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SINGULAR INTEGRALS RELATED TO HOMOGENEOUS
MAPPINGS IN TRIEBEL-LIZORKIN SPACES

FENG L1U AND HUOXIONG WU

(Communicated by A. Meskhi)

Abstract. In this note we establish the boundedness for the singular integral operators related
to homogeneous mappings with rough kernels in Triebel-Lizorkin spaces. Some previous re-
sults are improved and extended substantially. A main ingredient in the proofs is to establish a
criterion of boundedness for the convolution type operator in the above function spaces, which
presents a systematic treatment for the related singular integral operators.

1. Introduction

The main purpose of this paper is to establish the bounds of singular integral op-
erators with rough kernels supported by homogeneous mappings in Triebel-Lizorkin
spaces. Let us recall some definitions. For m > 2, a €e R and 0 < p, g < oo (p #£ 0),
the homogeneous Triebel-Lizorkin spaces F}/(R™) is defined by

FYI(R™) = {f € S R") : |fllgpam = H <%2iiaq|lp"*ﬂq> I/q‘ D w}’
1S

(1)
where /(R™) denotes the tempered distribution class on R™, ‘/P\,(é) = ¢(2&) for
i€Z and ¢ € €°(R™) satisfies the conditions: 0 < ¢(x) < 1; supp(¢) C {x e R™:
1/2 < x| <2} ¢(x) > ¢ >0 if 3/5< |x] <5/3. The inhomogeneous versions of
Triebel-Lizorkin spaces, which are denoted by F}?(R™), are obtained by adding the
term [|® * fl|zprm) to the right hand side of (1) with ¥,;c7 replaced by ¥,;>;, where
@ c .Z(R™), supp(®) C {& e R™: |E] <2}, D(x) > >0 if |x] <5/3. Itis well
known that

EP2(R™) = LP(R™) V1 < p < o )
FgI(R™) ~ Fg(R™)NLP(R™) and ||fl|gpaggm) ~ [ Fllzpagm + [1flo@ny You> 0.
(3)
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See [20, 21, 30] for more properties of Fg7(R™).
Let n > 2 and K(y) be a Calder6n-Zygmund type kernel of the form

Q(y
K() = h(ly) 22 @
vl
where Q is homogeneous of degree 0, integrable over §"~! and satisfies
Q(u)do(u) =0, Q)

sn—1

and i : [0,00) — C is a measurable function. For a suitable mapping @ : R" — R™, we
define the singular integral operator Tj, o ¢ associated to @ by

Tioo(f)) =pv. [ flx=®()K(y)dy, (6)

where x € R™ and f € . (R™) (the space of Schwartz functions). If m =n and ®(y) =
v, we denote simply T, oo by Thq.

The operator 7j, o was initiated by Fefferman [18] and has been studied by many
authors (see [1, 14, 16, 17] etc.). For a general mapping @, the operator 7j, o ¢ belongs
to the class of singular Radon transforms whose L” mapping properties are relatively
well understood when the kernel K(y) is smooth away from the origin. In the case
of ® = & being a polynomial mapping from R” to R”, Fan and Pan [16] proved
that T, ¢ » is bounded on LP(R™) for p satisfying |1/p—1/2| < min{1/2,1/7'},
provided that Q € H'(S"~!) and i € A(R™) for some y > 1, which certainly implies
that 7j, o has the same L”-mapping properties. Here H 1(s"1) is the Hardy space
on §"~! (see the definition in Section 3), and A,(RT)(y > 1) denotes the set of all
measurable functions / defined on R* := (0,0) satisfying the condition

R 1y
h = sup R*I/ h(t)|7dt < oo,
Il o= sup (R [ (o)

Clearly, L”(RT) = Aw(RT) C Ay, (RT) C Ay, (RT) for 1 < 11 < 35 < eo. Also, by
imposing a more restrictive condition on /2, Al-Qassem [1] showed that 7}, o is bounded
on LP(R") forall 1 < p < e, provided that Q € L(log™ L)'/ (§"~1) and h € /(R")
for some 1 < y < oo (see also [17] for the generalization in non-isotropic setting). Here
J(RT), y> 0, is the set of all measurable functions 7 on R satisfying

= di\1/Y
ey = ([ IO ) " <o

and L(log* L)B (5"=1)(for B > 0) denotes the space of all those functions Q on §"~!,
which satisfy

|, 19(0)]10g 2+ 192(6)do (6) < ==
Note that

L*(RY) = #,(R") and J4(RT) CA/(RT), 1<y<os;
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L(log" L)P(s"™") ¢ L(log" L)P2(s"™"), 0< B2 < Bi;
Lllog"L)P(s" ") CH'(S"™), B>1;
Llog" L)P(s" Y ¢ H' ("1 ¢ L(log* L) (s"1), 0<B<1.

On the other hand, the boundedness of 7}, o and the general operator 7}, o » in
Triebel-Lizorkin spaces F§*¥(R™) have been studied by many authors (see [3, 5, 6,
9, 24, 25, 27] etc.). Recently, Yabuta et al. [13, 28] investigated the boundedness
of singular integrals associated to surfaces of revolution on the F}(R™)-valued L"
function space on R, which is denoted by L"(R, F{(R™)). Other interesting works
related to this topic are [23, 29, 31, 33].

The primary focus of our investigation is the singular integral operators 7j, g @
with @ being a homogeneous mapping. Let d = (dy,...,dy,) € R™. We say that ® :
R"™ — R™ is a (non-isotropic) homogeneous mappings of degree d if

D(ty) = 6(®(y)), Vt >0andy € R",
where {8 },~0 is the family of dilations on R™ by
S (x1s i xm) = (tDx,1%xy, .. 1%7x,y,).

The LP-mapping properties of 7, o ¢ have been studied by several authors (see
[2,7, 15, 26] etc.). In particular, Cheng [7] established the following result.

THEOREM 1. ([7]) Let h(t) =1 and ® = (Dy,...,D,,) be a homogeneous map-
ping of degree d = (dy, ... ,dy) with d; # 0 for 1 <i<m. Assume that Q € H'(§"~1)
satisfying (5) and ®@|g.-1 is real-analytic. Then for 1 < p < oo, there exists C, >0
such that

[ Th.0.0(f) e @my < Cpll £l r mm).-

A question that arises naturally is whether the condition Q € H'(S"~!) is also
sufficient for the F{{?-boundedness of T}, o ¢ with @ being as in Theorem 1. We will
give a positive answer by our next theorem.

THEOREM 2. Let ® = (®y,...,®,,) be a homogeneous mapping of degree d =
(dy,...,dw) with di e N\{0} for 1 <i<m and ®|g1 real-analytic. Assume that Q
satisfies (5) and one of the following conditions holds:

(@) h € Ay(RY) for some y>1 and Q € H' (S"1);

(b) h € H(RT) for some y> 1 and Q € L(log™ L)!/Y (s"~1).

Then Ty q . is bounded on F§(R™) for o € R and (1/p,1/q) € Ry, where Zy

is the interior of the convex hull of three squares (%, %+ m)z (35— m, 1?

and (%,7 1— %,)2

REMARK 1. Theorem 2 essentially generalizes Theorem 1 in the following two-
folds: (i) add the roughness of kernels in the radial direction; (ii) extend the bound-
edness of Tj, o ¢ on Lebesgue spaces to Triebel-Lizorkin spaces. On the other hand,
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the results of Theorem 2 for /i, € with satisfying the condition (b) are new even in the
special case of that & =0 with ¢ =2, i.e., in Lebesgue spaces. It should be pointed out
that Theorem 2 is not true, if replacing i € 4,(R*) by h € Ay(R™) for y> 1, because
of that L™ (R™) C Ay(R*), Llog" L(S" 1) C L(log" L)*(S"!) forany 0 <z < 1, and
Calder6n-Zygmund’s celebrated result in [8].

See the following Figures 1-3 for %,. Here P = (% — max{12 7T é — max{12 j,,})

:P

_(%’% max{2)/}) Py= ( +W’2) P4_(_+max{2)/}’2+max{2)/})
(2’2+max{27/}) P6_(7_max{127/}72) Ry = (1_%/7%/) RZ_(QY’ )/)’ 0=
(0,0), @2 =(1,0), Q3 =(1,1) and Q4 = (0,1).

Ya g1y P, an

€0,0) (1,00

Figure I: (1 <y<2) Figure 2: (2 < y< ) Figure 3: (y= o)

REMARK 2. We remark that the range of %, was first given by Yabuta in [32].
One can easily see that the ranges of p, and g belong to (1,0) when y = co. Thus
Theorem 2 generalizes the result of [5] (see Section 5 in [5])

Applying (2)—(3) and Theorem 2, we have the following conclusion immediately.

COROLLARY 1. Under the same conditions of Theorem 2 with o. > 0, the oper-
ator T, oo is bounded on F{4(R™).

The paper is organized as follows. A few lemmas will be recalled or proved
in Section 2. The proof of Theorem 2 for the case Q € H'(S"~!) will be given in
Section 3. In Section 4, we shall present the proof of Theorem 2 for the case Q €
L(log™ L)!/Y (§"~1. Finally, we end this paper by presenting some more general results
in Section 5. We remark that our works and ideas are motivated by [6, 15, 16, 26, 32].
The main ingredient is to present a criterion of boundedness for the operator of convo-
lution type on the Triebel-Lizorkin spaces (see Lemma 5) and a switched technique on
the linear transformations in estimating the Fourier transforms of some measures (see
Section 3).

We end this section by giving some notations: we denote p’ by the conjugate index
of p, which satisfies 1/p+1/p’ = 1; g denotes the Dirac delta function on R"; J~!
denotes the inverse transform of linear transformation J; D' denotes the transpose of
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the linear transformation D and 7" denotes the projection operator from R” to R"; f
denotes the Fourier transform of f. Finally, we set ¥ ;cpa; =0 and [];cga; = 1.

2. Preliminary lemmas

In this section, we shall present some necessary lemmas, which will play key roles
in the proof of Theorem 2.

LEMMA 1. ([7]) Lerl€N\{0}, uy,...,.; €R and dy,...,d; be distinct nonzero
real numbers. Let y € €1([0,1]). Then there exists C > 0, mdependent of {u;}!
such that

J=1

T T
| /5 exp(i(ur® + ..+ pn)y(e)at| < Cla | (w() + /5 v (1))
holds for 1/2< 6 <1< 1.

LEMMA 2. ([26]) Let [ € N\{0} and hy,...,h; be distinct nonzero real numbers
and

O(t,u) =™ Za u —|—2t1w,

jaf<s

where t € R, u = (uy,...,up—1) € R"1, a e N1 ay € R, and wj(-) are real-
valued. Let r >0 and b(-) be a measurable function on [—r,r|"~! that satisfies ||b||« <
r=("=1)_ Then there exist positive constants C and y independent of {aq}, {w;(:)}, r
such that

AT ————

ja=s

Below are two important vector-valued norm inequalities.

LEMMA 3. ([6]) Let & = (Py,...,Py) with P; being real-valued polynomials in
R". For 1 < p, q < oo, the operator # s given by

o)) =swp~ [ |flr— 2())ldy

>0 " Jyl<r

satisfies the following LP (R™ (1) inequality

H( (A7(£:)) )M Lp(Rm)< ”H( wq)

where Cp, ;> 0 is independent of the coefficients of P; for 1 < j < m.

r (Rm) ’



1080 F. L1U AND H. WU

LEMMA 4. ([24]) Let 0 <M <N and H:R" - RY G:RN — RN be two
nonsingular linear transformations. Let {ay}rez be a lacunary sequence of positive

numbers satisfying infrez a1 /ax = a > 1. Let ®(E) € ' (RM) with ®(0) = 0 and
O (&) = a, MD(E /ay). Define the transformations J and X by

J(f)(x) = f(G'(H' @idgy-w)x) and X (f)(x) =~ (D ® Sgv-u) #J () ().

Then for any 1 < p,q <, {g}jez € LP(RN ¢9) and {8r,j}jkez € LP(RN ¢4(0%)),
there exists a positive constant Cy o, such that

(2 (2 mer)™) "

<Zlg,>

\

JEZ “k€Z LP(RY) JEL Le RN)

/2N 1/q q/2\1/q
Xo(2e)) < Cma |2 )
”%% e )P)") g, <o (gz(kezz|gk,1|) ) s,

To prove Theorem 2, we will establish a criterion on the bounds of the convolution
operators in Triebel-Lizorkin spaces.

LEMMA 5. Let A,v € N\{0} and {0, :0<s <A andk € Z} be a family of
measures on R™ with oy =0 forevery k€ Z. For 1 <s <A, let Ny > 1, 05, Bs, 1s >0,
ts € N\{0} and Ly : R™ — R" be linear transformations. Suppose that there exist
some 1 < po, qo < e with satisfying (po,qo) # (2,2) and ¢, A > 0 independent of v
and {Ls}é\=1 such that the following conditions are satisfied for any 1 <s <A, k€ Z,
& €R™ and {gi j}rjez € LPO(R™,£90(¢%))

(i) [G2(8)] < cAmin{1, g™ L, (O

(ii) [G:4(€) — Gy 14(E)] < AN Ly(&)[PV ;

(iii)
I (o)™ e <l (5 (Zh))

JEZ kel

LPo( LPo(Rm)’

Then for a € R and (1/p,1/q) € A1A\{(1/po,1/q0),(1/2,1/2)}, there exists C >0
independent of v and {Ly}._, such that

N onkxf

keZ

< CA|fll ppamy. )

I’q

where Ay = (1/2,1/2), Ay = (1/po,1/q0) and A1A; is the line segment from Ay to
Ay

Proof. Forany 1 <s< A, weset r(s) =rank(Ls). By [16, Lemma 6.1], there are
two nonsingular linear transformations H : R’G) — R"G) and G, : R™ — R™ such that

Hy) Gi&| < |Ls(6)] < Ll Hymyly Gi§ . (8)
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Let ¢ € 45°(R) such that ¢(¢) =1 for |¢| < 1/2 and ¢(r) =0 for |¢| > 1. Let (t) =
¢(?). For any 1 < s <[, define the family of measures {1 }rcz by

A
@(5)=@(5)HW(IH,VV’H,E 1Gi&l) —orx(é H (Inj"" Hymlt; G &),

Jj=s+1 j=s
©))
One can easily check that

A
Ork = 2, M (10)

s=1
sk (&) < CAmin{1, (|0 Ly(§) [P + 0P L, (5)I1/V)}, (1D
k()] < CAPELI(E)|O, if [n{* Hyml Gy&| > (12)

From (10) we can write

> onprf= ZZusk*f ZZusk*f 2% (13)

keZ kEZ s= s=1keZ

Thus, to prove (7), it suffices to prove that for any 1 < s < A, there exists C > 0
independent of {L,}% | such that

1 () gagem < CAISl pgoqem (14)

for o € R and p, g satisfying the condition in Lemma 5.
Let { € .(R™) such that

£(0)=0; 0< L) < L supp(§) € [ my™]: Y, G2 (1)

keZ

where § (1) =¢ (nsk vy“t). Forany 1 <s< A, we define the family of operators {Si s }rcz
by
Sk f(8) = Gu(|Hsml( GsEDF(E). 15)

We can write

CAGEDNNE ( D Sj+k,s5j+k,sf> 3> Siks Mk xSjcrsf) =Y, s j(
keZ JEZ JELkEZ JEZ
(16)
By (11)—(12), Littlewood-Paley theory and Plancherel’s theorem,

%) 2y .
EREPIFE©PE) ™ 1)

<CA( / . e

i/ {Eerm: e I g Gy < Uy
clJ

< CA V| fll 2 oy,

where ¢ > 0 is independent of v. Combining (17) with (2) yields

55 22 gy < CANS V£l o (18)
0

Rm) (Rm)”
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Below we estimate |7, ;(f) || gpaggn - Let & = (§',67) with &' = (&1,..., &) and

Rm) -
E2 = (Exgyi1seeerEm). We set Fk(§1> F(S™EY) = Gl|my &), where & is as

in (15). It is clear that F €. (R’(‘)) and £ (0) = 0 Define the nonsingular linear
transformation J on R™ by J = Gy ' (H; ! @ 8gu—r) . Itis easy to verify that

Sks(F)(x) = JI[F £ ® Sgm-rs) * £/ (J'x), (19)

where f/(x) = |J|7'f((J')~'x). By change of variables, (19) and Lemma 4 we have
that for any 1 < p,q < oo and {g;};cz € LP (R™,{£7), there exists a constant C > 0 such

that T
[(Z (T Isesterr)™) ™

i€Z kel

ey <61 Ty @

By our assumption (iii), Lemma 4 and the arguments similar to those used in deriving
[6, Proposition 2.3], we get

H ( Z < Z |y k *gi,k|2>q°/2> 1/q0

iy <A (B (Zeal)™) ™

i€z “keZ i€z “keZ LPO (")
(21)
From the duality and (20)—(21) it follows that there exists C > 0 such that
1/q0
sl
H(EZ" 581l LPo(R™)
j+ks .usk*Sj-‘rks(gl))(x)ﬁ(x)dx‘
H{ﬂ}H o " €L ke
LY0(RM [
//2 1//
<C s \(Z(Z\SMS( 1 R R 22)
i, o <tz Nz, Lo (R™)
120 (rm (40
q0/2\ 1/q0
S . 2) )
H(lez<ke%|”s,k* j+k,s(gt)| Lr0 (&)
1/q0
<Al (et ,
3 s ) [
which leads to
o 2~ 106110\{1 o 40 Vao
I (Ol = | (2 et 0)
(23)

1/
<| (Z 27 f)fo0)
i€Z
:CA”fHFD’;O"qO(Rm)

LPo (R™)

for any o € R, where '¥; is given as in (1). Interpolation (see [19, 21]) between (18)
and (23) implies that for o € R, (1/p,1/q) € A1A\{(1/po,1/q0),(1/2,1/2)} and
1 <s <A, there exists € > 0 such that

1551 o gamy < CABSIS e (24)
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Combining (24) with (16) yields (14) and completes the proof of Lemma 5. [J

In what follows, we set

2tk di\1/7
h = (/ h(t 7—) , Y> 1.
sy =S9p [ OIS Y

For a suitable mapping I" : R — R™ and pu € N, define the sequence of measures
{Okurotiez by

[ fdorura= [ fT)K@x,
R™ Du.k
where K(-) is as in (4) and Dy g = {x € R" : 2+ D=1 || < 2(uF1kY

LEMMA 6. Let T(y) = (P1(|y|)a1(‘§—‘)7...,Pm(|y|)am(|§—|)), where Py,...,P, are

real-valued polynomials on R* and ay, ... ,a,, are arbitrary functions defined on S"~!.
Suppose that Q € L'(S"™Y) satisfying (5) and |||h|||u,y < = for some u € N and
y> 1. If (1/p,1/q) € Zy with %y being as in Theorem 2. Then for {g i}k jez €
LP(IR™ (9(¢?)), there exists C > 0, independent of [ and vy, such that

(2 (Z oraraess?)™) ],

JEL kel 2\ 1
<t D190 gy Il (2 (3 lees?) )

JEZ “keZ

(25)

Lr(RM)

Proof. We consider the following two cases:

Case 1 (1 < y<2). Firstly we shall prove (25) for 2 < p,q < 2y/(2—17). Given
functions {f;}jez with [[{fi}|l 2y gm gtar2yy < 1. By the similar arguments as in
getting (7.7) in [16], we have

[ 10k 81 (0 P @) < CIR s ALy [ e 0) Pt (1) (),
(26)
where

2 (u+1)k

/SH £+ TR do () ()T

(u+1)(k—1) t

() =sup [
k€ZJ2
Using Holder’s inequality we obtain

Ar(f) (x)
u+1)k /Y’

2( ) d 2
2—y / y’/2_t> / /
<G [ (sup [ T2 E) 00 o)
2 (u+1)(k=1)+i+1

: di\2/Y
2—y "y Y /24 / /
AT [, (Z50p [ VEHTODIE) T 00100

<+ I |

n—1

20| (swp 7 [ st )" aot)

r>0 T
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Invoking Lemma 4 and Minkowski’s inequality we get

I i)

JEZ

< (u+ D7k

(Z151)"

jez

1
)l (]Rm ) Sn )l (]Rm )

(27)
for ¥/ /2 < u,v < oo. Then (27) together with (26) yields

Iis <z»aw,m2>‘”2>”‘1HLW>

JEZ "kEZ

N <1/ > 2 ‘Gk.,li,r,Q*gk,j(x)|2fj(x)dx

Moz g e, <L SR

<l il e[ 3 S e P d
A7} 2y (&m o(a/2)) S JELKEL

(S latrr)”

1 jGZ Lu (Rm)

< C11Q sy 121y sup
H{ff}HL(P/Z)’(Rm ,[(4/2)’)<

(5 (Zenst) ),

JET kel L")

< Cla+ 17 190 g I (2 (3 ) )

b)
iz Nker Lr(R™)

where we take u = (p/2)" and v = (q/2)’. From this we prove (25) for 1 < y <2
and (1/p,1/q) belonging to the interior of the square (% — %, %)2 By duality we
can obtain (25) for 1 <y <2 and (1/p,1/q) belonging to the interior of the square
(27 5+ ),,)2. Interpolating these two cases, we get (25) for the case 1 < y < 2 and

(1/p,1/q) belonging to the interior of the convex hull of two squares (% - %, %)2 and

(3.3+ 7/) . Note that in this case the interior of the square (5,1 — —) contains in

2y
the interior of the convex hull of two squares (5 — m, 1)? and (4, é + m)z
Case 2 (y>2). Since |||l < (+1)'27V7|||h]|| 4,y for y>2. We get (25)
for (1/p,1/q) belonging to the interior of the convex hull of two squares (0,3)? and
( ,1)2. Below we shall prove (25) for (1/p,1/q) belonging to the interior of the square
(2),7 1— —) . For convenience, we define the measure |0y ;| in the same way as

Ok,u Qs but with Q replaced by |Q| and & replaced by |i|. For any arbitrary functions
{g;j} € LP(R™, (%) with p, g > Y. By a change of variable and Holder’s inequality,

Ok pral*gjl(x)
2 (u+1)k

S /2(u+1)(k—l) /gn—l |g,,'(x—F(ty/))HQ(y/)\dG( )‘h( )‘ﬁ

ol 1k

1y
<l ([, / o 8T L ae)ldo ()
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< (D7 Al

Y
<(f st | |<rg,-<x—r(zy’))|th|sz<y'>|do<y'>)” ,

s ¥

which combining Minkowski’s inequality with Lemma 4 implies

H <J€Z <sup|6kﬂ rol* |g,‘>f1>1/qHU(Rm)

<(u+1) Ity

Az (L 01 / <r|g.,»<-—r<zy'>>|fdr£z<y’>|do<y'>)"/ e

1/q
cp.,q<u+1>l/f Il 120 x| (3 Tt

JEL Lr®™)
(28)
forany ¥ < p,q < o, It follows from (28) that
[(Z (suel )"
*
sup Ok, u,I,Q * 8k,j Lo (Rm)
<H( (sup|o suple ) ) 2
h jez N kel ure keZ Bk Lr(R™) (29)
a\ 1/q
<Gy DYk Q| 17gn- < (su )) H
pa(t+ )Tl 1L 1 g1y Jé u P gkl (&™)

for any {gi j}rjez € LP(R™,£9(¢~)) with ¥ < p,q < e=. On the other hand, for any
1 <p,qg<y,then y<' p'.q <eo. By the dual argument, there exists {/;} ez €
LP (R™ 1) with H{hj}HLn’(Rm,eq’) =1 such that

15,5 uresclf) ] o

JEZ kel

/ 3 0k o * k() 7 (x)dx

=2
<Z/ > I8k ()0 wr.al * 7| (—x)dx
jez/R" ez
(= (Zte)) "I (2 (suploral i) ')WH ,
JEZ kel k U(R’”) JEZ keZ L}?’(Rm)

where hNJ(x) = hj(—x). This together with (29) implies

H <J€Z <ke% IOkura *gk’j|>q> l/qHU’(Rm)
1
(2 (Z1eesl)) /quRmy

JEZ “keZ

(30)
< o+ DAl 12 1 501
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for any 1 < p, g < v. Interpolation between (29) and (30) yields (25) for (1/p,1/q)
belonging to the interior of the square (%,7 1— %,)2 By interpolation we get (25) for
the case y > 2 and complete the proof of Lemma 6. [

3. Proof of Theorem 2 for Q € H'(S" 1)

Let us begin with recalling Hardy space on $"~! and its atomic decomposition.
The Hardy space H'!(S"~1) is the set of all functions Q € L!(§"~!) with satisfying

Q(6)F,(6)do(6)||

9201y 2= | sup

<
0<r<11Jsm-1 Li(sm1)

where P,,,(0) denotes the Poisson kernel on §"~! defined by

1—72

:W, 0<r<1and9,w65n71.
rw —

Pr(6)
Now we give the definition of atom and atomic decomposition of H!(5"~!).

DEFINITION 1. A function a(-) on §"~! is a regular atom if there exist € € §"~!
and p € (0,2] such that

supp(a) C " 'NB(e,p), where B(e,p) ={ycR": [y—¢|<p}; (31)

”a”LZ(Sn—l) < p(l_")/z; (32)

[, adoty) =o. (33)

Following from [10, 11], we have the following atomic decomposition of Hardy
space.

LEMMA 7. If Q€ H'(S"™') satisfies (5), then there are complex numbers {c;} jcz,
and regular atoms {Q;} jcz such that

QZZCJ'QJ' and HQHHI(S"’I)Rij"
J J

Proof of Theorem 2 for Q € H'(S"~!). In what follows, we denote ¥, _| by the
set of polynomials in n — 1 variables with real coefficients and set [x] := max{k € N:
k < x} forany x € R. For s € N, let #,_; 5 denote the subset of #;,_; which contains
homogeneous polynomials of degree s.

By Lemma 7, it suffices to prove Theorem 2 for Q being an H' atom on §"~!
satisfying (31)—(33). Without loss of generality we may assume that 0 < p < % .Let 4
be the number of distinct d;. We may assume that

¢: (¢1""7¢m) = (¢17""¢2’)7
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where @ = (@ 1,...,D;,,) with @, ;(ty) = 19D, ;(y) forany 1 <s< A and 1<
J <s. Obviously, Z&Zlas =m and {ry,...,r;} C{1,...,m}. We also assume that
{Ds1,..., Dy, } forms a basis for span{®y i,..., Dy, } forany 1 <s < A. Thus there
exist {by ;i } such that

q)-\',j ()’) = bs,j,lq)s.,l ()’) +-- 4 bx,j,qu)-\yos ()’)

forany 1 <s<A and 1 < j <a,. In what follows, let & = (&1,...,&,) = (E,... EH)
with &%= (&1,...,&q,) for I <s<A.Forany 1 <s<A,let @ = (Dyy,...,Dy,,)
and (f"' =(&1,---,&s.0,). We define two sequences of linear transformations {H,;}* , :
R — R and {Ry;}7, : R* —R as follows:

Hyi(x) =Dbsi1x1+ - +bsjioXo,, 1<i<ag
Ry j(y) = bs1,jy1 + -+ bsa,jVa, 1< j< oy
Define the family of linear transformations {H,}* | and {R;}* | by
Hy=(Hg1,...,Hya,); Ry= (R, Rso,). (34)
It is easy to verify that
x-Hy(y) = Rs(x) -y, (x,y) € R% x R”. (35)

Thus we have

£ = £ H () = R,(&") - &, (36)

Forany 1 <s <A and z € §»~!, since {Ds1,..., Dy, } is linearly independent, thus
z-®/(-) is a nonzero real-analytic function. By (3.8) in [26], there exists & > 0 such

that
~//
( gn—1 )2

Let & = min{1/d,,1/s,0;/2}. Follows from (5.30) in [15], for any 1 < s < A4, there
exists an orthogonal 7 x n matrix U such that eU =e = (0,...,0,1) € §" ! and a
polynomial P, ; € ¥, such that deg(P; ;) < [~-!] and

(@)~ w)| “do()do(u) <. 37

&
@, ;(yU ") = P i(5)| < cp /e (38)

J y
for every y GB(e,p)ﬁS”_l and 1 < j < ay, where j = (|yy—1|7...,y'|’y’|1). For any 1 <

s< A, let Py = (P1,...,Pq,) and deg(Ps) = max;<j<q, deg(Py ;). Then there are
integers 0 < A1 < Ag2 <+ < Agu, <deg(Z) and Qg ja,, € o1, for 1< j<as
and 1 <1 < M, such that '

M
Py =2 Zir: (39)
=1
where 55, = (QS’LA&I,QS’Q’ASJ,...,QsﬁaS’ASJ) and s, # (0,...,0). For any 1 <
l g MS‘ ) let QS,ASJ = (QS,l,AS)[ ) QS,Z,ASJa M ] QS,OS,AS)[) and

My
D= Dy, (40)
=1
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We get form (38) that
|‘i)s(y)—@5()7ﬁ)| <Cp(n_l)/£r (41)

forevery y€ B(g,p)NS" and 1 <s<A.For I <s<A, 1 <I<M;and 1< j<ay,
we set

Qujng ()= byjup’. 42)
1BI=As
et ©(u ): (M +1) for 1 <u< A, @(0) =0, and define O,...,04(;) by
o(y) = (0, ) and
0

Ootuys00) = (@0 @O bl et Hi ( X Buvn (%)) 0,0,0) 43)

for0<u<A—-1,0<0<o@(u+1)—o(u),and
Op(1)(y) = P(y). (44)
It follows from (43) that

Op(uw)-1(y) = (Ql(y)»~~~7<D"*1(y)7Iyl"’“Hu(@u(%»,O,...,0>, L<u<h. (45)

For 0<s < @(A), let vx s = 000, 0. Note that

Thoo(f) =Y, Vkan) * [ (46)
kez
Vio(y) =0, Vk€ Zandy € R™. (47)

For any 1 < s < @ (1), by a change of variable, Holder’s inequality and the fact that
1|1 (gn1y < C,

‘Vks )| = ‘/ / Q) exp(—2mi& - O4(ty'))do (¥ )h(t )it
b ZHhHAV RY) </2;—1 gn—1 Q(Y')exp(—2mi& - O4(ry"))do (y') Yl%) 1
? 2 max{2,
S C(/zk,l [ Q0" exp(-2ig - 0,(1y))do(y) ﬂ)l/ 27}
(48)

Forany 1 <s<@(A), let

2dt

@ =[] [ e0)ew-25ig-0,0)do)
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By a change of variable and Lemma 1 we have

2k
— /
town®)l =| [ ]9

xexp (211 3 &0 (@) - @)™ Yo (o ()Y
j=1

S/
(Sn—l)Z

x+/fiexp<—zmiR.m-w-a)«zm%ldamw)

dt
t

Q)]

<C [, Q0B 2 R (&) (@) - ()] do(y)do)
<cwz’“1mRu<& - EHQHLZ(SH,I

{0/

forany 1 <u <A and 0 < € < min{l/d,,,1/u}. This together with (32), (37) and
(48) yields that

)
- - —2¢

P @) - @) doldo(?))

12

Vi (E)] < C2Mmpr=D/ag, (guw)|=eu/max(27} 1 <oy < A (49)

ForO<u<A—1and 0< 6 <®@(u+1)—@(u), by achange of variable and Holder’s
inequality again,

Vot re(8)]

o /;1 /SH exp(~271E Oy 1o(1)) )T Jh(1)

t
2k
<l ([, ] [, exp(2miE - O ()R oY)

< C</1;2 ’ /S"*' exp ( — 271:1'( zu‘i ?g’j.q)j(y/)(zkt)drj

Y 154
7

)1/)/

+§M+l it <l§i g’”‘LAuHJ GT(j)) (2]{’)(1"‘“))9()’/)610(})/)
= C</1;2 ’ /s"*l exp ( — Zn:i( ilgj .q)j(yUfl)(szd,j
0

FEH L, <l§i Bt @)> (2%1) P ))Q(yU—l)dG(y) )d;) 1/)/.
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We get from (35) and (45) that

2] 2]
gu-&-l “Hyt1 ( Z e@u-&-l,/\wu (y)> = RM-H(gu-H) ’ (Z it A, l( )>
=1 =1
Ou+t1 1 0
- 2 Ru+17] §u+ (2 u+17] ALH»II )
Ou+1 - |
= 2 D ( 2 bust jipRus1j(E"F )) P,
=g1= Ayyry 771
Invoking Lemma 2, there exists %, 9 > 0 such that
|Vk/af-\ (&) < C|2kd’u+1p 1,0 f (A, 9)(§)|_7‘*>9/7/ (50)
for0Su<A—1land0< O <@(u+1)—@(u), where
Oy+1
L0t (@) = (3 burtja pRus 1 (E)) - 51)
i=1 [Bl=Au+t1.0
Note that LA™«+1.6) is a linear transformation from R” to Rdlm( A1) . On the other

hand, by a change of variable, (35)-(36), (41) and (45) we have
Viww (&) = Vi -1(8)] -
| [ B 2miE Oy (1) — expl-2miE O 1)) T gy
2k '<|y|<2"

|y|"

2k —~
<c2n [ oI [ Iemlie o) - & 1 2,60) o)
< C2 ] g5 /S QO RA(E) - (@"(3) ~ Z,6T))do(y)

< C|2kdrup(n71)/£uRu(€u)|
(52)
for 1 <u< A. By (36), (42)-(43) and a change of variable we have

—

Veawr6(E) — Viowro—-1(5)]
= | S (exp(—27i& - Og(y)+6(Y)) — exp(—27i& - O g 1o-1(7)))
" Q(y)h(\y\)dy‘

|y["

5 Q(y)h(ly|)]
gc/ Skdr, | gutl gy (Q ( )))I p
241y <2k - AT oAy i @

! dr kd, 5 _
:c/2H |h(t)|T/SH At EHH (D1, (9)ROU ) |dG (v)
g C|2kdru+1 pAu+1‘0L(Au+l‘0)(€)|

(53)

for ISu<A—1and 1 <0 <®(u)—®(u—1). Define the linear transformations
)
{L }s 1 b

Ly(&)= phurto [ Murio)(8) s =@ (u)+0, 0<u<A—1,0< 6 < @(utl)—o(u);
SRS pD/ER, (B, s=ou), I<u<A.
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Also, we define le“vN(I)()L) and T]],...,T]a—j(l) by

N

Lo = 0()+60,0<u<A—1,0<0<a(u+1)— o)
Nv:: &y
a7y $=OW, L<u<h.

_dr, s=0u)+0,0<u<A-1,0<0<o(u+l)—o(u);
s = dr,, s=0(u),  <u<A.

It follows from (49)—(50) and (52)—(53) that for any 1 <s < @ (1),

Vs (8) = Vis—1 (&) < C2 Ly (E): (54)
Vs (E) < CPRM Ly (&)™ (55)

On the other hand, invoking Lemma 6 with u = 0, we have that

[(Z (Tl <€l (T (Zhensl) ™)™

JEZ “k€Z JEL "k€eZ
holds for any 1 < s < @(A), {gk,}xjez € LP(R™,(9(¢?)) and (1/p,1/q) € %y. By
(46)—(47), (54)—(56), Lemma 5 and interpolation, we get Theorem 2 for Q being an H'!
atom on §"~! satisfying (31)~(33). This proves Theorem 2 for Q € H!(s"~!). O

(56)

LP(R™M)

4. Proof of Theorem 2 for Q € L(logt L)/7 (s"~1)

Let Q € L(log™ L)*($"~1) for o > 0 and satisfy (5). Employing the notation in
[4], let Ey = {y/ € S"1: 20 < |Q(y)] <2#F!} for p € N\{0} and Eg={y € S" ! :
1Q(Y)| <2}. Set A(Q) ={pu €N: o(Ey) >2"*} and for u > 1,

Qu () =0 x5, () — (o ("))~ | Q0))da(y),

and QO(y/) = Q(y/) _ZueA(Q) Qu(y/)’ where G(Eﬂ) = fEH dG(e) and G(sn—l) _
Jsn-1dc(0). One can easily check that

- Qu(y)do(y') =0, forueA(Q)U{0}; (57)

1Q0l|1(gn-1) < € [1Qullp1(si-1) < ClIQ| L1, ), for u € A(Q); (58)

1Q0ll2(sn-1y < € 1Qull 251y < szﬂHQHLl(EH)v for € A(Q); (59)

Q)= Y  ub): (60)
neA(Q)uU{o}
(“+1)a||g||L1(EH) gC”Q”L(IOngL)O‘(S"’I)? fOI'(X>O; (61)

ueA(Q)u{0}
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Too(= Y Tha,elf) (62)

ueA(Q)u{o}
We now give the proof of Theorem 2 for Q € L(log™ L)"/7 (s"~1).

Proof of Theorem 2 for Q € L(log™ L)"/Y (§*~1). Let A be the number of distinct
dj. We may assume without loss of generality that

D= (Dy,...,0,) = (D,... 0", (63)

Where D = (Dyq,...,Dy,,) With D ;(ry) = td'.Vd)_Y7j(y) forany 1 <s< A and I <
< 5. Obviously, Z “as=m and {r,...,r } C {1,...,m}. We also assume that
{@_\71, ,D; 0, } forms a basis for span{CI)_\J7 vory @y} forany 1 <s<A. Let @ =

(@S’l,...,qq\,(,s) and & = (&1,...,En) = (E,... €M) with &= (&1,&2,..., &) for
any 1 < s < A. Following from the proof of Theorem 2 for the case Q € H! (S"‘l),
there exists a sequence of linear transformations {R;}* | such that

E5.@° =Ry(E%)- D, (64)

Let O; be given as in (37) and & = min{l/d,,1/s,6;/2}. Define the mappings:
ro, ces ,F)L by

For 0 <s<A,let gy = Ok Ty, - Iis obvious that

o k(y) =0, Vk € Zandy € R™; (65)
Tho,o(f) = Y, O pi*f- (66)
ke

For convenience, we set Ay, = (1 + 1)1/7/||Q||L1 )|| |h|||u,y for y> 1. By a change of
variable, (58), (64) and Holder’s inequality,

|0 k(&) — D1 k(8))]

a1k
= [ [ Qa0 exp(-2mie @)
—exp(~27i& Ty 1 (1y')))do 0 )
Rtk i » 67)
< e Lo 126 0)IIRAE) O = \da(y’)\h<z>|7
<C|2(“+1)kd'st(€s)ll|QuHLl(sH)/;M ~ 1)‘ (r )|_

< CAy 2WF DR Ry (£)].
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On the other hand, by a change of variable and Holder’s inequality again,

@l =| [ [ el -2miE T 0ot %

2 (u+1)k
<
S |Hh|||u#</2(u+1)(k71> ’ sn—1

= 1Al [l yHs o 1(6)-

For 1 <y<2,then ¥ >2 and

Qu(y'")exp(—2mi& - Ts(1y'))do(y') V£>W

(68)

2(u+1k

HS’“’k(é) - (/Q(HH)(IH) sn—1
x| / Qu(y) exp(—2mi& -T(ty'))do (y)

1-2
<l

Qu(y ) exp(—2mié -To(ty)do ()|
2 ﬂ) 1/)/

(69)

2 (u+1)k

«(/
2(u+1)(k—1)

For y> 2, then 1 <y <2, by Holder’s inequality,

2 /Y
"

[ QuO)exp(=2mi - Ty (1)) do (V')

Ay i () < (u+1)/7-172

2(u+1)k

<(/
2(u+1)(k=1)

(70)

Qu(y)exp(—2mi& - Ts(1y'))do(Y)

24\ 1/2
Sn—l ) ’

Let

(u+1)k 2 dt
T . / o e / / -
Lua®= [ L 2ul)exp(-2mie - Tue/)do )| 5

We get from (64) that

L,u,k@)
N //S Q) exp(—2miE - (T (1) — Ty (1)) do (o () 5

(H+1)k
- // g 20 <X’>/ e P 2miE (1)~ 1)) Y do ) do ()

2(u+1)(k—1)

= o )

uH

X/z(uﬂ)(k ) ( 2mER (&) (/)_d)j(xl))td,j>?dc(y/)dﬁ(xl)-
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Invoking Lemma 1 we have

‘/:IA )¢ ZmER (EN (D () = DI (K )t w)ﬂ'

t
u 2 (u+1) (k=1)+v+1

- ‘ 2 /2(u+1)(k71)+v P < a Zni;Rj(éj) ' (d)j(y/) - éj(xl)ﬁd,j) ?’

v=0
I 1 s L L _
< Z ’ / y eXp —2mzR,-(§f)-(cpf(y’)_cpf(x/))z((““)(" 1)+V+1)d’./td’j>
2
< (u+1)l2 (+1)~ 1) ”R (5 ) (@) - D ()]
forany 0 < € <min{1/s,1/d,,}. Then by Holder’s inequality we have

Lasl®) <) ff 10000 )

a
t

XRy(£)- (@' (y) — & () 2D |2 o () )do ()

< (o DR g1y U+ R (£0) )

][Rt @0 -w )| aotiaow)

for any 0 < € < min{1/s, l/dré} By lettmg & =min{l/s,1/rs,8,/2} and (37) we
have

a8 < (i 1) [l Fa gy DO R (E)) 75 (1)
This together with (68)—(70) implies

| @5 (&)] < CAp2H#/ 27} QU D(=1diy |R (£3)|)=ee/ max{27} (72)

On the other hand, one can easily check that

| @5k (8)] < CAy. (73)
Interpolation between (72) and (73) yields
B0k ()] < CA (WD R (&7)]) &/ tmex Ak ), (74)
It follows from (67) and (73) that
|00k (8) = D1 x(§)] < CAL(UWH IR Ry(£%)]) /11D, (75)

On the other hand, invoking Lemma 6 and (59),

H( <2 ‘w“"“k*gk’jF)qp)UqHU,(Rm) CA”H( <z |gk.j

JEL "keZ JEL "k€eZ

") e

(76)
holds for any 1 < s < A, functions {g ;}« jez € LP(R™,£9(¢?)) and (1/p,1/q) € %y.
Here C > 0 is independent of u and y. Then by (61)—(62), (65)-(66), (73)—(76),
Lemma 5 and interpolation, we get Theorem 2 for Q € L(log* L)!/7 (s*~1). O



SINGULAR INTEGRALS RELATED TO HOMOGENEOUS MAPPINGS 1095

5. Concluding results

In this section, we will show that our main results can be extended to a class of
singular integral operators associated to more general compound mappings. Precisely,
using Theorem 2 and a switched method followed from [12], we can obtain the corre-
sponding results for the more general singular integral operators 7j, o ¢, defined by

Tuawo(N)E) =pv. [ flx= (b)Y DKOy. xR,

where K() is as in (4) and ¢ € ¢4. Here ¢ is the set of all nonnegative (or non-
positive) and monotonic ¢! (R™") functions ¢ such that Yy (z) := % with [T (7)] <
Cy, where Cy is a positive constant which depends only on ¢. Clearly, 7;, o o is the
special case of Tj o.@ o for ¢(r) =¢. The general result can be formulated as follows.

THEOREM 3. Let ¢ € 4 and ® be given as in Theorem 2. Under the same

conditions of Theorem 2 (resp., Corollary 1), the operator Ty, o ¢ is also bounded on
ELY(R™) (resp., FLY(R™).

REMARK 3. If ¢ € ¢, the following facts are obvious (see [12]):

(i) lim; 0 @(z) = 0 and lim;—.. |@(7)| = o if @ is nonnegative and increasing, or
non-positive and decreasing;

(i) limy—0 |@(7)| = o= and lim;—.. @(¢) = 0 if @ is nonnegative and decreasing, or
non-positive and increasing.

REMARK 4. Theorem 3 implies [32, Theorem 1] even in the special case m = n
and ®(y) =y.

In order to prove Theorem 3, we need the following two lemmas.

LEMMA 8. ([12,24]) Let ¢ € 4. Suppose h € Ay(R"), or J,(R™), for some
y> 1, then h(¢~")Yo (9~ 1) € Ay(RT), or 5% (RT). Precisely, we have

17(0™ )Xo (0™ ")lla, ) < Cllllay ),

(@™o (@ Dl gyme) < Clll e
where the constant C > 0 depends only on ¢.

LEMMA 9. Let ¢ €. Then

(i) if @ is nonnegative and increasing, T, 0 o.¢(f) = Th(<p*1)Y¢(<p*1)7g7q,(f) :
(i) if @ is nonnegative and decreasing, Ty0.o.o(f) = —Th((pq)m(wl)’g’@(f) .
(iii) if ¢ is non-positive and decreasing, T, o.0,¢(f) = Th((pfl)m(go*l),ﬂ’q)(f) :
(iv) if @ is non-positive and increasing, Ty o.0.0(f) = —Th((p—l)y¢(¢—l)7ﬁ7q)(f),

where Q(y) = Q(—y).
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Proof. We can get this lemma by Remark 3 and the similar arguments as in the

proof of [12, Lemma 2.3]. The details are omitted. [

Proof of Theorem 3. Theorem 3 directly follows from Lemmas 8 and 9 and Theo-

rem2. U
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