‖h(ϕ−1)ϒϕ (ϕ−1)‖Δγ (R+) � C‖h‖Δγ(R+),

‖h(ϕ−1)ϒϕ (ϕ−1)‖Hγ (R+) � C‖h‖Hγ (R+),

where the constant C > 0 depends only on ϕ .

LEMMA 9. Let ϕ ∈ G . Then
(i) if ϕ is nonnegative and increasing, Th,Ω,Φ,ϕ( f ) = Th(ϕ−1)ϒϕ (ϕ−1),Ω,Φ( f );
(ii) if ϕ is nonnegative and decreasing, Th,Ω,Φ,ϕ( f ) = −Th(ϕ−1)ϒϕ (ϕ−1),Ω,Φ( f );
(iii) if ϕ is non-positive and decreasing, Th,Ω,Φ,ϕ( f ) = Th(ϕ−1)ϒϕ (ϕ−1),Ω̃,Φ( f );
(iv) if ϕ is non-positive and increasing, Th,Ω,Φ,ϕ( f ) = −Th(ϕ−1)ϒϕ (ϕ−1),Ω̃,Φ( f ) ,
where Ω̃(y) =Ω(−y) .
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Proof. We can get this lemma by Remark 3 and the similar arguments as in the
proof of [12, Lemma 2.3]. The details are omitted. �

Proof of Theorem 3. Theorem 3 directly follows from Lemmas 8 and 9 and Theo-
rem 2. �

RE F ER EN C ES

[1] H. AL-QASSEM, On the boundedness of maxiaml operators and singular operators with kernels in
L(log+ L)α(Sn−1) , J. Inequal. Appl. 2006, 1 (2006), 1–16.

[2] H. AL-QASSEM, A. AL-SALMAN AND Y PAN, Singular integrals associated to homogeneous map-
pings with rough kernels, Hokkaido Math. J. 33, 3 (2004), 551–569.

[3] H. AL-QASSEM, L. CHENG AND Y. PAN, Boundedness of rough integral operators on Triebel-
Lizorkin spaces, Publ. Math. 56, 2012 (2012), 261–277.

[4] A. AL-SALMAN AND Y. PAN, Singular integrals with rough kernels in L logL(Sn−1) , J. London
Math. Soc. 66, 2 (2002), 153–174.

[5] Y. CHEN AND Y. DING, Rough singular integrals on Triebel-Lizorkin space and Besov space, J. Math.
Anal. Appl. 347, 2 (2008), 493–501.

[6] Y. CHEN, Y. DING AND H. LIU, Rough singular integrals supported on submanifolds, J. Math. Anal.
Appl. 368, 2 (2010), 677–691.

[7] L. CHENG, Singular ingegrals related to homogeneous mappings, Michigan Math. J. 47, 1 (2000),
407–416.
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