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Abstract. In this paper, we investigate L∞ -error estimates for the convex optimal control prob-
lem governed by nonlinear elliptic equations using interpolation coefficients mixed finite ele-
ment methods. By using the interpolation coefficient thought to process the nonlinear term of
equations, we present the mixed finite element approximation with interpolated coefficients for
nonlinear optimal control problem. We derive L∞ -error estimates for the interpolation coeffi-
cients mixed finite element approximation of nonlinear optimal control problem. Finally some
numerical examples are given to confirm our theoretical results.
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